

Shree H.N. Shukla Group of Colleges

M.Sc. SEMESTER 4 Sub. Code: CMT-4004

Core Sub. 4: Graph Thoery

Question Bank

- 1 (a) Define following terms :
 - (i) Degree of a vertex in a graph
 - (ii) Simple graph
 - (iii) K-regular graph
 - (iv) Isomorphism of graphs
 - (v) Walk.

(b) Let G = (V, E) be a graph with |V| = m and |E| = n. Then

prove that $\sum_{v \in V} d(v) = 2n$. Using this deduce that the number

of odd vertices (whose degree is odd) is always even.

- (c) Draw a simple graph G = (V, E) with |V| = 7, |E| = 14 and G has vertex V whose degree is less than or equal to 1.
- 2 Suppose G = (V, E) be a finite graph. Then prove that $\exists g_1, g_2, \dots, g_k$ subgraphs of $G \ni g_1 = (V_i, E_i)$, $\forall i = 1, 2, \dots, k$ with following properties :
 - (i) Each g_i is maximal connected subgraph of G.
 - (ii) $V_i \cap V_j = \phi, \forall i, j \in \{1, \dots, k\} \text{ and } i \neq j.$
 - (iii) $V = \bigcup_{i=1}^{n} V_i$ and $E = \bigcup_{i=1}^{k} E_i$.
 - (iv) If g = (W, F) is any connected subgraph of G, then g must be a subgraph of g_i , for some $i \in \{1, ..., k\}$.

Shree H.N. Shukla Group of Colleges

3 (a) For a simple graph G(V, E), in standard notation prove that.

$$e \leq \frac{\left(n-k\right)\left(n-k+1\right)}{2}$$

- (b) Draw a connected graph G = (V, E) with |V| = 8, |E| = 9, and $\exists v \in V \neq d_G(v) \ge 6$.
- 4 State and prove theorem of A. Dirac.
- 5 Define a tree. Let u, v be two distinct vertices of a tree T. Then prove that \exists a unique path between u and v in T.

Suppose *G* is a self loop less graph and for any pair *u*, *v* of vertices in $G \ni$ a unique path between *u* and *v* in *G*. Then show that *G* must be a tree.

- **6** (a) Define minimally connected graph. Suppose G be a connected graph. Then prove that G is minimally connected iff G. is a tree.
 - (b) Let G = (V, E) be a connected graph and S be a cut-set of G and Γ be a circuit of G. Then prove that $|S \cap E(\Gamma)| =$ even.
- 7 (a) Let G = (V, E) be a non-complete connected graph with $|V| \ge 3$. Then show that the vertex connectivity of $G \le$ the edge connectivity of G.
 - (b) In standard notation prove that W_S and W_{Γ} both are orthogonal subspaces of W_G , where W_G is a vector space associate with a graph G.
- 8 (a) Suppose adjacent matrix for a graph G is given as follows :

$$X = \begin{bmatrix} 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \end{bmatrix}$$

Then find $Y = X + X^2 + X^3 + X^4$. Also deduce from Y that G is a connected graph or not.

(b) Prove that any tree with at least two vertices is a 2-chromatic graph.

Shree H.N. Shukla Group of Colleges

- 9 State and prove Eulerian theorem.
- $10\quad$ State and prove Max flow min cut theorem .

11 Prove that Kuratowski's first graph K_5 and second graph $K_{3,3}$ both are non-plannar graphs .

12 For a tree T, Prove that |E(T)| = |V(T)| - 1.