
[Time: 2.5 Hours]

Shree H.N. Shukla College of Science

M.Sc. (Mathematics) Sem-4

Prelims Test
CMT-4003: Number Theory-2

Q-1 Answer any seven
$[7 \times 2=14]$

1. Define: (a) Primitive Pythagorean triplet (b) Simple Continued fraction expansion.
2. Write down all Farey Fractions between 0 and 1 up to $7^{\text {th }}$ row.
3. Express $\frac{2018}{17}$ as a simple continued fraction.
4. Find the continued expansion of $\frac{\sqrt{5}+1}{2}$ and $\frac{\sqrt{5}-1}{2}$.
5. Find atleast three positive solutions of the equation $x^{2}-2 y^{2}=1$.
6. Find two Primitive Pythagorean triplet (x, y, z) for which $z<59$.
7. Find the value of $\langle 1,1,2,2,2, \ldots \ldots\rangle$ and $\langle-2,2,4,3,3, \ldots \ldots\rangle$.
8. If r and s are positive integers and t is a rational solution of $x^{r}=s$ then t must be \qquad . Justify your answer.
9. Show that $\operatorname{gcd}(x, y)=\operatorname{gcd}(y, z)$, where (x, y, z) is a Pythagorean Triplet.
10. Find two positive integers n such that $1+2+3+4+\cdots+n$ is a perfect square.

Q-2 Answer any two of the following.

1. Suppose θ is an irrational and $\frac{a}{b}$ is a rational number such that $\left|\theta-\frac{a}{b}\right|<\frac{1}{2 b^{2}}$ then prove that $\frac{a}{b}=r_{n}$ for some n.
2. State and prove the necessary and sufficient condition under which the continued Farey expansion of a quadratic irrational is purely periodic.
3. Write an algorithm to find the sequence of integers $a_{0} a_{1} a_{2}, \ldots a_{n} \ldots$ when an irrational number is given and then explain with an example.

Q-3 Answer the following. $[2 \times 7=14]$

1. Prove that for each $n>0$ there is a polynomial $f_{n}(x)$ of degree n, leading coefficient 1 and with integer coefficients such that $f_{n}(2 \cos \theta)=\operatorname{acos} n \theta$.
2. Suppose θ is an irrational number whose continued fraction expansion is periodic. Prove that θ is quadratic irrational.
3. Prove that π is irrational using elementary method.
4. If $\frac{h_{j}}{k_{j}}$ denotes $\mathrm{j}^{\text {th }}$ convergent of an irrational number θ then prove that for all $n \geq 1$
a) $\left|\theta k_{n}-h_{n}\right|<\left|\theta k_{n-1}-h_{n-1}\right|$.
b) $\left|\theta-\frac{h_{n}}{k_{n}}\right|<\left|\theta-\frac{h_{n-1}}{k_{n-1}}\right|$.

Q-4 Answer the following.

1. If θ is a quadratic irrational such that (i) $\theta>1$ (ii) $-1<\theta^{\prime}<0$ then prove that continued fraction expansion of θ is purely periodic.
2. Prove that there are infinitely many positive integers n such that $1+2+3+4+$ $\cdots+n=m^{2}$ for some integer m.

Q-5 Answer any two of the following.

1. a) Show that the equation $x^{2}=y^{2}+7$ has no solution in integer.
b) Find four solution of the equation $x^{2}-29 y^{2}=1$.
2. Find general solutions (if any) of the following Diophantine equation:
(1) $2 x+9 y=11$
(2) $100 x+101 y=2018$.
3. Show that if the triplet (x, y, z) is a Primitive Pythagorean triplet then there exists r and s such that $r>s \geq 1$. $(r, s)=1$ and r is even then s is odd and vice-versa.
