<u>S. Y. B. Sc. SEM – IV</u>

Subject: Mathematics

<u>Paper – 401</u>

<u>Unit – 2</u>

Prepared by: Miss. Renuka Dabhi |Maths/Sem-4/P-401/Unit-2| INFINITE SERIES

1

Explanation

Title

INFINITE SERIES

 \not The **sum** of infinite terms that follow a rule.

When we have an infinite **<u>sequence</u>** of values:

$$\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots, \dots$$

Which follow a rule (in this case each term is half the previous one), and we **add them all up**:

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots \dots = S$$

We get an **infinite series**.

2

A "SERIES" sound like it is the list of numbers, but it is actually when we add them together.

Trailer of Topic

Infinite Series $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots + a_n + \dots$ 1/2

Convergent and Divergent Series

divergent series n = 1 + 2 + 3 + 4 + 5...

But can an infinite series be convergent?

3

Convergence

Sum of an infinite geometric series

If Z an → D > Conditional Ean → C > Convergent

Alternating Series Test of Convergence

* **Definition:** Infinite Series

- ➤ If $\{u_{1,}u_{2}u_{3,}.....u_{n,}...u_{n,}...u_{n,}\}$ is any sequence then the **infinite sum** $u_{1,} + u_{2} + u_{3,} + \cdots + u_{n,} + \cdots + u_{n,} + \cdots$ is called infinite series OR simply series.
- \succ This is denoted by $\sum_{n=1}^{\infty} u_n$ OR $\sum u_n$
- If the number of terms is finite then the series is called finite series and if the number of terms is unlimited then it is called an infinite series.

✤ Examples:

- A series ∑ u_n is said to be a series of positive terms
 If u_n > 0, ∀n ∈ N.
- A series is said to be an alternating series if the terms of the series are alternately positive OR negative.
- The series (1), (3) and (4) in the above examples are series of positive terms, whereas series (2) is alternating series.

Sr. No.	Question	Answer
1	Infinite sum of any sequence is called	Infinite series
2	Give the condition of series of positive terms.	u _n >0, ∀n∈N
3	Which type of terms held in Alternating series?	alternately positive OR negative

Definition: Sequence of partial sums of a series

 \succ Let $\sum u_n$ be any series.

Let us consider the following sums:

 $s_1 = u_1$ $s_2 = u_1 + u_2$ $s_3 = u_1 + u_2 + u_3$

•••••

.....

 $s_n = u_1 + u_2 + u_3 + \dots + u_n$

Let ∑ u_n be a given series and s₁, s₂, s₃, ..., s_n, ..., s_n, ..., s_n, ..., s_n, ..., be a different partial sums of∑ u_n. The sequence {s₁, s₂, s₃, ..., s_n, ..., s_n, ..., s_n, ..., } is called the sequence of partial sums of∑ u_n.

Sr. No.	Question	Answer
1	The sequence $\{s_1, s_2, s_3,,, s_n,,, s_n,, \}$ is called	the sequence of partial sums of $\sum u_n$
2	Give the value of s_2 .	$\mathbf{s_2} = \mathbf{u_1} + \mathbf{u_2}$

* <u>Definition:</u> Convergent Series

- ▶ Let $\sum u_n$ be a series and $\{s_n\}$ be the corresponding sequence of partial sums.
- > The series $\sum u_n$ is convergent, if the sequence $\{s_n\}$ is convergent.

<u>i.e.</u> $\lim_{n\to\infty} s_n = l = finite and unique.$

▶ In this case we say $\sum u_n$ converges to I.

* **Definition:** Divergent Series

- ➤ Let $\sum u_n$ be a series and $\{s_n\}$ be the corresponding sequence of partial sums.
- ▶ The series $\sum u_n$ is divergent, if the sequence $\{s_n\}$ is divergent.

<u>i.e.</u> $\lim_{n\to\infty} s_n = +\infty OR - \infty$

8

Definition: Oscillatory Series

- ▶ Let $\sum u_n$ be a series and $\{s_n\}$ be the corresponding sequence of partial sums.
 - (a) The series $\sum u_n$ is said to be **oscillate finitely**, if the sequence $\{s_n\}$ is Oscillates finitely.

<u>l.e.</u> $\lim_{n\to\infty} s_n$ is finite but not unique.

9

(b) The series $\sum u_n$ is said to be **oscillate infinitely**, if the sequence $\{s_n\}$ is oscillates infinitely.

<u>i.e.</u>lim_{$n\to\infty$} $s_n = +\infty OR - \infty$

Sr. No.	Question	Answer
1	Limit of a sequence is finite and unique then it is said to be	Convergent series
2	Write down the condition for divergent series.	$\lim_{n\to\infty}s_n=+\infty \ OR-\infty$
3	Limit of a sequence is finite but not unique then it is said to be	Oscillate finite series
4	How many types have Oscillatory series?	2 types
5	Give the name of two types of Oscillatory series.	Oscillates finitely & Oscillates infinitely

NOTE:

Series which divergent OR oscillates are often classed as non convergent series.

EXAMPLE-1:

Show that the series $\frac{1}{1*2} + \frac{1}{2*3} + \frac{1}{3*4} + \dots + \frac{1}{n(n+1)} + \dots + \dots$ is convergent.

SOLUTION:

Since $u_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$

u ₁ =	$\frac{1}{1}$ -	$\frac{1}{2}$
u ₂ =	$\frac{1}{2}$ -	$\frac{1}{3}$
u ₃ =	$\frac{1}{3}$ -	$\frac{1}{4}$

.....

.....

$$\mathbf{u}_{\mathbf{n}} = \frac{1}{\mathbf{n}} - \frac{1}{\mathbf{n}(\mathbf{n}+1)}$$

$$\therefore S_n = u_1 + u_2 + u_3 + \dots + u_n = 1 - \frac{1}{n+1}$$

 $\therefore \lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(1 - \frac{1}{n+1} \right) = 1$, which is unique and finite.

Hence, $\sum u_n$ is convergent and converges to 1.

EXAMPLE-2:

Show that the series $\sum (-1)^n$ oscillates finitely.

SOLUTION:

Here $u_n = (-1)^n$

 $\therefore S_n = 1 - 1 + 1 - 1 + \dots \dots \dots up \text{ to } n \text{ terms}$

= 1 OR 0 according to as n is odd OR even.

 $\therefore \lim_{n o \infty} S_n = 1 \; \mathit{OR} \; \mathbf{0}$, which is finite but not unique.

Hence, $\sum (-1)^n$ oscillates finitely.

EXAMPLE-3:

Show that the series 1+2+3+ +n+ Diverges.

SOLUTION:

- Since $S_n = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$
- $\therefore \lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{n(n+1)}{2} = \infty$
- $\therefore \{S_n\}$ is divergent.

11

Hence, $\sum u_n$ is **divergent.**

NOTE:

- In the above examples we have determined the nature of the series directly using the definition.
- In this universe of series, we come across with it is either difficult OR impossible to compute the sequence of partial sums.
- Later we come across few sufficient conditions, known as the tests for convergence, which will be useful to determine the nature of the given series.

<mark>‡</mark>Theorem-1:

A series of positive terms either **converges OR diverges to** $+\infty$.

Theorem-2:

If a series $\sum u_n$ is convergent then $\lim_{n \to \infty} u_n = 0$.

NOTE:

> The **convergence of the above theorem is not true** in general.

I.e. if $\lim_{n\to\infty} u_n = 0$ Then the corresponding series $\sum u_n$ is not convergent in general. Consider the series $\sum \frac{1}{\sqrt{n}}$ Here, $u_n = \frac{1}{\sqrt{n}}$ $\therefore \lim_{n\to\infty} u_n = \lim_{n\to\infty} \frac{1}{\sqrt{n}} = 0$

We consider,

$$S_{n} = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}}$$

> $\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n}} + \dots + \frac{1}{\sqrt{n}}(n - times)$
= $n * \frac{1}{\sqrt{n}} = \sqrt{n}$

 $\therefore \lim_{n \to \infty} S_n > \lim_{n \to \infty} \sqrt{n} = \infty$ Thus $\sum u_n$ is divergent even though $\lim_{n \to \infty} u_n = 0$

NOTE:

(i) $\sum u_n$ convergent $\Rightarrow \lim_{n \to \infty} u_n = 0$

- (ii) $\lim_{n \to \infty} u_n = 0 \Longrightarrow \Sigma u_n$ may be convergent OR not.
- (iii) $\lim_{n\to\infty} u_n \neq 0 \Rightarrow \sum u_n$ is not convergent.
- (iv) If $\sum u_n$ is a series of positive terms and $\lim_{n\to\infty} u_n \neq 0$ then $\sum u_n$ diverges to ∞ .

Sr. No.	Question	Answer
1	A series of positive terms either converges OR diverges to	+∞
2	If a series $\sum u_n$ is convergent then	$\lim_{n\to\infty}u_n=0$
3	If $\lim_{n\to\infty} u_n = 0$ then the series is convergent.(T/F)	False
4	If $\sum u_n$ is a series of positive terms and $\lim_{n\to\infty} u_n \neq 0$ then $\sum u_n$ diverges to ∞ .(T/F)	True

Cauchy's General Principal of Convergence:

A necessary and sufficient condition for the series $\sum u_n$ to convergent is that, given ε >0, however small, there exist m ϵ N, such that

$$|s_{n+p} - s_n| < \varepsilon, \forall n \ge m, p \in \mathbb{N}$$

OR

$$|\boldsymbol{u}_{n+1} + \boldsymbol{u}_{n+2} + \dots \dots + \boldsymbol{u}_{n+p}| < \varepsilon, \forall n \ge m, p \in N$$

Definition: Geometric series

The series $\sum_{n=0}^{\infty} r^n = 1 + r + r^2 + \dots + r^{n-1} + \dots$ is called the Geometric series.

Theorem-3:

The Geometric series $\sum_{n=1}^{\infty} r^n$ is

(i) Convergent if **|r|<1**,

I.e. -1<r<1 and its sum is $\frac{1}{1-r}$

- (ii) Divergent if r≥1
- (iii) Finitely oscillating if r=-1
- (iv) Infinitely oscillating if r<-1

EXAMPLE-4:

Test the convergence of $\sum_{n=0}^{\infty} \frac{3^{2n}}{2^{3n}}$

SOLUTION:

14

Here, $u_n = \frac{3^{2n}}{2^{3n}} = \left(\frac{3^2}{2^3}\right)^n = \left(\frac{9}{8}\right)^n$

$$\therefore \sum u_n = 1 + \frac{9}{8} + \left(\frac{9}{8}\right)^2 + \dots \dots \dots$$

Which is Geometric series with $r = \frac{9}{8} > 1$

Hence, $\sum u_n$ is divergent.

Sr. No.	Question	Answer
1	Write down the Cauchy's general principle of convergence in mathematical form.	$ig s_{n+p} - s_n ig < arepsilon,$ $orall n \ge m, p \in N$
2	The series $\sum_{n=0}^{\infty} r^n = 1 + r + r^2 + \dots + r^{n-1} + \dots$ is called	Geometric series
3	Give the general form of Geometric series.	$\sum_{n=0}^{\infty} r^n$
4	In Geometric series, If we get r ≥ 1 then the given series is	Divergent
5	Give the example of Geometric series.	$1 - \frac{1}{2} + \frac{1}{2^2} - \frac{1}{2^3} + \frac{1}{2^4} - \dots$

✤ <u>Definition:</u> Alternating series

15

A series of the type $u_1 - u_2 + u_3 - u_4 + \dots + \dots$; Where $u_n > 0$, $\forall n \in N$, is called an alternating series and it is denoted by $\sum_{n=1}^{\infty} (-1)^{n+1} u_n$. For example, the series **3-9+27-28+**and $\frac{1}{4} - \frac{5}{7} + \frac{7}{10} - \frac{9}{13} + \dots + \dots$ are alternating series.

* Libnitz test for the convergence of an Alternating series:

The infinite series $u_1 - u_2 + u_3 - u_4 + \dots \dots$ in which terms are alternatively positive and negative is convergent if **each term is numerically** less than its preceeding term and $\lim_{n\to\infty} u_n = 0$.

EXAMPLE-5:

Show that Alternating series $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots \dots$ is convergent.

SOLUTION:

By comparing $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots = a_1 - a_2 + a_3 - a_4 + a_5 - \dots$ We see that $a_1 = 1, a_2 = \frac{1}{3}, a_3 = \frac{1}{5}, a_4 = \frac{1}{7}, a_5 = \frac{1}{9}, \dots$

 $\therefore a_1 > a_2 > a_3 > a_4 > a_5 > \dots \dots \dots$

: Each term is numerically less than its preceeding term.

Now,

 $\lim_{n\to\infty}a_n=\lim_{n\to\infty}\frac{1}{2n-1}=0$

Hence by Leibnitz's test the given series is convergent.

Sr. No.	Question	Answer
1	A series of the type $u_1 - u_2 + u_3 - u_4 + \dots;$ Where $u_n > 0, \forall n \in N$, is called	Alternating series
2	Give an example of Alternating series.	$\frac{1}{4} - \frac{5}{7} + \frac{7}{10} - \frac{9}{13} + \dots$
3	Which test used for the convergence of Alternating series?	Leibnitz's test

* Test for convergence:

We have proved that a series converges by actually finding its sum. However, for most convergent series the exact sum s_n is difficult OR impossible to find. In this case we consider the following standard tests;

- (i) Comparision test
- (ii) P-test
- (iii) D'-Alemert's ratio test
- (iv) Raabe's test

(i) <u>Comparision test:</u>

Test-1:

Let $\sum u_n$ and $\sum v_n$ be any two series of positive terms.

(A) If $u_n \leq v_n$, for all $n \geq 1$ and $\sum v_n$ converges then $\sum u_n$ converges and $\sum u_n \leq \sum v_n$.

(B) If $u_n \leq v_n$, for all $n \geq 1$ and $\sum u_n$ diverges then $\sum v_n$ diverges and $\sum u_n \leq \sum v_n$.

Prepared by: Miss. Renuka Dabhi |Maths/Sem-4/P-401/Unit-2| INFINITE SERIES

17

Test-2:

Let $\sum u_n$ and $\sum v_n$ be any two series of positive terms. If $\lim_{n\to\infty} \frac{u_n}{v_n} = l$.

Where I is non zero and finite then both the series converges OR diverges together.

Sr. No.	Question	Answer
1	In Comparision test, If $u_n \le v_n$, for all $n \ge 1$ and $\sum v_n$ converges then $\sum u_n$ is	Converges
2	In Comparision test, If $u_n \le v_n$, for all $n \ge 1$ and $\sum u_n$ diverges then $\sum v_n$ is	Diverges

Definition: P-Series OR Harmonic series

The series $\sum \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots + \frac{1}{n^p} + \dots$ is called P-series or Harmonic series.

(ii) <u>P-test:</u>

The series $\sum \frac{1}{n^p}$ is (1) Convergent, if **p>1** (2) Divergent, if **p≤1**

EXAMPLE-6:

Test the convergence OR divergence of the following series:

$$\frac{1}{1*2*3} + \frac{3}{2*3*4} + \frac{5}{3*4*5} + \frac{7}{4*5*6} + \dots \dots \dots$$

SOLUTION:

Here,
$$u_n = \frac{(2n-1)}{n(n+1)(n+2)} = \frac{n\left(2-\frac{1}{n}\right)}{n^3\left(1+\frac{1}{n}\right)\left(1+\frac{2}{n}\right)} = \frac{\left(2-\frac{1}{n}\right)}{n^2\left(1+\frac{1}{n}\right)\left(1+\frac{2}{n}\right)}$$

We consider $\sum v_n = \sum \frac{1}{n^2} \Rightarrow p=2>1 \Rightarrow \sum v_n$ is convergent.

Now,

$$\lim_{n \to \infty} \frac{u_n}{v_n} = \lim_{n \to \infty} n^2 * \frac{\left(2 - \frac{1}{n}\right)}{n^2 \left(1 + \frac{1}{n}\right) \left(1 + \frac{2}{n}\right)}$$
$$= \lim_{n \to \infty} \frac{\left(2 - \frac{1}{n}\right)}{\left(1 + \frac{1}{n}\right) \left(1 + \frac{2}{n}\right)} = \frac{(2 - 0)}{(1 + 0)(1 + 0)} = 2$$

By Comparison test $\sum u_n$ is also convergent.

EXAMPLE-7:

Test the convergence OR divergence of the following series:

$$\sum \sin \frac{1}{n}$$

SOLUTION:

Since $u_n = \sum \sin \frac{1}{n}$

We consider $\sum v_n = \sum \frac{1}{n}$, which is **divergent as p=1**

Now,

$$\lim_{n \to \infty} \frac{u_n}{v_n} = \lim_{n \to \infty} \frac{\sin\frac{1}{n}}{\frac{1}{n}} = \lim_{n \to 0} \frac{\sin\frac{1}{n}}{\frac{1}{n}} = 1 \quad (\text{Because,} \lim_{\theta \to 0} \frac{\sin\theta}{\theta} = 1)$$

By Comparison test $\sum u_n$ is also divergent.

Sr. No.	Question	Answer
1	The series $\sum \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots$ is called	P-series
2	P-series is also known as	Harmonic series
3	Which test used for convergence of P-series?	P-test
4	Using P-test, we get p>1 then the series is	Convergent

<u>EXERCISE – A</u>

Test the convergence OR divergence of the following series:

1)
$$\frac{1}{1*2} + \frac{1}{2*3} + \frac{1}{3*4} + \dots \dots$$

2) $\sum \cos \frac{1}{n}$
3) $\frac{1*2}{3^2*4^2} + \frac{3*4}{5^2*6^2} + \frac{5*6}{7^2*8^2} + \dots \dots$
4) $\sum (\sqrt{n+1} - \sqrt{n})$
5) $\sum \frac{n+2}{n^3+1}$

(iii) **<u>D'Alemert's Ratio Test:</u>**

Let $\sum u_n$ be a series of positive terms and $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = l$.

- (1) If $0 \le l < 1$ then $\sum u_n$ converges
- (2) If I>1 then $\sum u_n$ diverges
- (3) If **I=1** then from this test alone, we cannot draw any conclusion the convergence or divergence of $\sum u_n$.

EXAMPLE-8:

Test the convergence of the series $1 + \frac{2!}{2^2} + \frac{3!}{3^3} + \frac{4!}{4^4} + \dots \dots \dots$

SOLUTION:

Here, $u_n = \frac{n!}{n^n} \Rightarrow u_{n+1} = \frac{(n+1)!}{(n+1)^{n+1}}$ Consider $\frac{u_{n+1}}{u_n} = \frac{(n+1)!}{(n+1)^{n+1}} * \frac{n^n}{n!} = \frac{n+1}{(n+1)^{n+1}} * n^n = \frac{n^n}{(n+1)^n} = \frac{n^n}{n^n \left(1 + \frac{1}{n}\right)^n} = \frac{1}{\left(1 + \frac{1}{n}\right)^n}$ $\therefore \lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{1}{\left(1 + \frac{1}{n}\right)^n} = \frac{1}{e} < 1$ $\left[\because \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e \ \& \ e > 2 \Rightarrow \frac{1}{e} < \frac{1}{2} < 1\right]$

Hence, by D'Alembert's ratio test, $\sum u_n$ is convergent.

EXAMPLE-9:

Discuss the convergence of $\frac{1}{2\sqrt{1}} + \frac{x^2}{3\sqrt{2}} + \frac{x^4}{4\sqrt{3}} + \frac{x^6}{5\sqrt{4}} + \dots \dots$

Prepared by: Miss. Renuka Dabhi |Maths/Sem-4/P-401/Unit-2| INFINITE SERIES

21

SOLUTION:

Here,
$$u_n = \frac{x^{2n-2}}{(n+1)\sqrt{n}} \Rightarrow u_{n+1} = \frac{x^{2n}}{(n+2)\sqrt{n+1}}$$

Now,

$$\frac{u_{n+1}}{u_n} = \frac{x^{2n}}{(n+2)\sqrt{n+1}} * \frac{(n+1)\sqrt{n}}{x^{2n-2}} = \frac{(n+1)}{(n+2)} * \sqrt{\frac{n}{n+1}} * x^2$$

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{(n+1)}{(n+2)} * \sqrt{\frac{n}{n+1}} * x^2 = \lim_{n \to \infty} \frac{\left(1 + \frac{1}{n}\right)}{\left(1 + \frac{2}{n}\right)} * \sqrt{\frac{1}{1 + \frac{1}{n}}} * x^2$$
$$= \frac{(1+0)}{(1+0)} * \sqrt{\frac{1}{1+0}} * x^2 = x^2$$

 \therefore By ratio test, if $x^2 < 1$, $\sum u_n$ is convergent and if $x^2 > 1$, $\sum u_n$ is divergent. When $x^2=1$, ratio test fails.

For x²=1, then $u_n = \frac{1}{(n+1)\sqrt{n}} = \frac{1}{n^{\frac{3}{2}}(1+\frac{1}{n})}$ We choose $\sum v_n = \sum \frac{1}{n^{\frac{3}{2}}}$, which is convergent as $p = \frac{3}{2} > 1$

Now,

22

$$\lim_{n \to \infty} \frac{u_n}{v_n} = \lim_{n \to \infty} \frac{n^{\frac{3}{2}}}{n^{\frac{3}{2}} \left(1 + \frac{1}{n}\right)} = \lim_{n \to \infty} \frac{1}{\left(1 + \frac{1}{n}\right)} = \frac{1}{1 + 0} = \mathbf{1}$$

 \therefore By comparison test, $\sum u_n$ is convergent.

Hence, if $x^2 \le 1$, $\sum u_n$ is convergent and if $x^2>1$, $\sum u_n$ is divergent.

Sr. No.	Question	Answer
1	In ratio test we get I>1 then the series is	Divergent
2	In ratio test we get 0≤I<1 then the series is	Convergent

<u>EXERCISE – B</u>

Test the convergence of the following series:

(iv) Raabe's Test:

Let $\sum u_n$ be a series of positive terms and $\lim_{n\to\infty} n\left(\frac{u_n}{u_{n+1}}-1\right) = l$.

- (1) The series is convergent, if I>1
- (2) The series is divergent, if I<1
- (3) This test gives no information, if I=1

EXAMPLE-10:

23

Examine the convergence of $\frac{2}{3} + \frac{2*4}{3*5} + \frac{2*4*6}{3*5*7} + \dots \dots \dots \dots$

SOLUTION:

Here,
$$u_n = \frac{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n)}{3 \cdot 5 \cdot 7 \cdot \dots \cdot (2n+1)} \Rightarrow u_{n+1} = \frac{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n) \cdot (2n+2)}{3 \cdot 5 \cdot 7 \cdot \dots \cdot (2n+1) \cdot (2n+3)}$$

Now,

$$\frac{u_{n+1}}{u_n} = \frac{2*4*6*\dots(2n)*(2n+2)}{3*5*7*\dots(2n+1)*(2n+3)}*\frac{3*5*7*\dots(2n+1)}{2*4*6\dots(2n+1)*(2n)}$$
$$= \frac{2n+2}{2n+3}$$

$$\therefore \lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{2n+2}{2n+3} = \lim_{n \to \infty} \frac{n(2+\frac{2}{n})}{n(2+\frac{3}{n})} = \frac{(2+0)}{(2+0)} = \mathbf{1}$$

Therefore, D'Alembert's ratio test fails.

Now,

$$\frac{u_n}{u_{n+1}} - 1 = \frac{2n+3}{2n+2} - 1 = \frac{1}{2n+2}$$

$$\therefore \quad n\left(\frac{u_n}{u_{n+1}} - 1\right) = \frac{n}{2n+2}$$

$$\therefore \quad \lim_{n \to \infty} n\left(\frac{u_n}{u_{n+1}} - 1\right) = \lim_{n \to \infty} \frac{n}{2n+2} = \lim_{n \to \infty} \frac{n}{n\left(2 + \frac{2}{n}\right)} = \frac{1}{(2+0)} = \frac{1}{2} < 1$$

By Raabe's test, $\sum u_n$ is divergent.

EXAMPLE-11:

Discuss the convergence of
$$\sum \frac{1 + 3 + 5 + \dots + (2n-1)}{2 + 4 + 6 + \dots + (2n)} + x^n$$

SOLUTION:

Here,
$$u_n = \frac{1 + 3 + 5 + \dots + (2n-1)}{2 + 4 + 6 + \dots + (2n)} + x^n$$

$$\Rightarrow u_{n+1} = \frac{1 * 3 * 5 * \dots * (2n-1) * (2n+1)}{2 * 4 * 6 * \dots * (2n) * (2n+2)} * x^{n+1}$$

Now,

$$\frac{u_{n+1}}{u_n} = \frac{1*3*5*\dots*(2n-1)*(2n+1)}{2*4*6*\dots*(2n)*(2n+2)}*x^{n+1}\frac{2*4*6*.*(2n)}{1*3*5*\dots*(2n-1)*x^n}$$
$$= \frac{2n+1}{2n+2}*x$$
$$\therefore \quad \lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{2n+1}{2n+2}*x = \lim_{n \to \infty} \frac{n(2+\frac{1}{n})}{n(2+\frac{2}{n})}*x = x$$

 \therefore D'Alembert's ratio test, $\sum u_n$ is convergent if x<1 and divergent if x>1.

If x=1 then ratio test fails.

When x=1, $\frac{u_{n+1}}{u_n} = \frac{2n+1}{2n+2}$

We consider,

$$\frac{u_n}{u_{n+1}} - 1 = \frac{2n+2}{2n+1} - 1 = \frac{1}{2n+1}$$

$$\therefore \quad n\left(\frac{u_n}{u_{n+1}} - 1\right) = \frac{n}{2n+1}$$

$$\therefore \lim_{n \to \infty} n \left(\frac{u_n}{u_{n+1}} - 1 \right) = \lim_{n \to \infty} \frac{n}{2n+1} = \lim_{n \to \infty} \frac{n}{n \left(2 + \frac{1}{n} \right)} = \frac{1}{(2+0)} = \frac{1}{2} < 1$$

By Raabe's test, $\sum u_n$ is divergent.

Hence $\sum u_n$ is convergent if x<1 and divergent if $x \ge 1$.

Sr. No.	Question	Answer
1	If the D'Alembert's ratio test fails, then what to do?	Apply Raabe's test
2	In Raabe's test if I=1 then the series is	Test gives no information
3	In Raabe's test if I<1 then the series is	Divergent

<u>EXERCISE –C</u>

Discuss the convergence of the following:

1)
$$\frac{1}{2} + \frac{1 \times 3}{2 \times 4} + \frac{1 \times 3 \times 5}{2 \times 4 \times 6} + \dots$$

2) $\sum \frac{4 \times 7 \times 10 \dots (3n+1)}{1 \times 2 \times 3 \dots n} \times x^n$
3) $1 + \frac{3}{7}x + \frac{3 \times 6}{7 \times 10}x^2 + \frac{3 \times 6 \times 9}{7 \times 10 \times 13}x^3 + \dots$
4) $\sum \frac{1^2 \times 4^2 \times 7^2 \dots (3n-2)^2}{3^2 \times 6^2 \times 9^2 \dots (3n)^2}$

Definition: Absolutely convergent series

A series $\sum u_n$ is said to be absolutely convergent if $\sum |u_n|$ is convergent.

* <u>Definition:</u> Conditionally convergent series

A series $\sum u_n$ is said to be conditionally convergent if $\sum u_n$ is convergent and $\sum |u_n|$ is divergent.

<mark>4</mark> <u>Theorem – 4:</u>

An absolutely convergent series is convergent.

EXAMPLE-12:

The series $1 - \frac{1}{2} + \frac{1}{2^2} - \frac{1}{2^3} + \dots$ is absolutely convergent as the series $1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots$ is convergent as $r = \frac{1}{2} < 1$.

EXAMPLE-13:

The series $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \dots$ is not absolutely convergent, since the series $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \dots$ is divergent.

Also we know that the series $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots \dots$ is convergent.

Hence, given series is conditionally convergent but not a absolutely convergent.

Sr. No.	Question	Answer
1	If $\sum u_n $ is convergent, then the series is called	Absolutely convergent series
2	If $\sum u_n$ is convergent and $\sum u_n $ is divergent, then the series is called	Conditionally convergent series
²⁷ Pr	epared by: Miss. Renuka Dabhi Matl	hs/Sem-4/P-401/Ur INFINITE SI

3

An absolutely convergent series is

Convergent

* <u>Definition:</u> Power series

A series of the form $\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$where a_0, a_1, a_2, \dots are constants, is called a power series in x.

OR

A series of the form $\sum_{n=0}^{\infty} a_n (x-a)^n =$ $a_0 + a_1 (x-a) + a_2 (x-a)^2 + \dots + \dots + a_n (x-a)^n +$ $\dots \dots$ Is called a power series in (x-a).

Theorem-5:

Let $\sum_{n=0}^{\infty} a_n x^n$ be a power series and $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \frac{1}{R}$, $R \in (-\infty, \infty)$

- (i) If **|x|<R** then the series is **convergent**.
- (ii) If **|x|>R** then the series is **divergent**.
- (iii) If **|x|=R** then we can draw **no conclusion by this test**.
- → We call number **R** in above theorem, the **radius of convergence** of $\sum_{n=0}^{\infty} a_n x^n$.
- ➤ The collection of values of x for which $\sum_{n=0}^{\infty} a_n x^n$ converges is called the interval of convergence OR the range of convergence of $\sum_{n=0}^{\infty} a_n x^n$.

Prepared by: Miss. Renuka Dabhi |Maths/Sem-4/P-401/Unit-2| INFINITE SERIES

28

It seems that the interval of convergence takes one and only one of the following forms:

[0, 0], (-R, R), [-R, R), (-R, R], [-R, R], (-∞, ∞)

EXAMPLE-14:

Find the radius of convergence for the series

$$\sum_{n=0}^{\infty} \frac{x^n}{n+2}$$

SOLUTION:

Here,
$$u_n = \frac{x^n}{n+2} \Rightarrow u_{n+1} = \frac{x^{n+1}}{n+3}$$

$$\therefore \frac{u_{n+1}}{u_n} = \left(\frac{x^{n+1}}{n+3}\right) \left(\frac{n+2}{x^n}\right) = \left(\frac{n+2}{n+3}\right) x$$

$$\therefore \lim_{n \to \infty} \left|\frac{u_{n+1}}{u_n}\right| = \lim_{n \to \infty} \left|\left(\frac{n+2}{n+3}\right) x\right| = \lim_{n \to \infty} \left|\left(\frac{1+\frac{2}{n}}{1+\frac{3}{n}}\right) x\right| = |x|$$

 \therefore By ratio test, the series is **converges if** |x| < 1 and **diverges if** |x| > 1.

∴ The radius of convergence R=1.

EXAMPLE-15:

Find the radius of convergence and interval of convergence of the series

$$\sum_{n=0}^{\infty} \frac{(-3)^n x^n}{\sqrt{n+1}}$$

29

SOLUTION:

Since
$$u_n = \frac{(-3)^n x^n}{\sqrt{n+1}} \Rightarrow u_{n+1} = \frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}}$$

$$\therefore \ \frac{u_{n+1}}{u_n} = \left(\frac{(-3)^{n+1}x^{n+1}}{\sqrt{n+2}}\right) \left(\frac{\sqrt{n+1}}{(-3)^n x^n}\right) = -3x \sqrt{\frac{n+1}{n+2}}$$

$$\therefore \lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n \to \infty} \left| -3x \sqrt{\frac{n+1}{n+2}} \right| = \lim_{n \to \infty} \left| -3x \sqrt{\frac{1+\frac{1}{n}}{1+\frac{2}{n}}} \right| = \mathbf{3}|\mathbf{x}|$$

 \therefore By ratio test, the series is **converges if** $3|x| < 1 \Rightarrow |x| < \frac{1}{3}$ and **diverges** if $3|x| > 1 \Rightarrow |x| > \frac{1}{3}$.

 \therefore The radius of convergence is $R = \frac{1}{3}$ and the interval of convergence is $\left(-\frac{1}{3}, \frac{1}{3}\right)$

Sr. No.	Question	Answer
1	A series of the form $\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$ where a_0, a_1, a_2, \dots are constants, is	Power series

	called	
2	If x <r is<="" series="" th="" the="" then=""><th>Convergent</th></r>	Convergent
3	The collection of values of x for which $\sum_{n=0}^{\infty} a_n x^n$ converges is called	Interval of convergence
4	Interval of convergence is also known as	Range of convergence

<u>EXERCISE – D</u>

Find the radius of convergence and interval of convergence of the series:

1) $x + 2x^2 + 3x^3 + 4x^4 + \dots \dots \dots$ **2)** $2 - \frac{4}{5}x + \frac{6}{5^2}x^2 - \frac{8}{5^3}x^3 + \dots \dots$ **3)** $\sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n}}$