SHREE H. N. SHUKLA GROUP OF COLLEGES

S. Y. B. Sc. SEM - IV

Subject: Mathematics

Paper-401
Unit-2

1 Prepared by: Miss. Renuka Dabhi |Maths/Sem-4/P-401/Unit-2| INFINITE SERIES

SHREE H. N. SHUKLA GROUP OF COLLEGES

INFINITE SERIES

的 The sum of infinite terms that follow a rule.
When we have an infinite sequence of values:

$$
\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots \ldots \ldots \ldots \ldots
$$

Which follow a rule (in this case each term is half the previous one), and we add them all up:

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\ldots \ldots \ldots \ldots \ldots=S
$$

We get an infinite series.

6 A "SERIES" sound like it is the list of numbers, but it is actually when we add them together.

SHREE H. N. SHUKLA GROUP OF COLLEGES

Trailer of Topic

Convergent and Divergent Series
$\sum_{n=1}^{\infty} \mathrm{n}=1+2+3+4+5 \ldots$

But can an
infinite series be convergent?

SHREE H. N. SHUKLA GROUP OF COLLEGES

Sum of an infinite geometric series

Absolute Convergence

$$
\begin{array}{r}
\text { If } \left.\sum a_{n} \rightarrow C \sum \begin{array}{l}
\text { Absolute } \\
\text { then } \sum a_{n} \rightarrow C
\end{array} \begin{array}{l}
\text { Convergence } \\
\text { If } \sum a_{n} \rightarrow D \\
\sum a_{n} \rightarrow C
\end{array}\right\} \begin{array}{l}
\text { conditional } \\
\text { convergence }
\end{array}
\end{array}
$$

Alternating Series Test of Convergence

Power series
of convergence

SHREE H. N. SHUKLA GROUP OF COLLEGES

∇ Infinite series are useful in mathematics and in such disciplines as physics, chemistry, biology, and engineering.

V Explain the meaning of the sum of an infinite series.
\square Calculate the sum of a geometric series.

- Evaluate a telescoping series.

SHREE H. N. SHUKLA GROUP OF COLLEGES

Definition: Infinite Series

$>$ If $\left\{u_{1}, u_{2} u_{3}, \ldots \ldots \ldots \ldots u_{n}, \ldots \ldots \ldots \ldots \ldots \ldots\right.$ is any sequence then the infinite sum $u_{1}+u_{2}+u_{3,}+\cdots \ldots \ldots .+u_{n,}+\cdots \ldots \ldots \ldots \ldots$ i............ called infinite series OR simply series.
$>$ This is denoted by $\sum_{\boldsymbol{n}=\mathbf{1}}^{\infty} \boldsymbol{u}_{\boldsymbol{n}}$ OR $\sum \boldsymbol{u}_{\boldsymbol{n}}$
> If the number of terms is finite then the series is called finite series and if the number of terms is unlimited then it is called an infinite series.

Examples:

(1) $\sum n^{2}=1^{2}+2^{2}+3^{2}+\ldots \ldots \ldots \ldots \ldots+n^{2}+$
(2) $\sum(-1)^{n}=1-1+1-1+\ldots \ldots \ldots \ldots \ldots \ldots \ldots$
(3) $\sum \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots \ldots \ldots \ldots \ldots+\frac{1}{n}+$
(4) $\sum(2 n-1)=1+3+5+\ldots \ldots \ldots \ldots+(2 n+1)+\ldots \ldots \ldots$.

A series $\sum u_{n}$ is said to be a series of positive terms If $\boldsymbol{u}_{\boldsymbol{n}}>0, \forall n \in N$.
$>$ A series is said to be an alternating series if the terms of the series are alternately positive OR negative.

The series (1), (3) and (4) in the above examples are series of positive terms, whereas series (2) is alternating series.

SHREE H. N. SHUKLA GROUP OF COLLEGES

Sr. No.	Question	Answer
$\mathbf{1}$	Infinite sum of any sequence is called	Infinite series
$\mathbf{2}$	Give the condition of series of positive terms.	$\mathbf{u}_{\mathrm{n}}>\mathbf{0}, \forall \mathbf{n} \in \mathbf{N}$
$\mathbf{3}$	Which type of terms held in Alternating series?	alternately positive OR negative

Definition: Sequence of partial sums of a series

$>$ Let $\sum u_{n}$ be any series.

Let us consider the following sums:

$$
\begin{gathered}
s_{1}=u_{1} \\
s_{2}=u_{1}+u_{2} \\
s_{3}=u_{1}+u_{2}+u_{3}
\end{gathered}
$$

\qquad
\qquad

$$
s_{n}=u_{1}+u_{2}+u_{3}+\ldots \ldots \ldots \ldots \ldots+u_{n}
$$

Let $\sum u_{n}$ be a given series and $\mathbf{s}_{\mathbf{1}}, \mathbf{s}_{\mathbf{2}}, \mathbf{s}_{3}, \ldots \ldots \ldots \ldots, \mathbf{s}_{\mathrm{n}}, \ldots \ldots \ldots \ldots \ldots$
be a different partial sums of $\sum \boldsymbol{u}_{n}$. The sequence
$\left\{s_{1}, s_{2}, s_{3}, \ldots \ldots \ldots \ldots, s_{n}, \ldots \ldots \ldots \ldots \ldots\right.$ i. is called the sequence of partial sums of $\sum u_{n}$.

SHREE H. N. SHUKLA GROUP OF COLLEGES

Sr. No.	Question	Answer
$\mathbf{1}$	The sequence $\left\{s_{1}, s_{2}, s_{3}, \ldots \ldots \ldots \ldots, s_{n}, \ldots \ldots \ldots \ldots \ldots\right\}$ is called	the sequence of partial sums of $\sum \boldsymbol{u}_{\boldsymbol{n}}$
$\mathbf{2}$	Give the value of s_{2}.	$\mathbf{s}_{\mathbf{2}}=\mathbf{u}_{\mathbf{1}}+\mathbf{u}_{\mathbf{2}}$

Definition: Convergent Series

$>$ Let $\sum u_{n}$ be a series and $\left\{s_{n}\right\}$ be the corresponding sequence of partial sums.
$>$ The series $\sum u_{n}$ is convergent, if the sequence $\left\{s_{n}\right\}$ is convergent.
i.e. $\lim _{n \rightarrow \infty} s_{n}=l=$ finite and unique.
$>$ In this case we say $\sum \boldsymbol{u}_{\boldsymbol{n}}$ converges to .

Definition: Divergent Series

$>$ Let $\sum u_{n}$ be a series and $\left\{s_{n}\right\}$ be the corresponding sequence of partial sums.
$>$ The series $\sum u_{n}$ is divergent, if the sequence $\left\{s_{n}\right\}$ is divergent.
‥e. $\lim _{n \rightarrow \infty} s_{n}=+\infty O R-\infty$

Definition: Oscillatory Series

SHREE H. N. SHUKLA GROUP OF COLLEGES

$>$ Let $\sum u_{n}$ be a series and $\left\{s_{n}\right\}$ be the corresponding sequence of partial sums.
(a) The series $\sum u_{n}$ is said to be oscillate finitely, if the sequence $\left\{s_{n}\right\}$ is Oscillates finitely.
I.e. $\lim _{n \rightarrow \infty} s_{n}$ is finite but not unique.
(b) The series $\sum u_{n}$ is said to be oscillate infinitely, if the sequence $\left\{s_{n}\right\}$ is oscillates infinitely.

$$
\underline{\text { i.e. }} \lim _{n \rightarrow \infty} s_{n}=+\infty O R-\infty
$$

Sr. No.	Question	Answer
$\mathbf{1}$	Limit of a sequence is finite and unique then it is said to be.........	Convergent series
$\mathbf{2}$	Write down the condition for divergent series.	$\lim _{\boldsymbol{n} \rightarrow \infty} \boldsymbol{s}_{\boldsymbol{n}}=+\infty \boldsymbol{O R}-\infty$ $\mathbf{3}$ $\mathbf{4}$ Limit of a sequence is finite but not unique then it is said to be.........
$\mathbf{5}$	How many types have Oscillatory series? Give the name of two types of Oscillatory	 Oscillates infinitely

SHREE H. N. SHUKLA GROUP OF COLLEGES

- NOTE:

Series which divergent OR oscillates are often classed as non convergent series.

EXAMPLE-1:

Show that the series $\frac{1}{1 * 2}+\frac{1}{2 * 3}+\frac{1}{3 * 4}+$ \qquad $+\frac{1}{n(n+1)}+$ \qquad convergent.

SOLUTION:

Since $u_{n}=\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$

$$
\begin{aligned}
& \mathrm{u}_{1}=\frac{1}{1}-\frac{1}{2} \\
& \mathrm{u}_{2}=\frac{1}{2}-\frac{1}{3} \\
& \mathrm{u}_{3}=\frac{1}{3}-\frac{1}{4}
\end{aligned}
$$

\qquad
\qquad

$$
u_{n}=\frac{1}{n}-\frac{1}{n(n+1)}
$$

$$
\therefore S_{n}=u_{1}+u_{2}+u_{3}+\ldots \ldots \ldots .+u_{n}=1-\frac{1}{n+1}
$$

$\therefore \lim _{n \rightarrow \infty} \boldsymbol{S}_{\boldsymbol{n}}=\lim _{n \rightarrow \infty}\left(1-\frac{1}{n+1}\right)=\mathbf{1}$, which is unique and finite.
Hence, $\sum u_{n}$ is convergent and converges to 1 .

SHREE H. N. SHUKLA GROUP OF COLLEGES

EXAMPLE-2:

Show that the series $\sum(-1)^{n}$ oscillates finitely.

SOLUTION:

Here $u_{n}=(-1)^{n}$
$\therefore S_{n}=1-1+1-1+$ \qquad up to n terms
$=1$ OR 0 according to as n is odd OR even.
$\therefore \lim _{n \rightarrow \infty} S_{\boldsymbol{n}}=1$ OR 0, which is finite but not unique.
Hence, $\sum(-1)^{n}$ oscillates finitely.

EXAMPLE-3:

Show that the series $1+2+3+$ \qquad $+n+$ \qquad Diverges.

SOLUTION:

Since $S_{n}=1+2+3+\ldots \ldots \ldots \ldots+n=\frac{n(n+1)}{2}$
$\therefore \lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} \frac{n(n+1)}{2}=\infty$
$\therefore\left\{\boldsymbol{S}_{\boldsymbol{n}}\right\}$ is divergent.
Hence, $\sum u_{n}$ is divergent.

SHREE H. N. SHUKLA GROUP OF COLLEGES

- NOTE:

> In the above examples we have determined the nature of the series directly using the definition.
> In this universe of series, we come across with it is either difficult OR impossible to compute the sequence of partial sums.
> Later we come across few sufficient conditions, known as the tests for convergence, which will be useful to determine the nature of the given series.

Theorem-1:

A series of positive terms either converges OR diverges to $+\infty$.

Theorem-2:

If a series $\sum \boldsymbol{u}_{\boldsymbol{n}}$ is convergent then $\lim _{\boldsymbol{n} \rightarrow \infty} \boldsymbol{u}_{\boldsymbol{n}}=\mathbf{0}$.

- NOTE:

$>$ The convergence of the above theorem is not true in general.
I.e. if $\lim _{n \rightarrow \infty} u_{n}=0$

Then the corresponding series $\sum u_{n}$ is not convergent in general.
Consider the series $\sum \frac{1}{\sqrt{n}}$
Here, $u_{n}=\frac{1}{\sqrt{n}}$
$\therefore \lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0$

We consider,

SHREE H. N. SHUKLA GROUP OF COLLEGES

$$
\begin{aligned}
& S_{n}=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots .+\frac{1}{\sqrt{n}} \\
&>\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}+\ldots \ldots+\frac{1}{\sqrt{n}}(n-\text { times }) \\
&=n * \frac{1}{\sqrt{n}}=\sqrt{n}
\end{aligned}
$$

$\therefore \lim _{n \rightarrow \infty} S_{n}>\lim _{n \rightarrow \infty} \sqrt{n}=\infty$
Thus $\sum \boldsymbol{u}_{\boldsymbol{n}}$ is divergent even though $\lim _{\boldsymbol{n} \rightarrow \infty} \boldsymbol{u}_{\boldsymbol{n}}=\mathbf{0}$

- NOTE:

(i) $\sum u_{n}$ convergent $\Rightarrow \lim _{n \rightarrow \infty} u_{n}=0$
(ii) $\lim _{n \rightarrow \infty} u_{n}=0 \Rightarrow \sum u_{n}$ may be convergent OR not.
(iii) $\quad \lim _{n \rightarrow \infty} u_{n} \neq 0 \Rightarrow \sum u_{n}$ is not convergent.
(iv) If $\sum u_{n}$ is a series of positive terms and $\lim _{n \rightarrow \infty} u_{n} \neq 0$ then $\sum u_{n}$ diverges to ∞.

Sr. No.	Question	Answer
$\mathbf{1}$	A series of positive terms either converges OR diverges to........	$+\infty$
$\mathbf{2}$	If a series $\sum u_{n}$ is convergent then........	$\lim _{n \rightarrow \infty} \boldsymbol{u}_{\boldsymbol{n}}=\mathbf{0}$ $\mathbf{3}$ $\mathbf{4}$ If $\lim _{n \rightarrow \infty} u_{n}=0$ then the series is convergent.(T/F) If $\sum u_{n}$ is a series of positive terms and $\lim _{n \rightarrow \infty} u_{n} \neq 0$ then $\sum u_{n}$ diverges to ∞.(T/F) False

Cauchy's General Principal of Convergence:

SHREE H. N. SHUKLA GROUP OF COLLEGES

A necessary and sufficient condition for the series $\sum u_{n}$ to convergent is that, given $\varepsilon>0$, however small, there exist $m \in N$, such that
$\left|\boldsymbol{s}_{\boldsymbol{n}+\boldsymbol{p}}-\boldsymbol{s}_{\boldsymbol{n}}\right|<\varepsilon, \forall n \geq m, p \in N$
OR

$$
\left|\boldsymbol{u}_{\boldsymbol{n}+\boldsymbol{1}}+\boldsymbol{u}_{\boldsymbol{n}+2}+\ldots \ldots \ldots \ldots+\boldsymbol{u}_{\boldsymbol{n}+\boldsymbol{p}}\right|<\varepsilon, \forall n \geq m, p \in N
$$

Definition: Geometric series

The series $\sum_{n=0}^{\infty} r^{n}=1+r+r^{2}+\ldots \ldots \ldots \ldots+r^{n-1}+\ldots \ldots \ldots \ldots$ is called the Geometric series.

Theorem-3:

The Geometric series $\sum_{n=1}^{\infty} r^{n}$ is
(i) Convergent if $|\mathrm{r}|<1$,
I.e. $-1<r<1$ and its sum is $\frac{1}{1-r}$
(ii) Divergent if $r \geq 1$
(iii) Finitely oscillating if $r=-1$
(iv) Infinitely oscillating if $\mathrm{r}<-1$

EXAMPLE-4:

Test the convergence of $\sum_{n=0}^{\infty} \frac{3^{2 n}}{2^{3 n}}$

SOLUTION:

Here, $u_{n}=\frac{3^{2 n}}{2^{3 n}}=\left(\frac{3^{2}}{2^{3}}\right)^{n}=\left(\frac{9}{8}\right)^{n}$

SHREE H. N. SHUKLA GROUP OF COLLEGES

$\therefore \sum u_{n}=1+\frac{9}{8}+\left(\frac{9}{8}\right)^{2}+$
Which is Geometric series with $\boldsymbol{r}=\frac{\mathbf{9}}{\mathbf{8}}>1$
Hence, $\sum \boldsymbol{u}_{\boldsymbol{n}}$ is divergent.

Sr. No.	Question	Answer
$\mathbf{1}$	Write down the Cauchy's general principle of convergence in mathematical form.	$\left\|\boldsymbol{s}_{\boldsymbol{n}+\boldsymbol{p}}-\boldsymbol{s}_{\boldsymbol{n}}\right\|<\varepsilon$, $\forall \boldsymbol{n} \geq \boldsymbol{m}, \boldsymbol{p} \in \boldsymbol{N}$
$\mathbf{2}$	The series $\sum_{n=0}^{\infty} r^{n}=1+r+r^{2}+$ $\ldots \ldots \ldots \ldots+r^{n-1}+\ldots \ldots \ldots \ldots$ is called	Geometric series
$\mathbf{3}$	Give the general form of Geometric series.	$\sum_{n=\mathbf{0}}^{\infty} \boldsymbol{r}^{\boldsymbol{n}}$
$\mathbf{4}$	In Geometric series, If we get $r \geq 1$ then the given series is.......	Divergent
$\mathbf{5}$	Give the example of Geometric series.	$\mathbf{1}-\frac{\mathbf{1}}{\mathbf{2}}+\frac{\mathbf{1}}{\mathbf{2}^{\mathbf{2}}}-\frac{\mathbf{1}}{\mathbf{2}^{\mathbf{3}}}+\frac{\mathbf{1}}{\mathbf{2}^{\mathbf{4}}}-\ldots$

Definition: Alternating series

A series of the type $\boldsymbol{u}_{\mathbf{1}}-\boldsymbol{u}_{\mathbf{2}}+\boldsymbol{u}_{\mathbf{3}}-\boldsymbol{u}_{\mathbf{4}}+\ldots$. ;
Where $u_{n}>0, \forall n \in N$, is called an alternating series and it is denoted by $\sum_{n=1}^{\infty}(-1)^{n+1} u_{n}$.For example, the series 3-9+27-28+ \qquad and $\frac{1}{4}-\frac{5}{7}+\frac{7}{10}-\frac{9}{13}+\ldots \ldots \ldots \ldots$ are alternating series.

SHREE H. N. SHUKLA GROUP OF COLLEGES

Libnitz test for the convergence of an Alternating series:
The infinite series $\boldsymbol{u}_{\mathbf{1}}-\boldsymbol{u}_{\mathbf{2}}+\boldsymbol{u}_{\mathbf{3}}-\boldsymbol{u}_{\mathbf{4}}+$ \qquad in which terms are alternatively positive and negative is convergent if each term is numerically less than its preceeding term and $\lim _{\boldsymbol{n} \rightarrow \infty} \boldsymbol{u}_{\boldsymbol{n}}=0$.

EXAMPLE-5:

Show that Alternating series $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-$ is convergent.

SOLUTION:

By comparing $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\ldots \ldots \ldots \ldots \ldots=a_{1}-a_{2}+a_{3}-a_{4}+a_{5}-\ldots \ldots$.
We see that $a_{1}=1, a_{2}=\frac{1}{3}, a_{3}=\frac{1}{5}, a_{4}=\frac{1}{7}, a_{5}=\frac{1}{9}$
$\therefore a_{1}>a_{2}>a_{3}>a_{4}>a_{5}>$ \qquad
\therefore Each term is numerically less than its preceeding term.
Now,
$\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{1}{2 n-1}=0$
Hence by Leibnitz's test the given series is convergent.

SHREE H. N. SHUKLA GROUP OF COLLEGES

Sr. No.	Question	Answer
$\mathbf{1}$	A series of the type $u_{1}-u_{2}+u_{3}-u_{4}+\ldots \ldots ;$ Where $u_{n}>0, \forall n \in N$, is called.......	Alternating series
$\mathbf{2}$	Give an example of Alternating series.	$\frac{\mathbf{1}}{\mathbf{4}}-\frac{\mathbf{5}}{\mathbf{7}}+\frac{\mathbf{7}}{\mathbf{1 0}}-\frac{\mathbf{9}}{\mathbf{1 3}}+\ldots$
$\mathbf{3}$	Which test used for the convergence of Alternating series?	Leibnitz's test

* Test for convergence:

We have proved that a series converges by actually finding its sum.
However, for most convergent series the exact sum s_{n} is difficult OR impossible to find. In this case we consider the following standard tests;
(i) Comparision test
(ii) P-test
(iii) D'-Alemert's ratio test
(iv) Raabe's test

(i) Comparision test:

Test-1:

Let $\sum u_{n}$ and $\sum v_{n}$ be any two series of positive terms.
(A) If $\boldsymbol{u}_{\boldsymbol{n}} \leq \boldsymbol{v}_{\boldsymbol{n}}$, for all $\mathrm{n} \geq 1$ and $\sum \boldsymbol{v}_{\boldsymbol{n}}$ converges then $\sum \boldsymbol{u}_{\boldsymbol{n}}$ converges and $\sum u_{n} \leq \sum v_{n}$.
(B) If $\boldsymbol{u}_{\boldsymbol{n}} \leq \boldsymbol{v}_{\boldsymbol{n}}$, for all $\mathrm{n} \geq 1$ and $\sum \boldsymbol{u}_{\boldsymbol{n}}$ diverges then $\sum \boldsymbol{v}_{\boldsymbol{n}}$ diverges and $\sum u_{n} \leq \sum v_{n}$.

SHREE H. N. SHUKLA GROUP OF COLLEGES

Test-2:
Let $\sum u_{n}$ and $\sum v_{n}$ be any two series of positive terms. If $\lim _{\boldsymbol{n} \rightarrow \infty} \frac{\boldsymbol{u}_{\boldsymbol{n}}}{\boldsymbol{v}_{\boldsymbol{n}}}=\boldsymbol{l}$.
Where I is non zero and finite then both the series converges OR diverges together.

Sr. No.	Question	Answer
$\mathbf{1}$	In Comparision test, If $u_{n} \leq v_{n}$, for all $\mathrm{n} \geq 1$ and $\sum v_{n}$ converges then $\sum u_{n}$ is.........	Converges
$\mathbf{2}$	In Comparision test, If $u_{n} \leq v_{n}$, for all $\mathrm{n} \geq 1$ and $\sum u_{n}$ diverges then $\sum v_{n}$ is......	Diverges

Definition: P-Series OR Harmonic series

The series $\sum \frac{\mathbf{1}}{\boldsymbol{n}^{p}}=\frac{\mathbf{1}}{\mathbf{1}^{p}}+\frac{\mathbf{1}}{\mathbf{2}^{p}}+\frac{\mathbf{1}}{\mathbf{3}^{p}}+$ $+\frac{1}{n^{p}}+$ \ldots. is called P series or Harmonic series.
(ii) P-test:

The series $\sum \frac{1}{n^{p}}$ is (1) Convergent, if $\mathbf{p}>\mathbf{1}$
(2) Divergent, if $\mathbf{p} \leq 1$

EXAMPLE-6:

Test the convergence OR divergence of the following series:

$$
\frac{1}{1 * 2 * 3}+\frac{3}{2 * 3 * 4}+\frac{5}{3 * 4 * 5}+\frac{7}{4 * 5 * 6}+
$$

SHREE H. N. SHUKLA GROUP OF COLLEGES

SOLUTION:

Here, $u_{n}=\frac{(2 n-1)}{n(n+1)(n+2)}=\frac{n\left(2-\frac{1}{n}\right)}{n^{3}\left(1+\frac{1}{n}\right)\left(1+\frac{2}{n}\right)}=\frac{\left(2-\frac{1}{n}\right)}{n^{2}\left(1+\frac{1}{n}\right)\left(1+\frac{2}{n}\right)}$
We consider $\sum v_{n}=\sum \frac{1}{n^{2}} \Rightarrow \mathrm{p}=\mathbf{2}>\mathbf{1} \Rightarrow \sum \boldsymbol{v}_{\boldsymbol{n}}$ is convergent.
Now,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{\boldsymbol{u}_{\boldsymbol{n}}}{\boldsymbol{v}_{\boldsymbol{n}}}=\lim _{n \rightarrow \infty} n^{2} * \frac{\left(2-\frac{1}{n}\right)}{n^{2}\left(1+\frac{1}{n}\right)\left(1+\frac{2}{n}\right)} \\
&=\lim _{n \rightarrow \infty} \frac{\left(2-\frac{1}{n}\right)}{\left(1+\frac{1}{n}\right)\left(1+\frac{2}{n}\right)}=\frac{(2-0)}{(1+0)(1+0)}=\mathbf{2}
\end{aligned}
$$

By Comparison test $\sum \boldsymbol{u}_{\boldsymbol{n}}$ is also convergent.

EXAMPLE-7:

Test the convergence OR divergence of the following series:
$\sum \sin \frac{1}{n}$

SOLUTION:

Since $u_{n}=\sum \sin \frac{1}{n}$
We consider $\sum v_{n}=\sum \frac{1}{n}$, which is divergent as $\mathbf{p}=\mathbf{1}$

SHREE H. N. SHUKLA GROUP OF COLLEGES

Now,
$\lim _{n \rightarrow \infty} \frac{\boldsymbol{u}_{n}}{\boldsymbol{v}_{n}}=\lim _{n \rightarrow \infty} \frac{\sin \frac{1}{n}}{\frac{1}{n}}=\lim _{\frac{1}{n} \rightarrow 0} \frac{\sin \frac{1}{n}}{\frac{1}{n}}=1$ (Because, $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$)
By Comparison test $\sum \boldsymbol{u}_{\boldsymbol{n}}$ is also divergent.

Sr. No.	Question	Answer
1	The series $\sum \frac{1}{n^{p}}=\frac{1}{1^{p}}+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\ldots \ldots+\frac{1}{n^{p}}+\ldots \ldots$ is called..........	P-series
2	P-series is also known as.........	Harmonic series
3	Which test used for convergence of P-series?	P-test
4	Using P-test, we get p>1 then the series is.......	Convergent

EXERCISE - A

Test the convergence OR divergence of the following series:

1) $\frac{1}{1 * 2}+\frac{1}{2 * 3}+\frac{1}{3 * 4}+$
2) $\sum \cos \frac{1}{n}$
3) $\frac{1 * 2}{3^{2} * 4^{2}}+\frac{3 * 4}{5^{2} * 6^{2}}+\frac{5 * 6}{7^{2} * 8^{2}}+$
4) $\sum(\sqrt{n+1}-\sqrt{n})$
5) $\sum \frac{n+2}{n^{3}+1}$

SHREE H. N. SHUKLA GROUP OF COLLEGES

(iii) D'Alemert's Ratio Test:

Let $\sum u_{n}$ be a series of positive terms and $\lim _{n \rightarrow \infty} \frac{\boldsymbol{u}_{n+1}}{\boldsymbol{u}_{n}}=\boldsymbol{l}$.
(1) If $0 \leq \leq<1$ then $\sum u_{n}$ converges
(2) If $1>1$ then $\sum u_{n}$ diverges
(3) If $\mathrm{I}=\mathbf{1}$ then from this test alone, we cannot draw any conclusion the convergence or divergence of $\sum u_{n}$.

EXAMPLE-8:

Test the convergence of the series $1+\frac{2!}{2^{2}}+\frac{3!}{3^{3}}+\frac{4!}{4^{4}}+$

SOLUTION:

Here, $\boldsymbol{u}_{\boldsymbol{n}}=\frac{n!}{\boldsymbol{n}^{n}} \Rightarrow \boldsymbol{u}_{\boldsymbol{n + 1}}=\frac{(\boldsymbol{n}+\mathbf{1})!}{(\boldsymbol{n}+\mathbf{1})^{n+1}}$
Consider $\frac{u_{n+1}}{u_{n}}=\frac{(n+1)!}{(n+1)^{n+1}} * \frac{n^{n}}{n!}=\frac{n+1}{(n+1)^{n+1}} * n^{n}=\frac{n^{n}}{(n+1)^{n}}=\frac{n^{n}}{n^{n}\left(1+\frac{1}{n}\right)^{n}}=\frac{1}{\left(1+\frac{1}{n}\right)^{n}}$
$\therefore \lim _{n \rightarrow \infty} \frac{u_{n+1}}{u_{n}}=\lim _{n \rightarrow \infty} \frac{1}{\left(1+\frac{1}{n}\right)^{n}}=\frac{1}{e}<1$

$$
\left[\because \lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e \& e>2 \Rightarrow \frac{1}{e}<\frac{1}{2}<1\right]
$$

Hence, by D'Alembert's ratio test, $\sum \boldsymbol{u}_{\boldsymbol{n}}$ is convergent.

EXAMPLE-9:

Discuss the convergence of $\frac{1}{2 \sqrt{1}}+\frac{x^{2}}{3 \sqrt{2}}+\frac{x^{4}}{4 \sqrt{3}}+\frac{x^{6}}{5 \sqrt{4}}+$

SHREE H. N. SHUKLA GROUP OF COLLEGES

SOLUTION:

Here, $\boldsymbol{u}_{\boldsymbol{n}}=\frac{x^{2 n-2}}{(n+1) \sqrt{n}} \Rightarrow \boldsymbol{u}_{\boldsymbol{n}+1}=\frac{x^{2 n}}{(n+2) \sqrt{n+1}}$
Now,
$\frac{u_{n+1}}{u_{n}}=\frac{x^{2 n}}{(n+2) \sqrt{n+1}} * \frac{(n+1) \sqrt{n}}{x^{2 n-2}}=\frac{(n+1)}{(n+2)} * \sqrt{\frac{n}{n+1}} * x^{2}$

$$
\begin{aligned}
\therefore \lim _{n \rightarrow \infty} \frac{u_{n+1}}{u_{n}} & =\lim _{n \rightarrow \infty} \frac{(n+1)}{(n+2)} * \sqrt{\frac{n}{n+1}} * x^{2}=\lim _{n \rightarrow \infty} \frac{\left(1+\frac{1}{n}\right)}{\left(1+\frac{2}{n}\right)} * \sqrt{\frac{1}{1+\frac{1}{n}}} * x^{2} \\
& =\frac{(1+0)}{(1+0)} * \sqrt{\frac{1}{1+0}} * x^{2}=x^{2}
\end{aligned}
$$

\therefore By ratio test, if $\mathrm{x}^{2}<1, \sum \boldsymbol{u}_{n}$ is convergent and if $\mathrm{x}^{2}>1, \sum \boldsymbol{u}_{\boldsymbol{n}}$ is divergent.
When $x^{2}=1$, ratio test fails.
For $\mathrm{x}^{2}=1$, then $u_{n}=\frac{1}{(n+1) \sqrt{n}}=\frac{1}{n^{\frac{3}{2}}\left(1+\frac{1}{n}\right)}$
We choose $\sum v_{n}=\sum \frac{1}{n^{\frac{3}{2}}}$, which is convergent as $\boldsymbol{p}=\frac{3}{2}>1$
Now,
$\lim _{n \rightarrow \infty} \frac{u_{n}}{v_{n}}=\lim _{n \rightarrow \infty} \frac{n^{\frac{3}{2}}}{n^{\frac{3}{2}}\left(1+\frac{1}{n}\right)}=\lim _{n \rightarrow \infty} \frac{1}{\left(1+\frac{1}{n}\right)}=\frac{1}{1+0}=\mathbf{1}$
\therefore By comparison test, $\sum \boldsymbol{u}_{\boldsymbol{n}}$ is convergent.
Hence, if $x^{2} \leq 1, \sum u_{n}$ is convergent and if $x^{2}>1, \sum u_{n}$ is divergent.

SHREE H. N. SHUKLA GROUP OF COLLEGES

Sr. No.	Question	Answer
$\mathbf{1}$	In ratio test we get $\gg 1$ then the series is.....	Divergent
$\mathbf{2}$	In ratio test we get $0 \leq \leq<1$ then the series is.....	Convergent

EXERCISE - B

Test the convergence of the following series:

1) $\frac{1}{1!}+\frac{3}{2!}+\frac{5}{3!}+$
2) $\sum_{n=1}^{\infty} \frac{n^{2}}{3^{n}}$
3) $2+\frac{3 x}{2}+\frac{4 x^{2}}{3}+\frac{5 x^{3}}{4}+$ \qquad
4) $1+\frac{x}{2}+\frac{x^{2}}{5}+\frac{x^{3}}{10}+\ldots \ldots \ldots \ldots+\frac{x^{n}}{n^{2}+1}+$
5) $\frac{x}{1 * 3}+\frac{x^{2}}{3 * 5}+\frac{x^{3}}{5 * 7}+$

(iv) Raabe's Test:

Let $\sum u_{n}$ be a series of positive terms and $\lim _{\boldsymbol{n} \rightarrow \infty} \boldsymbol{n}\left(\frac{\boldsymbol{u}_{n}}{\boldsymbol{u}_{n+1}}-\mathbf{1}\right)=\boldsymbol{l}$.
(1) The series is convergent, if $\mid>1$
(2) The series is divergent, if $\mathrm{l}<1$
(3) This test gives no information, if I=1

EXAMPLE-10:

Examine the convergence of $\frac{2}{3}+\frac{2 * 4}{3 * 5}+\frac{2 * 4 * 6}{3 * 5 * 7}+$

SHREE H. N. SHUKLA GROUP OF COLLEGES

SOLUTION:

Now,

$$
\begin{gathered}
\frac{u_{n+1}}{u_{n}}=\frac{2 * 4 * 6 * \ldots \ldots *(2 n) *(2 n+2)}{3 * 5 * 7 * \ldots \ldots *(2 n+1) *(2 n+3)} * \frac{3 * 5 * 7 * \ldots \ldots *(2 n+1)}{2 * 4 * 6 \ldots \ldots \ldots \ldots *(2 n)} \\
=\frac{2 n+2}{2 n+3}
\end{gathered}
$$

$\therefore \lim _{n \rightarrow \infty} \frac{u_{n+1}}{u_{n}}=\lim _{n \rightarrow \infty} \frac{2 n+2}{2 n+3}=\lim _{n \rightarrow \infty} \frac{n\left(2+\frac{2}{n}\right)}{n\left(2+\frac{3}{n}\right)}=\frac{(2+0)}{(2+0)}=\mathbf{1}$
Therefore, D'Alembert's ratio test fails.

Now,

$$
\begin{aligned}
& \frac{u_{n}}{u_{n+1}}-1=\frac{2 n+3}{2 n+2}-1=\frac{1}{2 n+2} \\
& \therefore n\left(\frac{u_{n}}{u_{n+1}}-1\right)=\frac{n}{2 n+2} \\
& \therefore \quad \lim _{n \rightarrow \infty} n\left(\frac{u_{n}}{u_{n+1}}-1\right)=\lim _{n \rightarrow \infty} \frac{n}{2 n+2}=\lim _{n \rightarrow \infty} \frac{n}{n\left(2+\frac{2}{n}\right)}=\frac{1}{(2+0)}=\frac{1}{2}<1
\end{aligned}
$$

By Raabe's test, $\sum \boldsymbol{u}_{\boldsymbol{n}}$ is divergent.

EXAMPLE-11:

Discuss the convergence of $\sum \frac{1 * 3 * 5 * \ldots \ldots \ldots \ldots \ldots \ldots(2 n-1)}{2 * 4 * 6 * \ldots \ldots \ldots(2 n)} * x^{n}$

SHREE H. N. SHUKLA GROUP OF COLLEGES

SOLUTION:

Here, $\boldsymbol{u}_{n}=\frac{1 * 3 * 5 * \ldots \ldots \ldots \ldots \ldots(2 n-1)}{2 * 4 * 6 * \ldots \ldots \ldots \ldots(2 n)} * x^{n}$
$\Rightarrow u_{n+1}=\frac{1 * 3 * 5 * \ldots \ldots \ldots \ldots \ldots(2 n-1) *(2 n+1)}{2 * 4 * 6 * \ldots \ldots \ldots(2 n) *(2 n+2)} * x^{n+1}$
Now,

$$
\begin{gathered}
\frac{u_{n+1}}{u_{n}}=\frac{1 * 3 * 5 * \ldots *(2 n-1) *(2 n+1)}{2 * 4 * 6 * \ldots *(2 n) *(2 n+2)} * x^{n+1} \frac{2 * 4 * 6 * . *(2 n)}{1 * 3 * 5 * \ldots *(2 n-1) * x^{n}} \\
=\frac{2 n+1}{2 n+2} * x \\
\therefore \lim _{n \rightarrow \infty} \frac{u_{n+1}}{u_{n}}=\lim _{n \rightarrow \infty} \frac{2 n+1}{2 n+2} * x=\lim _{n \rightarrow \infty} \frac{n\left(2+\frac{1}{n}\right)}{n\left(2+\frac{2}{n}\right)} * x=x
\end{gathered}
$$

\therefore D'Alembert's ratio test, $\sum \boldsymbol{u}_{\boldsymbol{n}}$ is convergent if $\mathbf{x}<1$ and divergent if $\mathbf{x}>1$.
If $x=1$ then ratio test fails.
When $\mathrm{x}=1, \frac{u_{n+1}}{u_{n}}=\frac{2 n+1}{2 n+2}$

We consider,

$$
\begin{aligned}
& \frac{u_{n}}{u_{n+1}}-1=\frac{2 n+2}{2 n+1}-1=\frac{1}{2 n+1} \\
& \therefore \quad n\left(\frac{u_{n}}{u_{n+1}}-1\right)=\frac{n}{2 n+1}
\end{aligned}
$$

$$
\therefore \lim _{n \rightarrow \infty} n\left(\frac{u_{n}}{u_{n+1}}-1\right)=\lim _{n \rightarrow \infty} \frac{n}{2 n+1}=\lim _{n \rightarrow \infty} \frac{n}{n\left(2+\frac{1}{n}\right)}=\frac{1}{(2+0)}=\frac{1}{2}<1
$$

SHREE H. N. SHUKLA GROUP OF COLLEGES

By Raabe's test, $\sum \boldsymbol{u}_{\boldsymbol{n}}$ is divergent.
Hence $\sum \boldsymbol{u}_{\boldsymbol{n}}$ is convergent if $\mathrm{x}<1$ and divergent if $\boldsymbol{x} \geq \mathbf{1}$.

Sr. No.	Question	Answer
$\mathbf{1}$	If the D'Alembert's ratio test fails, then what to do?	Apply Raabe's test
$\mathbf{2}$	In Raabe's test if $\mathrm{I}=1$ then the series is ...	Test gives no information
$\mathbf{3}$	In Raabe's test if $\mathrm{l}<1$ then the series is 	Divergent

EXERCISE-C

Discuss the convergence of the following:

1) $\frac{1}{2}+\frac{1 * 3}{2 * 4}+\frac{1 * 3 * 5}{2 * 4 * 6}+$

2) $1+\frac{3}{7} x+\frac{3 * 6}{7 * 10} x^{2}+\frac{3 * 6 * 9}{7 * 10 * 13} x^{3}+$
3) $\sum \frac{1^{2} * 4^{2} * 7^{2} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . .(3 n-2)^{2}}{\left.3^{2} * 6^{2} * 9^{2} \ldots \ldots \ldots \ldots \ldots\right)^{2}}$

Definition: Absolutely convergent series

A series $\sum u_{n}$ is said to be absolutely convergent if $\sum\left|\boldsymbol{u}_{\boldsymbol{n}}\right|$ is convergent.

SHREE H. N. SHUKLA GROUP OF COLLEGES

Definition: Conditionally convergent series

A series $\sum u_{n}$ is said to be conditionally convergent if $\sum \boldsymbol{u}_{\boldsymbol{n}}$ is convergent and $\sum\left|u_{n}\right|$ is divergent.

Theorem - 4:

An absolutely convergent series is convergent.

EXAMPLE-12:

The series $1-\frac{1}{2}+\frac{1}{2^{2}}-\frac{1}{2^{3}}+$ \qquad is absolutely convergent as the series $1+\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+$ \qquad is convergent as $r=\frac{1}{2}<1$.

EXAMPLE-13:

The series $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+$ \qquad is not absolutely convergent, since the series $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+$ \qquad is divergent.

Also we know that the series $\mathbf{1}-\frac{\mathbf{1}}{\mathbf{2}}+\frac{\mathbf{1}}{\mathbf{3}}-\frac{\mathbf{1}}{\mathbf{4}}+$ \qquad is convergent.

Hence, given series is conditionally convergent but not a absolutely convergent.

Sr. No.	Question	Answer
$\mathbf{1}$	If $\sum\left\|u_{n}\right\|$ is convergent, then the series is called.........	Absolutely convergent series
$\mathbf{2}$	If $\sum u_{n}$ is convergent and $\sum\left\|u_{n}\right\|$ is divergent, then the series is called.......	Conditionally convergent series

SHREE H. N. SHUKLA GROUP OF COLLEGES

........

Convergent

Definition: Power series

A series of the form $\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots \ldots \ldots \ldots+a_{n} x^{n}+$where $a_{0}, a_{1}, a_{2}, \ldots \ldots \ldots \ldots$...... are constants, is called a power series in x.

OR

A series of the form
$\sum_{n=0}^{\infty} a_{n}(x-a)^{n}=$
$a_{0}+a_{1}(x-a)+a_{2}(x-a)^{2}+\ldots \ldots \ldots \ldots \ldots \ldots \ldots+a_{n}(x-a)^{n}+$
.........
Is called a power series in ($\mathrm{x}-\mathrm{a}$).

Theorem-5:

Let $\sum_{n=0}^{\infty} a_{n} x^{n}$ be a power series and $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{1}{R}, R \in(-\infty, \infty)$
(i) If $|x|<R$ then the series is convergent.
(ii) If $|x|>R$ then the series is divergent.
(iii) If $|\mathbf{x}|=\mathbf{R}$ then we can draw no conclusion by this test.

We call number \mathbf{R} in above theorem, the radius of convergence of $\sum_{n=0}^{\infty} a_{n} x^{n}$.
$>$ The collection of values of \mathbf{x} for which $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges is called the interval of convergence OR the range of convergence of $\sum_{n=0}^{\infty} a_{n} x^{n}$.

SHREE H. N. SHUKLA GROUP OF COLLEGES

> It seems that the interval of convergence takes one and only one of the following forms:

$$
[0,0],(-R, R),[-R, R),(-R, R],[-R, R],(-\infty, \infty)
$$

EXAMPLE-14:

Find the radius of convergence for the series
$\sum_{n=0}^{\infty} \frac{x^{n}}{n+2}$

SOLUTION:

Here, $\boldsymbol{u}_{\boldsymbol{n}}=\frac{x^{n}}{n+2} \Rightarrow \boldsymbol{u}_{\boldsymbol{n + 1}}=\frac{\boldsymbol{x}^{n+1}}{n+3}$
$\therefore \frac{u_{n+1}}{u_{n}}=\left(\frac{x^{n+1}}{n+3}\right)\left(\frac{n+2}{x^{n}}\right)=\left(\frac{n+2}{n+3}\right) x$
$\therefore \lim _{n \rightarrow \infty}\left|\frac{u_{n+1}}{u_{n}}\right|=\lim _{n \rightarrow \infty}\left|\left(\frac{n+2}{n+3}\right) x\right|=\lim _{n \rightarrow \infty}\left|\left(\frac{1+\frac{2}{n}}{1+\frac{3}{n}}\right) x\right|=|x|$
\therefore By ratio test, the series is converges if $|\boldsymbol{x}|<1$ and diverges if $|\boldsymbol{x}|>1$.
\therefore The radius of convergence $\mathbf{R}=1$.

EXAMPLE-15:

Find the radius of convergence and interval of convergence of the series
$\sum_{n=0}^{\infty} \frac{(-3)^{n} x^{n}}{\sqrt{n+1}}$

SHREE H. N. SHUKLA GROUP OF COLLEGES

SOLUTION:

Since $\boldsymbol{u}_{n}=\frac{(-3)^{n} x^{n}}{\sqrt{n+1}} \Rightarrow \boldsymbol{u}_{n+1}=\frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}}$
$\therefore \frac{u_{n+1}}{u_{n}}=\left(\frac{(-3)^{n+1} x^{n+1}}{\sqrt{n+2}}\right)\left(\frac{\sqrt{n+1}}{(-3)^{n} x^{n}}\right)=-3 x \sqrt{\frac{n+1}{n+2}}$
$\therefore \lim _{n \rightarrow \infty}\left|\frac{u_{n+1}}{u_{n}}\right|=\lim _{n \rightarrow \infty}\left|-3 x \sqrt{\frac{n+1}{n+2}}\right|=\lim _{n \rightarrow \infty}\left|-3 x \sqrt{\frac{1+\frac{1}{n}}{1+\frac{2}{n}}}\right|=3|x|$
\therefore By ratio test, the series is converges if $3|x|<1 \Rightarrow|x|<\frac{1}{3}$ and diverges if $3|x|>1 \Rightarrow|x|>\frac{1}{3}$.
\therefore The radius of convergence is $R=\frac{1}{3}$ and the interval of convergence is $\left(-\frac{1}{3}, \frac{1}{3}\right)$

Sr. No.	Question	Answer
$\mathbf{1}$	A series of the form $\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+$ $a_{2} x^{2}+\ldots \ldots \ldots \ldots+a_{n} x^{n}+\ldots \ldots \ldots$ where $a_{0}, a_{1}, a_{2}, \ldots \ldots \ldots \ldots$ are constants, is	Power series

SHREE H. N. SHUKLA GROUP OF COLLEGES

	called............	
$\mathbf{2}$	If $\|\mathrm{x}\|<\mathrm{R}$ then the series is	Convergent
$\mathbf{3}$	The collection of values of x for which $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges is called.......	Interval of convergence
$\mathbf{4}$	Interval of convergence is also known as.......	Range of convergence

EXERCISE -D

Find the radius of convergence and interval of convergence of the series:

1) $x+2 x^{2}+3 x^{3}+4 x^{4}+$ \qquad
2) $2-\frac{4}{5} x+\frac{6}{5^{2}} x^{2}-\frac{8}{5^{3}} x^{3}+$
3) $\sum_{n=1}^{\infty} \frac{x^{n}}{\sqrt{n}}$
