Shree H.N. Shukla College of Science
 M. Sc (Mathematics) (Sem-1)
 Prelims Test
 MATH.CMT-1003: Topology-1

1 Answer any seven
$7 \times 2=14$
(a) Closure of irrational number in R is \qquad .
(b) Limit point of $(0,1) \cup(2,3)$ is \qquad in R with standard topology .
(c) $[0,1)$ is open set in \qquad topology on R .
(d) Prove or disprove : Arbitrary intersection of open set is open in R.
(e) If A is closed then closure of $\mathrm{A}=$ \qquad .
(f) $\mathcal{T}=\{\mathrm{G} \subseteq \mathbb{N} \mid \mathbb{N}-\mathrm{G}$ is finite $\} \cup \emptyset$ is topology on \mathbb{N}. Give example of set which is Neither open nor closed in \mathcal{T}.
(g) Give example of set which locally connected but not connected in R.

2 Answer any two $2 \times 7=14$
(a) (1) Give definition of limit point of set A of topological space X .
(2) Let $\mathrm{A}=\left\{\frac{1}{n} / \mathrm{n} \in \mathbb{N}\right\}$ than show that $A^{\prime}=\mathrm{A} \cup\{0\}$.
(b) Suppose F1, F2, F3,..., Fn are closed sets. Prove that their union is closed.
(c) $\mathcal{T}=\{G \subseteq \mathbb{N} \mid \mathbb{N}-\mathrm{G}$ is finite $\} \cup \emptyset$ is topology on \mathbb{N}. Show that \mathcal{T} be a topology on \mathbb{N}.

3
(a) Let be topology on X and $\mathrm{Y} \subseteq \mathrm{X}$ then show that $\mathcal{T}_{y}=\{\mathrm{G} \cap \mathrm{Y} \mid \mathrm{G} \in \mathcal{T}\}$ be topology on Y
(b) Prove that every component is a maximal connected set and it is closed set. 4
(c) \mathcal{T}_{α} be connected subset of X , for each $\alpha \in \mathrm{I}$ and $\bigcap_{\alpha \in \mathrm{I}} \mathcal{T}_{\alpha} \neq \varnothing$ then show that $\mathrm{U}_{\alpha \in \mathrm{I}} \mathcal{T}_{\alpha}$ is connected subset of X .
(a) Suppose $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ is continuous then show that gof: $\mathrm{X} \rightarrow \mathrm{Z}$ is continuous
(b) $\mathrm{A}, \mathrm{B} \subseteq \mathrm{R}$ then show that (1) $(\mathrm{A} \cap \mathrm{B})^{\circ}=\mathrm{A}^{\mathrm{o}} \cap \mathrm{B}^{\mathrm{o}}$

$$
\text { (2) }(\mathrm{A} \cup \mathrm{~B})^{\circ} \neq \mathrm{A}^{\circ} \cup \mathrm{B}^{\mathrm{o}} \text {. }
$$

(c) $f: X \rightarrow Y$ is continues on $X \Leftrightarrow f^{-1}(K)$ is closed in X whenever k is closed subset of Y.

4 Answer any two
(a) X and Y are locally connected if and only if X x Y are locally connected.
(b) Define path connected set and show that every path connected set on X is connected on X .
(c) Show that closure of $\mathrm{Q}=\mathrm{R}$. and show that $\left(\mathrm{A}^{0}\right)^{0}=\mathrm{A}^{\mathrm{o}}$ where $\mathrm{A} \subseteq \mathrm{R}$.

5 Answer any two
(a) Let X be space. (Y, d) be metric space and suppose $f_{n}: \mathrm{X} \rightarrow(\mathrm{Y}, \mathrm{d})$ is continuous for each $\mathrm{n} \in \mathbb{N}$. Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be function such that $\left(f_{n}\right) \rightarrow \mathrm{f}$ Uniformly on X . then f is continues.
(b) X is connected and locally path connected then X is path connected.
(c) X be any space and $\mathrm{A} \subseteq \mathrm{X}$, then show that
(1) $C l_{X} A=A \cup A^{\prime}, \quad$ where $A^{\prime}=$ limit point of A and $C l_{X} A=$ closure of A
(2) $C l_{X}\left(C l_{X} A\right)=C l_{X} A$.

BEST OF LUCK

