

Shree H.N. Shukla College of Science M. Sc (Mathematics) (Sem-1) Prelims Test MATH.CMT-1003: Topology-1

[Time: 2.5 Hours]

[Total Marks: 70]

1 Answer any seven

- 7x2=14
- (a) Closure of irrational number in R is____.
- (b) Limit point of $(0,1)\cup(2,3)$ is _____ in R with standard topology.
- (c) [0,1) is open set in <u>topology</u> on R.
- (d) Prove or disprove : Arbitrary intersection of open set is open in R .
- (e) If A is closed then closure of A =____.
- (f) *T*={ G ⊆ N | N G is finite }∪Ø is topology on N. Give example of set which is Neither open nor closed in *T*.
- (g) Give example of set which locally connected but not connected in R.

2 Answer any two 2x7=14

(a) (1) Give definition of limit point of set A of topological space X.

(2) Let A= { $\frac{1}{n} / n \in \mathbb{N}$ } than show that $A' = A \cup \{0\}$.

- (b) Suppose F1, F2, F3,..,Fn are closed sets. Prove that their union is closed.
- (c) $\mathcal{T} = \{ G \subseteq \mathbb{N} \mid \mathbb{N} G \text{ is finite } \} \cup \emptyset \text{ is topology on } \mathbb{N}.$ Show that \mathcal{T} be a topology on \mathbb{N} .

- (a) Let be topology on X and $Y \subseteq X$ then show that $\mathcal{T}_y = \{ G \cap Y \mid G \in \mathcal{T} \}$ be topology on Y
- (b) Prove that every component is a maximal connected set and it is closed set. 4
- (c) \mathcal{T}_{α} be connected subset of X, for each $\alpha \in I$ and $\bigcap_{\alpha \in I} \mathcal{T}_{\alpha} \neq \emptyset$ then show that $\bigcup_{\alpha \in I} \mathcal{T}_{\alpha}$ is connected subset of X. 5

³

- (a) Suppose $f: X \to Y$ and $g: Y \to Z$ is continuous then show that $gof: X \to Z$ is continuous
- (b) A, B \subseteq R then show that (1) (A \cap B)^o = A^o \cap B^o

(2)
$$(A \cup B)^{\circ} \neq A^{\circ} \cup B^{\circ}$$
. 5

4

5

2x7=14

2x7=14

- (c) f: X → Y is continues on X ⇔ f⁻¹(K) is closed in X whenever k is closed subset of Y.
- 4 Answer any two
 - (a) X and Y are locally connected if and only if X x Y are locally connected.
 - (b) Define path connected set and show that every path connected set on X is connected on X.
 - (c) Show that closure of Q = R. and show that $(A^{\circ})^{\circ} = A^{\circ}$ where $A \subseteq R$.

5 Answer any two

- (a) Let X be space. (Y, d) be metric space and suppose f_n: X → (Y, d) is continuous for each n ∈ N. Let f: X → Y be function such that (f_n)→f Uniformly on X. then f is continues.
- (b) X is connected and locally path connected then X is path connected.
- (c) X be any space and $A \subseteq X$, then show that
 - (1) $Cl_X A = A \cup A'$, where A' =limit point of A and $Cl_X A =$ closure of A
 - (2) $Cl_X(Cl_XA) = Cl_XA$.

BEST OF LUCK