SHREE H.N.SHUKLA COLLEGE OF SCIENCE
 T.Y.B.Sc. SEM-6 PAPER 601 GRAPH THEORY \& COMPLEX ANALYSIS-II

UNIT-1:GRAPH THEORY

IMPORTANT
 DEFINITION

Prepared by: Miss Renuka Dabhi M.Sc.(Maths), B.Ed.

Lecturer
H.N.Shukla College of Science

DEFINITION: GRAPH

- Let $V=\left\{v_{1}, \quad v_{2}, \ldots \ldots \ldots \ldots . . . v_{n}\right\}$ and $E=\left\{e_{1}, \quad e_{2}, \ldots \ldots \ldots \ldots e_{n}\right\}$ are set of vertices and edges respectively, A mapping $\emptyset: E \rightarrow V \times V$ is called graph and is denoted by $\mathrm{G}=(\mathrm{V}, \mathrm{E})$.
Where, V= the set of vertices
$\mathrm{E}=$ the set of edges

Example of Graph

Examples of Graph

Definition: DIrected edges

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph, Edge of graph is correspond to order pair of vertices is called directed edges.

DEFINITION: DIAGRAPH OR

DIRECTED GRAPH

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph, All edges of graph G are directed then graph G is called Diagraph OR Directed graph.

Directed Graph

DEFINITION: MIXED GRAPH

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph, some edges of graph have direction and some edges of graph have no direction then graph G is called Mixed graph.

DEFINITION: (N, M) GRAPH

- Let $G=(V, E)$ be a graph, number of vertices is n, i.e. $n(V)=n$ is called order of $G \Rightarrow o(G)=n$ and number of edges is m, i.e. $n(E)=m$ is called size of graph,
- Then this is called (n, m) graph.

DEFINITION: FINITE GRAPH

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph, V and E are finite set then graph G is called finite graph.

DEFINITION: LOOP OR SELF LOOP

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph, $\mathrm{e} \epsilon \mathrm{E}$ is called loop OR self loop if terminal vertices of e are same

DEFINITION: PARALLEL EDGES

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph, two or more than two edges terminal vertices same which edges are called parallel edges.

DEFINITION: SIMPLE GRAPH

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph as neither self loop nor parallel edges are called simple graph.

Not a Simple Graph

Simple Graph

DEFINITION: DEGREE OF VERTEX

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph, $\mathrm{v} \in \mathrm{V}$ and no. of edges incidence on V is called degree of vertex and is denoted by $\mathrm{d}(\mathrm{v})$.
- If E is loop, it is incidence on d then degree of V count twice.

$$
\begin{array}{ll}
\operatorname{deg}\left(v_{1}\right)=3 & \operatorname{deg}\left(v_{3}\right)=1 \\
\operatorname{deg}\left(v_{2}\right)=5 & \operatorname{deg}\left(v_{4}\right)=1
\end{array}
$$

DEFINITION: EVEN AND ODD VERTICES

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph, $\mathrm{v} \in \mathrm{V}$ and degree of V is even then V is called even vertices and degree of V is odd then V is called odd vertices.

DEFINITION: PENDENT VERTICES

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph in $\mathrm{v} \in \mathrm{V}$, degree of V is 1 $[\mathrm{d}(\mathrm{v})=1]$ then V is called pendent vertices.

DEFINITION: ISOLATED VERTICES

Let $G=(V, E)$ be a graph in $v \in V$, degree of V is 0 $[\mathrm{d}(\mathrm{v})=0$] then V is called pendent vertices.

DEFINITION: NULL GRAPH

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph, $\mathrm{E}=$ d is called null graph.

$>$ Degree of all vertices in the null graph is zero.
Example of Null Graph
$>$ All vertices in the null graph is isolated vertex.

DEFINITION: REGULAR GRAPH

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph, degree of all vertices of G are same then G is called regular graph.
- If $\forall \mathrm{v} \in \mathrm{V}$; $\mathrm{d}(\mathrm{v})=\mathrm{k}$ then G is called k -regular graph.

4 Regular

Fig:2-Regular Graph

Fig:Regular Graph

DEFINITION: SERIES EDGES

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph, degree of common vertex of adjacent edge is two, which edges are known as series edges.

DEFINITION: COMPLETE GRAPH

A simple graph is said to be complete graph, if existence edges in between every pair of vertices in G and it is denoted by K_{n}.

Examples of Complete Graph

DEFINITION: SUB GRAPH

- Let $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ are two graph, If (i) V is subset of $V^{\prime} \& E$ is subset of E^{\prime}
(ii) Terminal vertices of every edges in G is also in G' Then G is sub graph of G^{\prime}.

\square Example: $\boldsymbol{H}_{l}, \boldsymbol{H}_{2}$, and \boldsymbol{H}_{3} are subgraphs of \boldsymbol{G}

DEFINITION: VERTEX DISJOINT SUB GRAPH EdGES DISJOINT SUB GRAPH

- Let $\mathrm{G}_{1}=\left(\mathrm{V}_{1}, \mathrm{E}_{1}\right)$ and $\mathrm{G}_{2}=\left(\mathrm{V}_{2}, \mathrm{E}_{2}\right)$ are sub graph of G then (i) G_{1} and G_{2} are said to be vertex disjoint sub graph, if $V_{1} \cap$ $\mathrm{V}_{2}=\mathrm{\phi}$
(ii) G_{1} and G_{2} are said to be edges disjoint sub graph, if $\mathrm{E}_{1} \cap$ $\mathrm{E}_{2}=$ ф

DEFINITION: WALK

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph, alternating sequence of vertices and edges which is terminated by vertices such that every vertex and edges are incidence is called walk and it is denoted by W.
- E.g.; $v_{1} e_{1} v_{2} e_{2} v_{3} \ldots \ldots \ldots \ldots v_{n-1} e_{n} v_{n}$

REMARK:

- No edge appears more than once.
- A vertex may appear more than once.
- Walk is also known as edges train OR chain.
- Every walk of G is a sub graph of G.
- Initial and end vertices in walk are called terminal vertices.

DEFINITION: OPEN WALK

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph, initial vertex and end vertex are not same in walk, and then walk is called open walk.

DEFINITION: CLOSED WALK

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph, initial vertex and end vertex are same in walk, and then walk is called open walk.

DEFINITION: PATH

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph, in open walk any vertex is not repeat is called path and it is denoted by P_{n}.

REMARK

- Number of edges in path is called the length of path.
- Path does not contain loop but contain walk.
- Degree of all vertices other than terminal is 2 .
- Degree of terminal vertices is 1 .
- Every path is open walk but converse is not true.

DEFINITION: CIRCUIT

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph, in closed walk any vertex is not repeat except terminal vertices is called circuit and it is denoted by C_{n}.

REMARK

- Degree of any vertex in circuit is 2 .
- Circuit is also known as cycle OR Polygon.
- Every loop is circuit but converse is not true.
- A circuit contain n-edges is called n-cycle.

DEFINITION: EULER LINE

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph, a closed walk contains all edges of G, which walk is called Euler line.

DEFINITION: EULER GRAPH

Let $G=(V, E)$ be a graph, G contain Euler line then G is called Euler graph.

DEFINITION: UNICURSAL LINE

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph, an open walk contain all vertex of G then walk is called Unicursal line.

DEFINITION: UNICURSAL GRAPH

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph, G contain Unicursal line then G is called Unicursal graph.

DEFINITION: HAMILTONIAN CIRCUIT

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph, a circuit contain all vertices of G, which circuit is called Hamiltonian circuit.

DEfinition: HAMILTONIAN PATH

Let $G=(V, E)$ be a graph, a path contains all vertices of G, which path is called Hamiltonian path.

DEFINITION: CONNECTED GRAPH

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph and $\mathrm{v}, \mathrm{u} \in \mathrm{V}$ there exist at least one path between u and v in G, then G is called connected graph.
- Otherwise G is called disconnected graph.

DEFINITION: UNION GRAPH

- Let $\mathrm{G}_{1}=\left(\mathrm{V}_{1}, \mathrm{E}_{1}\right)$ and $\mathrm{G}_{2}=\left(\mathrm{V}_{2}, \mathrm{E}_{2}\right)$ are two graph, $\mathrm{V}=\mathrm{V}_{1} \cup \quad \mathrm{~V}_{2}$ and $\mathrm{E}=\mathrm{E}_{1} \mathrm{U} \mathrm{E}_{2}$ then $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is called union graph.

DEFINITION: INTERSECTION GRAPH

- Let $\mathrm{G}_{1}=\left(\mathrm{V}_{1}, \mathrm{E}_{1}\right)$ and $\mathrm{G}_{2}=\left(\mathrm{V}_{2}, \mathrm{E}_{2}\right)$ are two graph, $\mathrm{V}=\mathrm{V}_{1} \cap \mathrm{~V}_{2}$ and $\mathrm{E}=\mathrm{E}_{1} \cap \mathrm{E}_{2}$ then $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is called intersection graph of G_{1} and G_{2}.

DEFINITION: RINGSUM GRAPH

- Let $\mathrm{G}_{1}=\left(\mathrm{V}_{1}, \mathrm{E}_{1}\right)$ and $\mathrm{G}_{2}=\left(\mathrm{V}_{2}, \mathrm{E}_{2}\right)$ are two graph, $\mathrm{V}=\mathrm{V}_{1} \cup \quad \mathrm{~V}_{2}$ and $\mathrm{E}=\left(\mathrm{E}_{1} \mathrm{U} \mathrm{E}_{2}\right)-\mathrm{E}_{1} \cap \mathrm{E}_{2}=\mathrm{E}_{1} \Delta \mathrm{E}_{2}$ then $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is called Ringsum graph.

DEFINITION: COMPLEMENT OF GRAPH

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a simple graph, E^{c} is complement of $E, E^{c}=\left(V^{*} V\right)-E$ then $G^{\prime}=\left(V, E^{c}\right)$ is said to be complement of G.

DEFINITION: DECOMPOSITION OF GRAPH

Let G_{1} and G_{2} are two sub graph of G such that $\mathrm{G}_{1} \cap \mathrm{G}_{2}=\varnothing$ and $\mathrm{G}_{1} \mathrm{U} \mathrm{G}_{2}=\mathrm{G}$ then G is said to be decompose into G_{1} and G_{2}.

DEFINITION: VERTEX DELETED GRAPH

\circ Let $G=(V, E)$ be a graph, $v_{i} \epsilon V$, we remove v_{i} from the graph G then $G-\left\{v_{i}\right\}$ is said to be vertex deleted graph.

DEFINITION: EDGE DELETED GRAPH

Let $G=(V, E)$ be a graph, $e_{i} \in E$, we remove e_{i} from the graph G then $\mathrm{G}-\left\{\mathrm{e}_{\mathrm{i}}\right\}$ is said to be edge deleted graph.

DEFINITION: FUSION OF GRAPH

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph and $\mathrm{u}, \mathrm{v} \in \mathrm{V}$, we apply vertex x in place of u and v are incidence on x and we get new graph G is called Fusion of graph.

Definition: Tree

- A connected graph G is said to be tree, if G has no circuit.

REMARK

- Tree is connected and number of edges in tree with n-vertices is (n-1).
- Every pair of vertices has at least one path in G.
- Tree is minimal connected graph.
- The collection of tree is called Forest.

Examples of Tree

DEFINITION: MinIMAL CONNECTED GRAPH

- G is connected graph, one edge remove from graph and graph is disconnected then G is called Minimal connected graph.

Definition: Rooted tree

- Any one vertex in T (tree) different to other vertices it is called root and tree containing rooted tree.

DEFINITION: BINARY TREE

- In tree degree of one vertex is 2 and degree of other vertices is one OR three which tree is said to be Binary tree.

Full Binary Tree

Properties of Binary Tree:

- All vertices of Binary tree except pendent vertex is called internal vertex.
- In Binary tree degree of vertex two is root of tree.
- Level: In a Binary tree a vertex v_{i} is said to be at level l_{i}, if v_{i} is at a distance of l_{i} from the root and the root is at level zero.
- The maximum level of any vertex in a Binary tree is called the height of the tree.

Properties of Binary tree:

- Minimum possible height of n-vertex, Binary tree is minlmax;

$$
\operatorname{minlmax}=\left[\log _{2}(n+1)-1\right]
$$

- Maximum possible height of n-vertex, Binary tree is maxlmax;

$$
\max \operatorname{lmax}=\frac{n-1}{2}
$$

DEFINITION: LABEL GRAPH

- A graph in which vertex T is a sign is a unique name of label is called Label graph.
- The number of Label tree with n -vertices is $\mathrm{n}^{\mathrm{n}-2}$.

unlabeled graph

edge-labeled graph

vertex-labeled graph

DEFINITION: SPANNING TREE

- A tree T is said to be spanning tree of a connected graph G , if T is a sub graph of G and T contains all vertices of G .

NOTE:

- Edges in a spanning tree are called branches of tree.
- Edges of G it is not given spanning tree is called chord.
- Number of vertices is n, number of edges e in G then number of branches is spanning tree with respect to G is $(\mathrm{n}-1)$.
- Number of chord in spanning tree with respect to connected graph G is $(\mathrm{e}-\mathrm{n}+1)$.

DEFINITION: FUNDAMENTAL NUMBER

- Number of vertices is n, number of edges is e and numbers of components k are called fundamental number in graph theory.

DEFINITION: RANK OF GRAPH

- Fundamental number n, e, k in G then ($\mathrm{n}-\mathrm{k}$) is said to be Rank of G and it is denoted by r .
- i.e. $r=n-k$

DEFINITION: NULLITY OF GRAPH

- Fundamental number n, e, k in G then (e-n+k) is said to be Nullity of G and it is denoted by μ.
- i.e. $\quad \mathrm{h}=\mathrm{e}-\mathrm{n}+\mathrm{k}$

DEFINITION: ISOMORPHISM OF TWO GRAPHS

- Two graphs G and G' are said to be isomorphic, if there is a one-one correspond between their vertices and between their edges such that the incidence relation with preserve.

THANK you

