SHREE H.N.SHUKLA COLLEGE OF SCIENCE

T.Y.B.Sc. SEM-6 PAPER 601 GRAPH THEORY & COMPLEX ANALYSIS-II

UNIT-1:GRAPH THEORY

IMPORTANT DEFINITION

2

Prepared by: Miss Renuka Dabhi M.Sc.(Maths), B.Ed. Lecturer H.N.Shukla College of Science

DEFINITION: GRAPH

• Let $V = \{v_1, v_2, \dots, v_n\}$ and $E = \{e_1, e_2, \dots, e_n\}$ are set of vertices and edges respectively, A mapping $\phi: E \to V \times V$ is called graph and is denoted by G = (V, E). Where, V= the set of vertices

E= the set of edges

Example of Graph

DEFINITION: DIRECTED EDGES

• Let G= (V, E) be a graph, Edge of graph is correspond to order pair of vertices is called directed edges.

DEFINITION: DIAGRAPH OR DIRECTED GRAPH

• Let G= (V, E) be a graph, All edges of graph G are directed then graph G is called Diagraph OR Directed graph.

Directed Graph

DEFINITION: MIXED GRAPH

• Let G= (V, E) be a graph, some edges of graph have direction and some edges of graph have no direction then graph G is called Mixed graph.

DEFINITION: (N, M) GRAPH

- Let G= (V, E) be a graph, number of vertices is n, <u>i.e.</u> n (V) = n is called order of G ⇒ o (G) = n and number of edges is m, <u>i.e.</u> n (E) = m is called size of graph,
- Then this is called (n, m) graph.

DEFINITION: FINITE GRAPH

• Let G= (V, E) be a graph, V and E are finite set then graph G is called finite graph.

DEFINITION: LOOP <u>OR</u> SELF LOOP

 Let G= (V, E) be a graph, e ε E is called loop OR self loop if terminal vertices of e are same

DEFINITION: PARALLEL EDGES

• Let G= (V, E) be a graph, two or more than two edges terminal vertices same which edges are called parallel edges.

DEFINITION: SIMPLE GRAPH

• Let G= (V, E) be a graph as neither self loop nor parallel edges are called simple graph.

DEFINITION: DEGREE OF VERTEX

- Let G= (V, E) be a graph, v ∈ V and no. of edges incidence on V is called degree of vertex and is denoted by d(v).
- If E is loop, it is incidence on d then degree of V count twice.

DEFINITION: EVEN AND ODD VERTICES

Let G=(V, E) be a graph, $v \in V$ and degree of V is even then V is called even vertices and degree of V is odd then V is called odd vertices.

DEFINITION: PENDENT VERTICES

Let G=(V, E) be a graph in $v \in V$, degree of V is 1 [d(v)=1] then V is called pendent vertices.

DEFINITION: ISOLATED VERTICES

Let G=(V, E) be a graph in $v \in V$, degree of V is 0 [d(v)=0] then V is called pendent vertices.

DEFINITION: NULL GRAPH

• Let G= (V, E) be a graph, E=φ is called null graph.

Example of Null Graph

Degree of all vertices in the null graph is zero.

> All vertices in the null graph is isolated vertex.

DEFINITION: REGULAR GRAPH

• Let G= (V, E) be a graph, degree of all vertices of G are same then G is called regular graph.

 If ∀ v ∈ V; d(v)=k then G is called k-regular graph.

DEFINITION: SERIES EDGES

• Let G= (V, E) be a graph, degree of common vertex of adjacent edge is two, which edges are known as series edges.

DEFINITION: COMPLETE GRAPH

A simple graph is said to be complete graph, if existence edges in between every pair of vertices in G and it is denoted by K_n .

Examples of Complete Graph

Let G= (V, E) and G'= (V', E') are two graph, If (i) V is subset of V' & E is subset of E' (ii) Terminal vertices of every edges in G is also in G' Then G is sub graph of G'.

\Box Example: H_1 , H_2 , and H_3 are subgraphs of G

20

DEFINITION: VERTEX DISJOINT SUB GRAPH **EDGES DISJOINT SUB GRAPH**

- Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are sub graph of G then (i) G_1 and G_2 are said to be vertex disjoint sub graph, if $V_1 \cap V_2 = \phi$
 - (ii) G_1 and G_2 are said to be edges disjoint sub graph, if $E_1 \cap E_2 = \varphi$

DEFINITION: WALK

- Let G= (V, E) be a graph, alternating sequence of vertices and edges which is terminated by vertices such that every vertex and edges are incidence is called walk and it is denoted by W.
- E.g.; $v_1 e_1 v_2 e_2 v_3 \dots \dots v_{n-1} e_n v_n$

REMARK:

- No edge appears more than once.
- A vertex may appear more than once.
- Walk is also known as edges train OR chain.
- Every walk of G is a sub graph of G.
- Initial and end vertices in walk are called terminal vertices.

DEFINITION: OPEN WALK

• Let G= (V, E) be a graph, initial vertex and end vertex are not same in walk, and then walk is called open walk.

DEFINITION: CLOSED WALK

• Let G= (V, E) be a graph, initial vertex and end vertex are same in walk, and then walk is called open walk.

DEFINITION: PATH

• Let G = (V, E) be a graph, in open walk any vertex is not repeat is called path and it is denoted by P_n .

REMARK

- Number of edges in path is called the length of path.
- Path does not contain loop but contain walk.
- Degree of all vertices other than terminal is 2.
- Degree of terminal vertices is 1.
- Every path is open walk but converse is not true.

DEFINITION: CIRCUIT

• Let G= (V, E) be a graph, in closed walk any vertex is not repeat except terminal vertices is called circuit and it is denoted by C_n.

REMARK

- Degree of any vertex in circuit is 2.
- Circuit is also known as cycle OR Polygon.
- Every loop is circuit but converse is not true.
- A circuit contain n-edges is called n-cycle.

DEFINITION: EULER LINE

• Let G= (V, E) be a graph, a closed walk contains all edges of G, which walk is called Euler line.

DEFINITION: EULER GRAPH

Let G = (V, E) be a graph, G contain Euler line then G is called Euler graph.

DEFINITION: UNICURSAL LINE

• Let G= (V, E) be a graph, an open walk contain all vertex of G then walk is called Unicursal line.

DEFINITION: UNICURSAL GRAPH

Let G = (V, E) be a graph, G contain Unicursal line then G is called Unicursal graph.

DEFINITION: HAMILTONIAN CIRCUIT

• Let G= (V, E) be a graph, a circuit contain all vertices of G, which circuit is called Hamiltonian circuit.

DEFINITION: HAMILTONIAN PATH

Let G= (V, E) be a graph, a path contains all vertices of G, which path is called Hamiltonian path.

DEFINITION: CONNECTED GRAPH

- Let G = (V, E) be a graph and v, $u \in V$ there exist at least one path between u and v in G, then G is called connected graph.
- Otherwise G is called disconnected graph.

DEFINITION: UNION GRAPH

• Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are two graph, V=V₁ U V₂ and E=E₁ U E₂ then G= (V, E) is called union graph.

DEFINITION: INTERSECTION GRAPH

• Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are two graph, $V=V_1 \cap V_2$ and $E=E_1 \cap E_2$ then G=(V, E) is called intersection graph of G_1 and G_2 .

DEFINITION: RINGSUM GRAPH

• Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are two graph, $V=V_1 \cup V_2$ and $E=(E_1 \cup E_2) - E_1 \cap E_2 = E_1 \Delta E_2$ then G=(V, E) is called Ringsum graph.

DEFINITION: COMPLEMENT OF GRAPH

 Let G= (V, E) be a simple graph, E^c is complement of E, E^c= (V*V) − E then G'= (V, E^c) is said to be complement of G.

DEFINITION: DECOMPOSITION OF GRAPH

Let G_1 and G_2 are two sub graph of G such that $G_1 \cap G_2 = \phi$ and $G_1 \cup G_2 = G$ then G is said to be decompose into G_1 and G_2 .

DEFINITION: VERTEX DELETED GRAPH

• Let G = (V, E) be a graph, $v_i \in V$, we remove v_i from the graph G then $G - \{v_i\}$ is said to be vertex deleted graph.

DEFINITION: EDGE DELETED GRAPH

Let G=(V, E) be a graph, $e_i \in E$, we remove e_i from the graph G then $G - \{e_i\}$ is said to be edge deleted graph.

DEFINITION: FUSION OF GRAPH

 Let G= (V, E) be a graph and u, v ε V, we apply vertex x in place of u and v are incidence on x and we get new graph G is called Fusion of graph.

DEFINITION: TREE

• A connected graph G is said to be tree, if G has no circuit.

REMARK

- Tree is connected and number of edges in tree with n-vertices is (n-1).
- Every pair of vertices has at least one path in G.
- Tree is minimal connected graph.
- The collection of tree is called Forest.

DEFINITION: MINIMAL CONNECTED GRAPH

• G is connected graph, one edge remove from graph and graph is disconnected then G is called Minimal connected graph.

DEFINITION: ROOTED TREE

• Any one vertex in T (tree) different to other vertices it is called root and tree containing rooted tree.

DEFINITION: BINARY TREE

• In tree degree of one vertex is 2 and degree of other vertices is one OR three which tree is said to be Binary tree.

PROPERTIES OF BINARY TREE:

- All vertices of Binary tree except pendent vertex is called internal vertex.
- In Binary tree degree of vertex two is root of tree.
- Level: In a Binary tree a vertex v_i is said to be at level l_i , if v_i is at a distance of l_i from the root and the root is at level zero.
- The maximum level of any vertex in a Binary tree is called the height of the tree.

PROPERTIES OF BINARY TREE:

• Minimum possible height of n-vertex, Binary tree is minlmax;

 $minlmax = [\log_2(n+1) - 1]$

Maximum possible height of n-vertex, Binary tree is maxlmax;

$$maxlmax = \frac{n-1}{2}$$

DEFINITION: LABEL GRAPH

• A graph in which vertex T is a sign is a unique name of label is called Label graph.

• The number of Label tree with n-vertices is n^{n-2} .

unlabeled graph

edge-labeled graph

vertex-labeled graph

DEFINITION: SPANNING TREE

• A tree T is said to be spanning tree of a connected graph G, if T is a sub graph of G and T contains all vertices of G.

41

NOTE:

- Edges in a spanning tree are called branches of tree.
- Edges of G it is not given spanning tree is called chord.
- Number of vertices is n, number of edges e in G then number of branches is spanning tree with respect to G is (n-1).
- Number of chord in spanning tree with respect to connected graph G is (e-n+1).

DEFINITION: FUNDAMENTAL NUMBER

• Number of vertices is n, number of edges is e and numbers of components k are called fundamental number in graph theory.

DEFINITION: RANK OF GRAPH

Fundamental number n, e, k in G then (n-k) is said to be Rank of G and it is denoted by r.
i.e. r=n-k

DEFINITION: NULLITY OF GRAPH

- Fundamental number n, e, k in G then (e-n+k) is said to be Nullity of G and it is denoted by μ.
- <u>i.e.</u> μ=e-n+k

DEFINITION: ISOMORPHISM OF TWO GRAPHS

• Two graphs G and G' are said to be isomorphic, if there is a one-one correspond between their vertices and between their edges such that the incidence relation with preserve.

