
 RDBMS USING ORACLE(PGDCA-2)

CHAPTER-4
Advanced PL/SQL

  Creating & Using Procedure
 Functions
 Package
 Triggers
 Creating Objects
 PL/SQL Tables
 Nested Tables
 Varrays

 Q-1 Explain Procedure with Example.

Detail :-

 PL/SQL Procedure or Stored Procedure is a PL/SQL block that performs one

or more specific tasks.

 It is just like procedures in other programming languages.

 Procedure is Block or Unit that stores group of data together.

 The procedure contains a header and body:

o Header :- The Header contains the name of the procedure or the

parameters that passed to procedure.

o Body :- The Body contains a declaration section , Execution section and

Exception section.

How to Pass Parameters in Procedure :

 There are three ways to pass parameters in procedure:

1. In Parameters : The In parameter can be referenced by the value of

parameter that cannot be overwritten by the procedure.

2. OUT Parameters : The Out parameter cannot be referenced by the value

of parameter that can be overwritten by the procedure.

3. INOUT Parameters : The INOUT parameter can be referenced by the

procedure or function where value of parameter can be overwritten.

Syntax :-

Create or replace procedure procedure_name [Parameters]
IS
 [declaration section]
BEGIN
 [Executable section]

EXCEPTION
 [Exception section]
END [procedure_name];

Example :-

Create or replace procedure p1 (id IN NUMBER name IN VARCHAR2)
IS
Begin
 Insert into user values(id , name);
End;
/

Output :-
 Procedure Created.

How to Call / Execute Procedure :

 To execute or call any procedure…Execute statement with procedure name

can be used like :

Example :-

Execute p1(101, ‘snehal’)

Output :-
 PL/SQL Procedure Successfully Completed.

How to Drop Procedure :

 To Drop Procedure , The following Statement can be used:

Example :-

 Drop Procedure p1

 Q-2 Explain Function with Example.

Detail :-

 PL/SQL Function is very similar to PL/SQL Procedure.

 The only difference between procedure and function is that , A function must

always return a value.

 Function is Block that stores group of data together.

 The function contains a header and body:

o Header :- The Header contains the name of the Function or the

parameters that passed to Function.

o Body :- The Body contains a declaration section , Execution section and

Exception section.

How to Pass Parameters in Function :

 There are three ways to pass parameters in Function:

4. In Parameters : The In parameter can be referenced by the value of

parameter that cannot be overwritten by the Function.

5. OUT Parameters : The Out parameter cannot be referenced by the value

of parameter that can be overwritten by the Function.

6. INOUT Parameters : The INOUT parameter can be referenced by the

function where value of parameter can be overwritten.

Syntax :-

Create or Replace Function Function _name [Parameters]
RETURN return_datatype
{IS | AS}

BEGIN
 <function_body>

END [function_name];

Example :-

Create or replace Function adder (a IN NUMBER , b IN NUMBER)
Return number
IS
N3 number(8);
Begin
 N3:=n1+n2;
Return n3
End;
/

Output :-
 Function Created.

How to Call / Execute Function :

 To execute or call any Function…Following code can be used:

Example :-

Declare
 Ans number(3);
Begin
 Ans := adder(10,20);
 Dbms_output.put_line(Ans);
End;
/

Output :-
 PL/SQL Procedure Successfully Completed.

How to Drop Function :

 To Drop Function , The following Statement can be used:

Example :-

 Drop Function adder

 Q-3 Write note on Varray.

Detail :-

 Varray Stands for Variable – sized array.
 A Varray is single dimensional collection of elements with the same data

type.
 A Varray always has a fixed number of elements.
 Varray allows you to store repeating attributes of record in single row.
 To declare Varray type , following syntax can be used:

Syntax :
 Type type_name IS VARRAY (max_elements) of element_type

 [NOT NULL]

 In this declaration:

 Type_name is the type of the Varray.

 Max_elements is the maximum number of elements allowed in the
varray.

 NOT NULL specifies that the element of the varray of that type can not

have NULL elements.

 Element_type is the type of elements of the varray type’s variable.

 Example :

 Type t _ name IS VARRAY (5) of VARCHAR2(20) NOT NULL;

 Once the varray is declared , it can be used in Table / Abstract Data Type like
Following :

Create table master(name varchar2(20) , data t_name);

 Varray support two built- in methods :

1. COUNT :- It returns the number of elements that a varray
currently contains , not including null values.

2. LIMIT :- It used for VARRAY to decide the maximum number
of values allowed.If LIMIT is used on a nested table it will
return a null.

 Q-4 Write note on Nested Table.

Detail :-

 Nested table is like one-dimensional array with number of elements.
 But Nested table is differ from array , because the size of nested table

can increase dynamically.
 Nested table is table within table.
 Nested tables stored in the database always.
 Nested table must be initialized with a built-in function called

constructor.
 Unlike Varray , Nested tables has no limit on the number of entries

per row.
 A Nested table is created using the following syntax :-

 Syntax :-

 TYPE type_name IS TABLE OF element_type [NOT NULL];
 Table_name type_name

 A Nested table can be stored in database column.

 Example:-

 TYPE salary IS TABLE OF NUMBER NOT NULL;
 Salary_list salary;
 Name varchar2(20);

 While creating a table that includes nested table , you must specify the
name of the table that will be used to store the nested table’s data.

 Now ,you should create one of the table and you can insert records to
that table with the help of Nested table.

Q-5 Write note on Nested Table.

Detail :-

 A PL/SQL table is a one-dimensional , unbounded collection of homogeneous
elements , indexed by integers.

 It looks like an array / SQL table but it is not exactly the same.

 There is a difference between Array / SQL table & PL/SQL table.

 PL/SQL tables are composite data structures.
 PL/SQL has two composite datatypes : TABLE and RECORD.

 Objects of type TABLE are known as PL/SQL tables.

 PL/SQL table is not a part of SQL.We can not issue commands like
INSERT/UPDATE/DELETE etc. on it.



 PL/SQL tables use a primary key to give you array like access to rows.
 The number of rows in a PL/SQL table can increase dynamically.

 The PL/SQL tables grows as new rows are added.

 PL/SQL tables can have one column and a primary key.

 PL/SQL tables can sometimes also referred to as an index by table.
 Rows in a PL/SQL table do not have to be contiguous.

 Syntax :-

 TYPE type_name IS TABLE OF element_type index by <type>;

 Example :-

 TYPE emp_table IS TABLE OF varchar2(10) index by binary_integer;
 Var_of_table emp_table;
 Var_of_table(1) := “hello world”;
 Var _of _table(2) := “good day”;

Row # Emp_Name

100 Meet

225 Snehal

226 Vandana

300 JAY

340 SRP

220 KSP

 Q-6 Write note on Package.

Detail :-

 A Package is an object , which holds other objects like procedure , functions
, cursor etc. within it.

 It is a container object and allows related objects to be stored together.

 Package support mainly following components :

o Package Specification (Package Header)

o Package Body

Package Specification (Package Header):-

 It contains name of the package.

 It Contains declaration of the procedure ,function,variables cursors etc.

 It does not contains any code for procedure /functions.

 Syntax :-

 CREATE OR REPLACE PACKAGE Package_name
 {AS|IS}

 Private _variable_declaration |
 Private _cursor _declaration |
 Function_specification
 Procedure_specification

 END <Package Name>;

Package Body :-

 It Contains the definition of public objects that are declared in the
specification.

 Package body can also have other objects , which are private to the package.

 If package header does not contain an procedure / function then package
body is optional.

 Syntax :-

 CREATE OR REPLACE PACKAGE BODY Package_name
 {AS|IS}

 Private _variable_declaration |
 Private _cursor _declaration |
 Function_specification
 Procedure_specification

 END <Package Name>;

 The variables /constants declared in the package specification can be
accessed by any procedure /function within the package.

How to Execute / Call Package :-

 To Execute / Call the package , we can use Execute statement like following:

 Syntax :-
Execute <Package_name> . <Object name>

 Example :-
Execute Package1.function1

 Example :-

 Create Or Replace Package Body Pkgemp IS
 Procedure updaterecord(no stdent.rno%type) IS
 BEGIN
 UPDATE student set age=23 where rno = no;
 IF SQL%FOUND THEN
 Dbms_output.put_line(‘updated’);
 ELSE
 Dbms_output.put_line(‘Not updated’);
 ENDIF
 END updaterecord;

 Example :- (Calling)
 Execute Pkgemp.updaterecord

 Q-7 Write note on Trigger.

Detail :-

 Triggers are the programs that are executed automatically in response to a
change in the database.

 Oracle allows special type of procedures that are automatically executed
when the events like INSERT/UPDATE/DELETE occurs.

 These event procedures are called “DATABASE TRIGGERS”.
 The events that cause triggers firing are:

o DML Events

o DDL Events

o Database Events

 The DML event triggers can be statement or row triggers.

 The DML statement trigger gets fired before or after the triggering
statement.

 You can define multiple triggers for single event and type.

TRIGGER PARTS :

 The Trigger can be divide into following parts:

o Triggering Event :- The statement like INSERT UPDATE or DELETE that
cause trigger to be fired is called triggering event.

o Trigger Restrictions :- It is an option specified using WHEN clause.This
option is available for triggers that are fired for each row.

o Trigger Code :- It is the PL/SQL code.

TRIGGER TYPES :

 The Trigger have following types :

o Row Triggers :-

 This trigger is fired each time a row in the table is affected.

 This type of trigger should be used when some action is required
 when any row of the table is affected.

o Statement Triggers :-

 This is default type of triggers.

 This trigger will be fired once and it is independent of the no. of
affected rows in table.

 Even if the none of the row is affected , statement trigger will
be fired.

BEFORE V/S AFTER TRIGGER :

 Before trigger execute the trigger action before the triggering
statements.

 After trigger executes the trigger action after the triggering
statement is executed.

 It is possible to have both BEFORE & AFTER trigger for the same
triggering statement.

 Syntax :-

 CREATE OR REPLACE TRIGGER <trigger name>
 [BEFORE / AFTER]
 [DELETE / INSERT / UPDATE | OF <Col1> , <Col2>…]
 ON <Table / View name>

 [FOR EACH ROW [WHEN <condition>]]
 DECLARE
 <variable / constant Declaration>
 BEGIN
 <PL/SQL statement body>;
 EXCEPTION
 <Exception PL/SQL statement body>
 END;

 Example :-

 CREATE OR REPLACE TRIGGER tri1 After delete on college
 Declare
 X number;
 Begin
 Select count(*) into x from college;
 End;
 /

 Trigger Created.

SQL > Delete from college where rno > 1;
Error at line 1:
 Can not delete
 Error during execution of trigger tri1

 Q-8 How to create object in PL/SQL.

Detail :-

 In PL/SQL , the programming is based on object types.
 An object type can represent any real world entity.
 The object type can not be created at sub program level.
 Once the object type is defined , the same can be used in subprograms.
 The object type can be created using ‘CREATE TYPE’.
 The type body can be created only after creating its object type.

 Syntax :-

 Create type <object _ type_name> AS OBJECT
 (
 <Attribute_1> <data type>,
 .
 .
);
 /

 Once the object type is created , it can be used in sub program declarative
section to declare variable of that object type.

 Whenever any variable is declared in the subprogram as object type , at run
time a new instance of the object type will be created.

 By the way , a single object type can store multiple values under different
instances.

 The constructors are the implicit method of an object that can be referred
with the same name as that of the object type.

 Whenever the object is referred for the first time , this constructor will be
called implicitly.

 We can also initialize the objects using these constructor.

Example :-

 Create type emp_object AS
OBJECT
(emp_no number,
 Emp_name varchar2(20),
Salary number)

Type Created.

 Q-9 Give difference between Procedure and Function.

 Procedure Function

1 A Procedure is a sub
program that perform a
specific task.

A Function is a subprogram
that computes a value.

2 Procedure does and does
not return the value.

Function must return atleast
a single value.

3 Procedure do not need
any RETURN statement.

Function must contains
atleast one RETURN
statement.

4 Procedure can execute /
invoke as a PL/SQL
statement.

Function can execute/invoke
as a part of an expression.

5 Transactions are possible. Transactions are not possible.

	Detail :-
	Detail :- (1)
	Detail :- (2)
	Detail :- (3)
	Detail :- (4)
	Detail :- (5)
	Detail :- (6)
	Detail :- (7)

