SHREE H. N SHUKLA GROUP OF COLLEGES :

CHAPTER-4
Advanced PL/SQL

= Creating & Using Procedure
= Functions

= Package

= Triggers

= Creating Objects

= PL/SQL Tables

= Nested Tables

= Varrays

RDBMS USING ORACLE(PGDCA-2)

-

i‘]] oMl Ml o EN] Ml EN M M M M M M EN M M M M Ml Ml Ml M M ENN E N

o] EN] Ml *El] *El] *El] *E] *E *E *E *EN EKN B K Ex Emn .JE

SHREE H. N. SHUKLA GROUP OF COLLEGES

Q-1 Explain Procedure with Example.

Detail :-

» PL/SQL Procedure or Stored Procedure is a PL/SQL block that performs one
or more specific tasks.

» ltis just like procedures in other programming languages.
» Procedure is Block or Unit that stores group of data together.

» The procedure contains a header and body:

o Header :- The Header contains the name of the procedure or the
parameters that passed to procedure.

o Body :- The Body contains a declaration section , Execution section and
Exception section.

How to Pass Parameters in Procedure :

» There are three ways to pass parameters in procedure:

1. In Parameters : The In parameter can be referenced by the value of

parameter that cannot be overwritten by the procedure.

2. OUT Parameters : The Out parameter cannot be referenced by the value

of parameter that can be overwritten by the procedure.

3. INOUT Parameters : The INOUT parameter can be referenced by the

procedure or function where value of parameter can be overwritten.

Syntax :-

Create or replace procedure procedure_name [Parameters]
IS

[declaration section]
BEGIN
[Executable section]

EXCEPTION
[Exception section]
END [procedure_name];

Example :-

Create or replace procedure pl (id IN NUMBER name IN VARCHAR2)
IS
Begin
Insert into user values(id , name);
End;
/

Output :-
Procedure Created.

How to Call / Execute Procedure :

» To execute or call any procedure...Execute statement with procedure name
can be used like :

Example :-

Execute p1(101, ‘snehal’)

Output :-
PL/SQL Procedure Successfully Completed.

How to Drop Procedure :

» To Drop Procedure, The following Statement can be used:

Example :-

» Drop Procedure p1

Q-2 Explain Function with Example.

i‘] ollN oHENN *ENN oENN AN EN EN o EN oEN EN M oEN ElN Ml EN ENN ENN M ENN ENN oENN oENN oENN ooEN

] oMl Ml Ml El EN M E EN EN EN E N BN ol BN ED ..JE
Detail :- !
» PL/SQL Function is very similar to PL/SQL Procedure. i
» The only difference between procedure and function is that, A function must
always return a value. !
» Function is Block that stores group of data together. i
» The function contains a header and body: .
o Header :- The Header contains the name of the Function or the !
parameters that passed to Function. i

o Body :- The Body contains a declaration section , Execution section and
Exception section. i
How to Pass Parameters in Function : .
» There are three ways to pass parameters in Function: .
4. In Parameters : The In parameter can be referenced by the value of !
parameter that cannot be overwritten by the Function. i
5. OUT Parameters : The Out parameter cannot be referenced by the value i
of parameter that can be overwritten by the Function. .
6. INOUT Parameters : The INOUT parameter can be referenced by the i
function where value of parameter can be overwritten. .
Syntax :- !
Create or Replace Function Function name [Parameters] !
RETURN return_datatype i
{IS | AS} .
BEGIN .
<function_body> !
END [function_name]; l

i‘] ollN oHENN *ENN oENN AN EN EN o EN oEN EN M oEN ElN Ml EN ENN ENN M ENN ENN oENN oENN oENN ooEN

] oEN] El] El] El] A1 oEl] Al El] o El] El] < E] < E < E < EK oEI ..JE

Example :-

Create or replace Function adder (a IN NUMBER , b IN NUMBER)
Return number

IS

N3 number(8); i

Begin .
N3:=n1+n2; .

Return n3 .

End; !

/ i

Output :-

Function Created.

How to Call / Execute Function :

» To execute or call any Function...Following code can be used:

Example :- i
Declare .
Ans number(3); !
Begin .
Ans := adder(10,20); !
Dbms_output.put_line(Ans); i

End;
/ !
Output :- i

PL/SQL Procedure Successfully Completed.

How to Drop Function :

» To Drop Function, The following Statement can be used:

Example :-

)))+

» Drop Function adder

Q-3 Write note on Varray.

Detail :-

» Varray Stands for Variable —sized array.

» A \Varray is single dimensional collection of elements with the same data
type.

» A Varray always has a fixed number of elements.

» Varray allows you to store repeating attributes of record in single row.

» To declare Varray type , following syntax can be used:

Syntax :
Type type_name IS VARRAY (max_elements) of element_type

[NOT NULL]
» Inthis declaration:
= Type_name is the type of the Varray.

= Max elements is the maximum number of elements allowed in the
varray.

= NOT NULL specifies that the element of the varray of that type can not
have NULL elements.

= Element_type is the type of elements of the varray type’s variable.

Example :
Type t _name IS VARRAY (5) of VARCHAR2(20) NOT NULL;

» Once the varray is declared , it can be used in Table / Abstract Data Type like
Following :

Create table master(name varchar2(20), data t_name);

» Varray support two built- in methods :

i‘] ollN oHENN *ENN oENN AN EN EN o EN oEN EN M oEN ElN Ml EN ENN ENN M ENN ENN oENN oENN oENN ooEN

1. COUNT :- It returns the number of elements that a varray
currently contains , not including null values.

2. LIMIT :- It used for VARRAY to decide the maximum number
of values allowed.If LIMIT is used on a nested table it will
return a null.

Q-4 Write note on Nested Table.

Detail :-

» Nested table is like one-dimensional array with number of elements.
» But Nested table is differ from array , because the size of nested table
can increase dynamically.

» Nested table is table within table.

» Nested tables stored in the database always.

» Nested table must be initialized with a built-in function called
constructor.

» Unlike Varray , Nested tables has no limit on the number of entries
per row.

» A Nested table is created using the following syntax :-

Syntax :-

TYPE type_name IS TABLE OF element_type [NOT NULL];
Table_name type_name

> A Nested table can be stored in database column.
Example:-

TYPE salary IS TABLE OF NUMBER NOT NULL;
Salary_list salary;
Name varchar2(20);

» While creating a table that includes nested table , you must specify the
name of the table that will be used to store the nested table’s data.

» Now ,you should create one of the table and you can insert records to
that table with the help of Nested table.

i‘] ollN oHENN *ENN oENN AN EN EN o EN oEN EN M oEN ElN Ml EN ENN ENN M ENN ENN oENN oENN oENN ooEN

Q-5 Write note on Nested Table.

Detail :-

> A PL/SQL table is a one-dimensional , unbounded collection of homogeneous
elements, indexed by integers.

It looks like an array / SQL table but it is not exactly the same.

There is a difference between Array / SQL table & PL/SQL table.

PL/SQL tables are composite data structures.

PL/SQL has two composite datatypes : TABLE and RECORD.

Objects of type TABLE are known as PL/SQL tables.

PL/SQL table is not a part of SQL.We can not issue commands like
INSERT/UPDATE/DELETE etc. on it.

V V V V V V

PL/SQL tables use a primary key to give you array like access to rows.
The number of rows in a PL/SQL table can increase dynamically.

The PL/SQL tables grows as new rows are added.

PL/SQL tables can have one column and a primary key.

PL/SQL tables can sometimes also referred to as an index by table.
Rows in a PL/SQL table do not have to be contiguous.

YV V.V VY VYV V V

Syntax :-

TYPE type_name IS TABLE OF element_type index by <type>;

Example :-

TYPE emp_table IS TABLE OF varchar2(10) index by binary_integer;
Var_of_table emp_table;

Var_of _table(1) := “hello world”;

Var _of _table(2) := “good day”;

i‘] ollN oHENN *ENN oENN AN EN EN o EN oEN EN M oEN ElN Ml EN ENN ENN M ENN ENN oENN oENN oENN ooEN

Row # Emp_Name
100 Meet
225 Snehal
226 Vandana
300 JAY
340 SRP
220 KSP

Q-6 Write note on Package.

Detail :-

> A Package is an object , which holds other objects like procedure , functions
, cursor etc. within it.
> Itis a container object and allows related objects to be stored together.
> Package support mainly following components :
o Package Specification (Package Header)
o Package Body

Package Specification (Package Header):-

> It contains name of the package.
> It Contains declaration of the procedure ,function,variables cursors etc.
> It does not contains any code for procedure /functions.

CREATE OR REPLACE PACKAGE Package_name
{AS|IS}

Private _variable declaration |
Private _cursor _declaration |
Function_specification

Procedure_specification

END <Package Name>;

Package Body :-

> It Contains the definition of public objects that are declared in the
specification.

> Package body can also have other objects , which are private to the package.

> |If package header does not contain an procedure / function then package
body is optional.

Syntax :-

=
'
!
'
'
'
'
'
'
'
.
'
'
'
'
'
'
'
'
J
J
J
!
.

i‘] ollN oHENN *ENN oENN AN EN EN o EN oEN EN M oEN ElN Ml EN ENN ENN M ENN ENN oENN oENN oENN ooEN

CREATE OR REPLACE PACKAGE BODY Package_name
{AS|IS}

Private _variable_declaration |
Private _cursor _declaration |
Function_specification
Procedure_specification

END <Package Name>;

> The variables /constants declared in the package specification can be
accessed by any procedure /function within the package.

How to Execute / Call Package :-

> To Execute / Call the package , we can use Execute statement like following:

Syntax :-
Execute <Package _name> . <Object name>

Example :-
Execute Packagel.functionl

Example :-

Create Or Replace Package Body Pkgemp IS
Procedure updaterecord(no stdent.rno%type) IS

BEGIN
UPDATE student set age=23 where rno = no;
IF SQL%FOUND THEN
Dbms_output.put_line(‘updated’);
ELSE
Dbms_output.put_line(‘Not updated’);
ENDIF

END updaterecord;

Example :- (Calling)
Execute Pkgemp.updaterecord

i‘] ollN oHENN *ENN oENN AN EN EN o EN oEN EN M oEN ElN Ml EN ENN ENN M ENN ENN oENN oENN oENN ooEN

Q-7 Write note on Trigger.

Detail :-

> Triggers are the programs that are executed automatically in response to a
change in the database.

> Oracle allows special type of procedures that are automatically executed
when the events like INSERT/UPDATE/DELETE occurs.

> These event procedures are called “DATABASE TRIGGERS”.

> The events that cause triggers firing are:

o

o

o

DML Events
DDL Events
Database Events

> The DML event triggers can be statement or row triggers.

> The DML statement trigger gets fired before or after the triggering
statement.

> You can define multiple triggers for single event and type.

TRIGGER PARTS :

> The Trigger can be divide into following parts:
o Triggering Event :- The statement like INSERT UPDATE or DELETE that
cause trigger to be fired is called triggering event.
o Trigger Restrictions :- It is an option specified using WHEN clause.This
option is available for triggers that are fired for each row.
o Trigger Code :- Itis the PL/SQL code.

TRIGGER TYPES :

> The Trigger have following types :
o Row Triggers :-

> This trigger is fired each time a row in the table is affected.
> This type of trigger should be used when some action is required
when any row of the table is affected.

o Statement Triggers :-

> This is default type of triggers.
> This trigger will be fired once and it is independent of the no. of
affected rows in table.

i‘] ollN oHENN *ENN oENN AN EN EN o EN oEN EN M oEN ElN Ml EN ENN ENN M ENN ENN oENN oENN oENN ooEN

> Even if the none of the row is affected , statement trigger will
be fired.

BEFORE V/S AFTER TRIGGER :

> Before trigger execute the trigger action before the triggering
statements.

> After trigger executes the trigger action after the triggering
statement is executed.

> Itis possible to have both BEFORE & AFTER trigger for the same
triggering statement.

Syntax :-

.JE

.

.

.

.

.

.

.

.

_ .

CREATE OR REPLACE TRIGGER <trigger name> .

[BEFORE / AFTER] i

[DELETE / INSERT / UPDATE | OF <Col1>, <Col2>...] .

ON <Table / View name> !

[FOR EACH ROW [WHEN <condition>]] !

DECLARE °

<variable / constant Declaration> !

BEGIN i
<PL/SQL statement body>;

EXCEPTION i

.

.

.

.

.

.

.

.

.

<Exception PL/SQL statement body>
END;

Example :-

CREATE OR REPLACE TRIGGER tril After delete on college
Declare
X number;
Begin
Select count(*) into x from college;
End;
/

Trigger Created.

i‘] ollN oHENN *ENN oENN AN EN EN o EN oEN EN M oEN ElN Ml EN ENN ENN M ENN ENN oENN oENN oENN ooEN

SQL > Delete from college where rno > 1;
Error at line 1:

Can not delete

Error during execution of trigger tril

Q-8 How to create objectin PL/SQL.

Detail :-

In PL/SQL, the programming is based on object types.

An object type can represent any real world entity.

The object type can not be created at sub program level.

Once the object type is defined, the same can be used in subprograms.
The object type can be created using ‘CREATE TYPE'.

The type body can be created only after creating its object type.

YVVVVVYY

Syntax :-

Create type <object _type_name> AS OBJECT

(
<Attribute_1> <data type>,

);
/

» Once the object type is created, it can be used in sub program declarative
section to declare variable of that object type.

» Whenever any variable is declared in the subprogram as object type , at run
time a new instance of the object type will be created.

» By the way, a single object type can store multiple values under different
instances.

» The constructors are the implicit method of an object that can be referred
with the same name as that of the object type.

» Whenever the object is referred for the first time , this constructor will be
called implicitly.

» We can also initialize the objects using these constructor.

Example :-

i‘] ollN oHENN *ENN oENN AN EN EN o EN oEN EN M oEN ElN Ml EN ENN ENN M ENN ENN oENN oENN oENN ooEN

i‘] ollN oHENN *ENN oENN AN EN EN o EN oEN EN M oEN ElN Ml EN ENN ENN M ENN ENN oENN oENN oENN ooEN

Create type emp_object AS
OBJECT

(emp_no number,
Emp_name varchar2(20),
Salary number)

Type Created.

Q-9 Give difference between Procedure and Function.

Procedure

Function

1 A Procedure is a sub
program that perform a
specific task.

A Function is a subprogram
that computes a value.

2 Procedure does and does
not return the value.

Function must return atleast
a single value.

3 Procedure do not need Function must contains
any RETURN statement. atleast one RETURN

statement.

4 Procedure can execute / Function can execute/invoke
invoke as a PL/SQL as a part of an expression.
statement.

5 Transactions are possible. | Transactions are not possible.

o [} o [o [o [o [o [o [o [o [o [o [o [e [

	Detail :-
	Detail :- (1)
	Detail :- (2)
	Detail :- (3)
	Detail :- (4)
	Detail :- (5)
	Detail :- (6)
	Detail :- (7)

