

MASTER OF SCIENCE MATHEMATICS(W.E.F.-2016) MSC MATHS(2016) Semester - 3 Examination

October - 2024

NUMBER THEORY 1

Faculty Code: 003

Subject Code: 003-1163003

Time: 2.30Hours]

[Total Marks: 70

2.30Hours]

Answer the following: (Any seven out of ten, each of 02 marks) Q.11

14

If $a \equiv b \pmod{m}$. Show that, $ka \equiv kb \pmod{m}$; $\forall k \in \mathbb{Z}$.

2

gcd(2024,1729) State: Euclid's Algorithm. Find

Define, Complete Residue System of modulo m with an example. 3

4

5

Find, total number of primitive roots of 31 in modulo 31.

 $x^6 \equiv 9 \pmod{2^3}$ if exists. Find the number of solutions of

Define with example: Degree of congruence equation. 6

7

 $x \in \mathbb{R}$, $m \in \mathbb{Z}$, show that, For

8

Define: σ - function. Find, $\sigma(245)$.

9

 $\phi(84)$. Using Mobius inversion formula find,

Q.2 Answer the following: (Any two out of three, each of 07 marks)

For any two non-zero integers a, b, prove that, $[a, b] \cdot (a, b) = |ab|$.

- Prove that, any prime p has a Primitive root. Also show that, p has exactly $\phi(p-1)$ primitive roots in p (mod p).
- Let a and m > 0 be integers such that, (a, m) = 1, and S be any R.R.S. (mod m). Prove that

there exist unique $\bar{a} \in S$ such that $a \cdot \bar{a} \equiv 1 \pmod{m}$.

Q.3 Answer the following: (1 & 2 Both are compulsory, each of 07 marks)

1

Let m, m_1, m_2 are positive integers such that $m = m_1 \cdot m_2$, where $(m_1, m_2) = 1$ and

 $(\phi(m_1), \phi(m_2)) \ge 2$. Prove that, m does not have any primitive root.

2 State and prove: Wilson's theorem

OR OR

Answer the following: (1 & 2 Both are compulsory, each of 07 marks)

1. State and prove: Hensel's lemma

2. Let order of $a \pmod{m}$ is h and order of $b \pmod{m}$ is k. If (h, k) = 1. Pove that, order of

Answer the following: Q.4

14

1. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then prove that, $a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$

2

2. Let m be positive integer which has primitive root, a be any integer such that (a, m) = 1. Then for

 $n \ge 1$ prove that, $x^n \equiv a \pmod{m}$ either has no solution or it has $(n, \phi(m))$ solutions in $(mod \ m)$.

Answer the following: (Any two out of four, each of 07 marks)

14

a) Let n > 2 be odd integer and a be any odd integer. Then for $\alpha \ge 3$ prove that, $x^n \equiv a \pmod{2^{\alpha}}$

has a unique solution in $R.R.S. \pmod{2^{\alpha}}$

2

b) Let $m, m_1, m_2, ..., m_n$ are positive integers, such that $m = m_1 + m_2 + \cdots + m_n$. Show that,

 $m_1! \cdot m_2! \cdot \cdots \cdot m_n!$ divides m!.

3

c) Define: Mobius function μ . Also show that, μ is multiplicative function.

4

d) Let $f(n) = \sum_{d \mid n} \phi(d)$ where ϕ is Eulers function. Prove that, f(n) = n, $\forall n \in \mathbb{N}$.