

Shree H.N.Shukla College of Science **MATHEMATICS** S.Y.B.Sc. (Sem.IV) (CBCS) **PAPER-401** Linear Algebra, Real Analysis & Differential Geometry **QUESTION BANK**

Answer the following:

[1 mark questions]

 $\frac{1}{2}$

☆

☆

☆

☆

☆

☆ ☆

☆

☆

☆

☆ ☆

☆

☆

☆

☆

☆

☆

☆

☆ ☆

☆

☆

☆

☆ ☆

☆

☆

 \bigstar

☆

☆

 \bigstar

☆

☆

☆

☆

☆

☆

☆

☆

☆

☆

☆ ☆

☆

☆

☆

☆

☆

☆

☆

☆

☆

☆

☆

☆

☆

☆

- 1) Define: monotonic sequence
- 2) State Cauchy's General Principle of Convergence.
- 3) Define: Subsequence of a sequence
- 4) Give an example of a sequence which is lower bounded.
- 5) If the D'Alemert's ratio test fails, then what to do?
- 6) Narrate the Libnitz test for convergence of an alternating series.
- 7) Write the condition for convergence of $1 + r + r^2 + r^3 + ...$
- 8) Define: Oscillatory series
- 9) Define: Kernel of a linear transformation
- 10) Define: Linear transformation
- 11) Let T: U \rightarrow V is a linear transformation. Let θ and θ' be zero vectors for U and V respectively, Prove that $T(\theta)=\theta'$
- 12) Define: Idempotent linear transformation
- 13) Define: Dual of a vector space
- 14) If dimU=m, dimV=n then what is the dimL (U, V)?
- 15) Define: Eigen value of a linear transformation
- 16) Define: Diagonalization of a linear transformation

17) Write the formula to find radius of curvature of the curve given by

$$r = f(\theta)$$

- 18) Define: Multiple point of a given curve
- 19) Find the radius of the curvature of the curve

 $s = 4a \sin \psi$

- 20) Define: Point of inflexion
- 21) Construct a subsequence of the sequence $\left\{2, \frac{1}{2}, 3, \frac{1}{3}, 4, \frac{1}{4}, \ldots\right\}$ which is decreasing.

22) Sequence $\{S_n\}$ is defined as $S_1 = 1$, $4S_n + 1 = 3S_n + 2$. Find its limit.

Å	***************************************
A.	*
<u>∧</u> ∧_	
☆	24) Define: Power series 🔶
☆ ☆	25) Narrate P-series test
☆	26) Define: Zero linear transformation 🔶
<u>^</u> ∕-	27) If dimU=4, dimV=3, then find the dimL (U, V). \bigstar
↓	28) Define: Eigen basis of a linear transformation
<u>^</u> ∕-	29) Define: Double point
Â.	30) Define: Node 📩
<u>^</u> ∕-	31) Radius of curvature of $y^2 = 12x$ at the point (0,0) is
~ ☆	32) The curve $v=x^4$ is concave upwards at the point
<u>^</u> ∧_	33) A point on the curve through which pass two real branches of the \swarrow
☆	curve is called .
<u>∧</u> _ ∧_	34) What is the curvature at any point of the circle of radius r? $\stackrel{\bigstar}{}$
~ <u>∧</u>	35) The curve $v=x^3$ has a point of inflexion at
<u>∧</u> _	36) A possible double point on the curve $(y-x)^2+x^6=0$ is/are
∧ ∧	37) Define: Curvature and radius of curvature \bigstar
<u>∧</u> _	38) The asymptote parallel to y-axis for the curve $x^{-2}+y^{-2}=1$ is
<u>~</u> ∧_	\Rightarrow
<u>∧</u> _	
 ✓ ✓	• Answer the following: [2 mark questions]
~ ~	1) Show that every convergent sequence is bounded.
	2) Determine the sequence is convergent or not:
~ ∧	
<u>}</u>	$\left\{\frac{5n + (-1)^{n}}{2n + 5}\right\}$ 3) Show that the series $\frac{1}{2} - \frac{2}{5} + \frac{3}{10} - \frac{4}{17} + \frac{5}{26} - \dots $ is absolutely
<u>≺</u> ∕_	3) Show that the series $\frac{1}{2} - \frac{2}{5} + \frac{3}{10} - \frac{4}{17} + \frac{5}{26} - \dots $ is absolutely
☆	
<u>^</u> <u>↓</u>	convergent.
*	4) Test the convergence of ;
<u>^</u> <u>^</u>	$\sum_{n=1}^{\infty} \frac{3^{2n}}{2^{3n}}$
☆	$\sum_{n=0}^{n} 2^{3n}$
<u>^</u> ∕-	5) Define: (i) Range of a linear transformation $\overset{n=0}{}$
Â.	 4) Test the convergence of ; \$\sum_{n=0}^{\infty} \frac{3^{2n}}{2^{3n}}\$ 5) Define: (i) Range of a linear transformation (ii) Non-singular linear transformation 6) Let T: R²→R², T(x, y) = (x+1, y-2); ∀(x, y) ∈ R², then show that T is not a \$\sum_{n=0}^{\infty}\$
∧_ ∧_	6) Let T: $R^2 \rightarrow R^2$, T(x, y) = (x+1, y-2); \forall (x, y) $\in R^2$, then show that T is not a
$\stackrel{\sim}{\leftarrow}$	linear transformation.
	7) Let T: $\mathbb{R}^2 \rightarrow \mathbb{R}^2$, T(x,y)=(x, -y), \forall (x,y) $\in \mathbb{R}^2$ and \mathbb{B}_1 ={(1, 1), (1, 0)} and
<u>ک</u>	$\gamma_1 = (1, 1), (1, 0)$ and $\gamma_1 = (1, 1), (1, 0)$ and $\gamma_2 = (1, 1), (1, 0)$

☆☆☆☆ ☆	***********************************
$\stackrel{\sim}{\Delta}$	
\overleftrightarrow	
☆	B ₂ = {(2, 3), (4, 5)}. Then find [T; B ₁ , B ₂].
☆	8) Define: Matrix associated with a linear transformation
☆ ☆	
$\stackrel{\sim}{}$	9) For the curve
☆	$(x^2 + y^2)x - ay^2 = 0$,
☆	Prove that the origin is cusp.
☆ ☆	10) Prove that $y = \log x$ is convex upward everywhere.
☆	11) Find the radius of curvature of the curve $y = c \cosh \frac{x}{c}$.
☆ ☆	č
$\stackrel{\times}{\bigstar}$	12) Find asymptotes of the curve $(x^2 + y^2)x - ay^2 = 0$ parallel to co- ordinate axes.
☆ ☆	13) Find points of inflexion of the curve $x^2y - 4x + 3y = 0$.
$\stackrel{\scriptstyle \scriptstyle \times}{}$	14) Determine the sequence is convergent or not: $\left\{1 + \frac{(-1)^n}{n}\right\}$
☆	
☆	15) Prove that every convergent sequence is bounded.
☆ ☆	16) Show that the series $\sum (-1)^n$ oscillates finitely.
☆	17) Find a linear transformation T: $R^3 \rightarrow R^3$ such that $R_T = SP\{(1,5,0), (0,7,3)\}$
☆	
☆ ☆	18) Find N _T and n(T) for the linear transformation T: $R^3 \rightarrow R^2$,
$\stackrel{\scriptstyle \scriptstyle \lambda}{}$	T(x,y,z)=(x-y+z,x+y-z), ∀(x,y,z)∈R ³
\bigstar	
☆	
☆ ☆	✤ Answer the following: [3 mark questions]
\bigstar	
$\stackrel{\wedge}{\leftarrow}$	1) Show that the sequence {S _n } defined by $S_1 = \sqrt{2} \& S_{n+1} = \sqrt{2S_n}$
☆ ☆	converges to 2.
$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	2) Show that
☆	
$\stackrel{\wedge}{\sim}$	$\lim_{n \to \infty} \frac{1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n - 1}}{n} = 0$
x A	$\lim_{n \to \infty} \frac{3}{n} = 0$
\bigstar	3) Test the convergence or divergence of the series:
*	
$\stackrel{\frown}{\sim}$	$\frac{1}{4*6} + \frac{\sqrt{3}}{6*8} + \frac{\sqrt{5}}{8*10} + \frac{\sqrt{7}}{10*12} + \dots \dots \dots$
$\frac{1}{2}$	$\frac{1}{4 \times 6} + \frac{1}{6 \times 8} + \frac{1}{8 \times 10} + \frac{1}{10 \times 12} + \dots \dots$
☆ ☆ ☆ ☆	Find the radius and interval of convergence of the series
☆	со С
$\stackrel{\frown}{\sim}$	$\sum_{n=0}^{\infty} \frac{(-3)^n x^n}{\sqrt{n+1}}$
$\overset{\sim}{\overset{\sim}{}}$	$\sum \sqrt{n+1}$
$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	n=u
\$	
☆	
ਨ ਨ	
$\tilde{\mathbf{A}}$	

☆

$$(x^2 + y^2)x - ay^2 = 0$$

- 11) Find the radius of curvature of the curve $y = c \cosh \frac{x}{c}$.
- 12) Find asymptotes of the curve $(x^2 + y^2)x ay^2 = 0$ parallel to coordinate axes.
- 13) Find points of inflexion of the curve $x^2y 4x + 3y = 0$.
- 14) Determine the sequence is convergent or not: $\left\{1 + \frac{(-1)^n}{n}\right\}$
- 15) Prove that every convergent sequence is bounded.
- 16) Show that the series $\sum (-1)^n$ oscillates finitely.
- 17) Find a linear transformation T: $R^3 \rightarrow R^3$ such that $R_T = SP\{(1,5,0), (0,7,3)\}$
- 18) Find N_T and n(T) for the linear transformation T: $R^3 \rightarrow R^2$,

nswer the following:

[3 mark questions]

- 1) Show that the sequence {S_n} defined by $S_1 = \sqrt{2} \& S_{n+1} = \sqrt{2S_n}$ converges to 2.
- 2) Show that

$$\lim_{n \to \infty} \frac{1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n - 1}}{n} = 0$$

$$\frac{1}{4*6} + \frac{\sqrt{3}}{6*8} + \frac{\sqrt{5}}{8*10} + \frac{\sqrt{7}}{10*12} + \dots \dots \dots$$

$$\sum_{n=0}^{\infty} \frac{(-3)^n x^n}{\sqrt{n+1}}$$

☆ ☆	**************************************	A M
☆ ☆	5) Find the linear transformation T: $R^3 \rightarrow R^2$ such that T(e ₁)=(1, 1),	
☆	$T(e_1+e_2)=(1, 0), T(e_1+e_2+e_3)=(1, -1).$ Also find T (2, 5, 7), where $\{e_1, e_2\}=(1, 0), T(e_1+e_2+e_3)=(1, -1)$.	
☆	e_1+e_2 , $e_1+e_2+e_3$ } is a basis of R ³ .	
☆	6) Let T: V \rightarrow V be any linear transformation such that T ² -T+I=0 then	
☆	prove that T is non-singular.	
☆ ☆	7) Find Eigen values of the linear transformation $T:R^3 \rightarrow R^3$;	
☆	T(a, b, c) = (a+b+c, a+b+c, a+b+c).	
☆	8) Linear transformation T: P ₂ (R) \rightarrow P ₃ (R) is defined by $T(p(x)) =$	
☆		
☆	$\int_{0}^{x} p(x) dx$. B ₁ = {1, x, x ² } and B ₂ = {1, x, x ² , x ³ } are bases of P ₂ (R) and	
<u>∽</u>	$P_3(R)$ respectively. Find [T: B_1 , B_2].	
☆ ☆	9) Show that the parabola $y^2 = 4ax$ has no asymptotes.	
☆	10) Find the radius of curvature at origin for the curve	
∼	$x^3 + y^3 = 3axy$ using Newton's method.	
☆	11) Find all asymptotes of the curve	
	$4x^3 - 3xy^2 - y^3 + 2x^2 - xy - y^2 = 1.$	
<u>∱</u>	12) Find double point of the curve	
<u>}</u>	$x^3 + y^3 - 3x^2 - 3xy + 3x + 3y - 1 = 0.$	
☆	13) Find oblique asymptote of the curve	
☆	$y = \frac{x^2 + 2x - 1}{2}$	
☆	X	
☆	14) Find Eigen values of the linear transformation T: $R^2 \rightarrow R^2$ defined as	
<u></u> ☆	T(x, y) = (3y, 2x-y).	
☆ ☆	15) $A = \begin{bmatrix} 3 & 2 & 5 \\ -1 & 4 & -6 \end{bmatrix}$ is the corresponding matrix of linear	
<u>∧</u> ∧	transformation T: $R^3 \rightarrow R^2$ with standard bases of R^3 and R^2 . For the	
☆ ☆	new bases B ₁ ={(1,1,1), (1,1,0), (1,0,0)} and B ₂ ={(1,1), (1,0)} . Find	
	[T;B ₁ , B ₂].	
☆ ☆	16) Show that $\{S_n\}$ is not convergent,	
$\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	Where $S_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots \dots \dots \frac{1}{n}$	
☆ ☆	η	
☆	17) Find the radius of convergence for the series: $\sum_{n=0}^{\infty} \frac{x^n}{n+2}$	
☆ ☆		
☆		
☆ ☆		
☆		
☆		
\bigstar	· * * * * * * * * * * * * * * * * * * *	

 $\stackrel{\scriptstyle \land}{} \stackrel{\scriptstyle \land}{} \stackrel{\scriptstyle \land}{}$

 $\begin{array}{c} \swarrow & \swarrow & \checkmark & \checkmark & \checkmark & \checkmark \\ \swarrow & \checkmark & \checkmark & \checkmark & \checkmark & \checkmark \end{array}$

**** $\frac{1}{2}$ ☆ ☆ \bigstar ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ \bigstar ☆ ☆ ☆ ☆ \bigstar ☆ ☆ ☆ ☆ ☆ ☆ ☆ \bigstar ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ \bigstar ☆ ☆ ☆

☆

☆

☆

☆

☆

☆

 \bigstar

☆

☆

 \bigstar

☆

☆

☆

☆

☆ ☆

☆

☆

Answer the following:

[5 mark questions]

- 1) State and prove Cauchy's first theorem on limits.
- 2) Show that the sequence $\{S_n\}$ defined by

$$S_1 = 1 \& S_{n+1} = \frac{4+3S_n}{3+2S_n}$$
, $\forall n \in N$ is convergent and find its limit.

3) Discuss the convergence of

$$\frac{1}{2\sqrt{1}} + \frac{x^2}{3\sqrt{2}} + \frac{x^4}{4\sqrt{3}} + \frac{x^6}{5\sqrt{4}} + \dots \dots \dots$$

4) Discuss the convergence of

$$\sum \frac{1^2 * 4^2 * 7^2 * \dots \dots \dots (3n-2)^2}{3^2 * 6^2 * 9^2 * \dots \dots \dots (3n)^2}$$

- 5) Prove that L (U, V) is a vector space over F=R with respect to addition & scalar multiplication of linear transformation, where L (U, V)=the set of all linear transformations from U to V.
- 6) State and prove Rank-nullity theorem.
- 7) Find the Eigen value and Eigen vector for the linear transformation T: $R^3 \rightarrow R^3$, T(x, y, z) = (-2y-2z, -2x-3y-2z, 3x+6y+5z), \forall (x, y, z) $\in R^3$ by considering the standard basis of R^3 .
- 8) Let T: V \rightarrow V be a linear transformation and let B be any basis of V. Then T is singular if and only if det ([T; B]) =0.
- 9) Discuss double points of the curve

$$x^3 + y^3 - 3x^2 - 3xy + 3x + 3y - 1 = 0$$

- 10) Show that the radius of curvature of any point on the cardiod
 - $r = a(1 + \cos \theta)$ is $\frac{2}{3}\sqrt{2ar}$. Hence prove that $\frac{\rho^2}{r}$ is constant.
- 11) Find the position and nature of double points of the curve

$$x^4 - 2ay^3 - 3a^2y^2 - 2a^2x^2 + a^4 = 0.$$

12) Find all asymptotes to the curve

 $2x^3 - x^2y - 2xy^2 + y^3 - 4x^2 + 8xy + 4x + 1 = 0.$

13) Find asymptotes parallel to co-ordinate axis for the following curves:

(i)
$$y(x^2 - 1) = x$$

(ii) $x^2y - 3x^2 - 5xy + 6y + 2 = 0$

****BEST OF LUCK****