Shree H.N.Shukla College of Science MATHEMATICS

S.Y.B.Sc. (Sem.IV) (CBCS)

PAPER- 401

Linear Algebra, Real Analysis \& Differential Geometry QUESTION BANK

Answer the following:

[1 mark questions]

1) Define: monotonic sequence
2) State Cauchy's General Principle of Convergence.
3) Define: Subsequence of a sequence
4) Give an example of a sequence which is lower bounded.
5) If the D'Alemert's ratio test fails, then what to do?
6) Narrate the Libnitz test for convergence of an alternating series.
7) Write the condition for convergence of $1+r+r^{2}+r^{3}+\ldots$.
8) Define: Oscillatory series
9) Define: Kernel of a linear transformation
10) Define: Linear transformation
11) Let $T: U \rightarrow V$ is a linear transformation. Let θ and θ^{\prime} be zero vectors for U and V respectively, Prove that $T(\theta)=\theta^{\prime}$
12) Define: Idempotent linear transformation
13) Define: Dual of a vector space
14) If $\operatorname{dim} U=m, \operatorname{dim} V=n$ then what is the $\operatorname{dimL}(U, V)$?
15) Define: Eigen value of a linear transformation
16) Define: Diagonalization of a linear transformation
17) Write the formula to find radius of curvature of the curve given by

$$
r=f(\theta)
$$

18) Define: Multiple point of a given curve
19) Find the radius of the curvature of the curve

$$
s=4 a \sin \psi
$$

20) Define: Point of inflexion
21) Construct a subsequence of the sequence $\left\{2, \frac{1}{2}, 3, \frac{1}{3}, 4, \frac{1}{4}, \ldots\right\}$ which is decreasing.
22) Sequence $\left\{S_{n}\right\}$ is defined as $S_{1}=1,4 S_{n}+1=3 S_{n}+2$. Find its limit.

Answer the following:

1) State and prove Cauchy's first theorem on limits.
2) Show that the sequence $\left\{S_{n}\right\}$ defined by

$$
S_{1}=1 \& S_{n+1}=\frac{4+3 S_{n}}{3+2 S_{n}}, \forall n \in N \text { is convergent and find its limit. }
$$

3) Discuss the convergence of

$$
\frac{1}{2 \sqrt{1}}+\frac{x^{2}}{3 \sqrt{2}}+\frac{x^{4}}{4 \sqrt{3}}+\frac{x^{6}}{5 \sqrt{4}}+
$$

4) Discuss the convergence of

$$
\sum \frac{1^{2} * 4^{2} * 7^{2} * \ldots \ldots \ldots \ldots \ldots(3 n-2)^{2}}{3^{2} * 6^{2} * 9^{2} * \ldots \ldots \ldots .(3 n)^{2}}
$$

5) Prove that $L(U, V)$ is a vector space over $F=R$ with respect to addition \& scalar multiplication of linear transformation, where $L(U, V)=$ the set of all linear transformations from U to V .
6) State and prove Rank-nullity theorem.
7) Find the Eigen value and Eigen vector for the linear transformation $T: R^{3} \rightarrow R^{3}, T(x, y, z)=(-2 y-2 z,-2 x-3 y-2 z, 3 x+6 y+5 z), \forall(x, y, z) \in R^{3}$ by considering the standard basis of R^{3}.
8) Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ be a linear transformation and let B be any basis of V . Then T is singular if and only if $\operatorname{det}([\mathrm{T} ; \mathrm{B}])=0$.
9) Discuss double points of the curve

$$
x^{3}+y^{3}-3 x^{2}-3 x y+3 x+3 y-1=0
$$

10) Show that the radius of curvature of any point on the cardiod $r=a(1+\cos \theta)$ is $\frac{2}{3} \sqrt{2 a r}$. Hence prove that $\frac{\rho^{2}}{r}$ is constant.
11) Find the position and nature of double points of the curve

$$
x^{4}-2 a y^{3}-3 a^{2} y^{2}-2 a^{2} x^{2}+a^{4}=0 .
$$

12) Find all asymptotes to the curve

$$
2 x^{3}-x^{2} y-2 x y^{2}+y^{3}-4 x^{2}+8 x y+4 x+1=0
$$

13) Find asymptotes parallel to co-ordinate axis for the following curves: $y\left(x^{2}-1\right)=x$
(ii) $x^{2} y-3 x^{2}-5 x y+6 y+2=0$

****BEST OF LUCK****

