

Paper-302 Chemistry of Natural Products Oragano pharmaceutical Chemistry, Sem-III Saurashtra University rajkot

Vitamins are naturally occurring compounds which is essential for plant and animals for growth.

- Vitamins cannot be synthesized by them selves(Vitamin-D).
- Deficiency of Vitamins causes the disease and it can be cured by administration of that vitamin (Rich diet).
- Vitamine denoting an amine required for life.
- Unfortunately all vitamin does not contain N, so 'e' dropped out.
- All vitamins are not work alone it require Co-enzymes.
- They possess marked physiological activity and high specificity of function.
- They require in small quantities but regular catalytically nature.

Year	Discovery	Scientist
1921-31	Vitamin D2 was synthesized from ergosterol	Windows Robension, Rereink & Van Wijk
1927-28	Ascorbic acid was isolated from adrenal glands	Szent, Gyorg & Zilva
1923	Ascorbic acid was synthesized	Reichstein & Hawoth
1935	Thiamine was synthesized	Willians Andersay & Westphal
1936	Tocopherol was discovered, isolated & Synthesized	Evans, Fernholz Karrer & Smith Todd
1936	Synthesis of Riboflavin	Kahn & Karrer
1937	Vitamin-A	Kuhn
1939	Pyridoxine structure	Kuhn, Harris & Forkers
1939	Structure of Pantothenic acid & synthesis	R.J. William folks, Kuhn Reieshstein
1939	Vitamin K- discovery	Dam & Karre Doisy & Almquist Fieser, Ansbacher Ferhn holf
1942	Biotin-synthesis	Du Vignard
1949	Vit.B12-isolated	Smith parker Folikers

Pantothenic acid-Vitamin B₅

Folic acid-**B vitamin**

Vitamin-B₃ (Nicotinic acid)

Vitamin-B₆ (pyridoxine)

pyridoxamine

 β -Biotin

Vitamin D (Ergosterol)

Calciferol (Ergocalciferol)

Vitamin C (Ascorbic Acid)

Source of various vitamin and their deficiency diseases.

Name of vitamin	Source	Deficiency and Diseases
Retinol (Axeropthol) – A ₁	Fish liver oil, sea & Fresh water fish	Night blindness, xeropthalmia, Dryness of skin
3, 4, Dihydro Retinol- A ₂	Liver of fresh water fishes	Loss of appetite weakness
Thiamnie – B ₁	Milk, Eggs, Yeast, Rice, Wheat, Liver etc.	Crocking of lips, Corneal opacity cheilosis
Panthothenic Acid – B ₃	Liver, Kid green plants etc.	Chick, Dermatitis
Alfafa — K	Cabbage, Cereals, leafs	Hemorrhagic conditions
Nicotinic acid(Niacin) – B ₅	Rice, Wheat, Adrenal gland etc.	Pellagra
Pyridoxime(Adermine)– B ₆	Milk, Eggs, Yeast, Rice, Wheat, Liver, Meat etc.	Dermatitis
Cyanocobalamin – B ₁₂	Liver of all animals	megaloblast immature RBC Degradation of spinal Cord

Source of various vitamin and their deficiency diseases.

Name of vitamin	Source	Deficiency and Diseases
Para-amino benzoic acid (PABA)	grains, eggs, milk, and meat.	Retardation of growth
Folic Acid – B ₉	Liver, Kidney, Banana, Strawberry, Lemon etc.	
Ascorbic Acid – C	Citrus fruits, Green Vegetables etc.	Scurvy brightness of bones , loose teeth
Ergosterol – D	Fish liver oil	Rickets
Tocopherol – E	Liver of Horses, Cotton seed oil etc.	Fertility, nerve impulses, muscle weakness and degeneration of the retina

Physiological Activity of all Vitamins(B-complex)

Name	Co-enzyme	Type of reaction
Thiamine HCl (B ₁)	Thiamine pyrophosphate	Decarboxylation of α -keto acids
Riboflavin (B ₂)	Flavin mononucleotide(FMN) Flavin adenine dinucleotide(FAD)	Oxidation, Reduction reaction
Pantothenic acid (B ₃)	Co-enzyme A	Transference of Acetyl group
Nicotinic acid – B ₅	Diphosphopyridine nucleotide, Triphosphopyridine nucleotide	Oxidation, Reduction reaction
Pyridoxime – B ₆	Pyridoxal phosphate	Transamination of amino acids

Physiological Activity of all Vitamins(B-complex)

Name	Co-enzyme	Type of reaction
Cyanocobal amine – B ₁₂	Cobamide co-enzyme	Carbon-chain isomerization
Biotin	Biotin	CO ₂ fixation reaction
Folic acid	Tetra hydro folic acid	Various reaction involving single carbon reaction

Common properties:-

- ➢ All vitamins are complex in nature generally. (Exception:- Vit. B₅ (Nicotinic acid) PABA(p-amino benzoic acid))
- > They do not provide source of energy
- > They act as catalytic in nature
- > They can not be synthesized from amino acid
- > They are required in a very small amount
- > Every vitamin possesses a specific physiological activity
- ➤ Deficiency of any vitamin causes a ,particular disease which are cured by the administration of only that vitamin
- > They can't be synthesized in body

 $(2^{E}, 4^{E}, 6^{E}, 8^{E})$ -3,7-dimethyl-9-(2, 6, 6-trimethylcyclohex-1-en-1-yl)nona-2,4,6,8-tetraen-1-ol

 $(2^{E}, 4^{E}, 6^{E}, 8^{E})$ -3,7-dimethyl-9-(2,6,6-trimethylcyclohexa-1,3-dien-1-yl)nona-2,4,6,8-tetraen-1-ol

Vitamin A

Properties:-

- Crystalline solid, M.P. 63-64 °C
- Optically inactive
- Resistance to heat
- Sensitive to air & light
- Destroyed by U.V. light
- When isolated-yellow oil
- \succ Sea water fishes \rightarrow only vit.- A₁
- \succ Fresh water fishes \rightarrow Vit. A₁ and A₂ both
- It is insoluble in water & glycerin but soluble in absolute alcohol, CHCl₃, ether, Liq. Paraffin.

Detection and Estimation:

[A] Carr-price method:

2% solution of vit. A₁ in $CHCl_3 + 20-25$ % solution of $SbCl_3$ in $CHCl_3$

- blue colour, max intensity for 10 sec measured by lovibond tintometer \rightarrow result expressed as CLO
- It proves the presence of vit-A₁
- Then immediately disappearing

[B] U.V. Method (Martin) :-

Vitamain A₁ in Cyclohexane/ Ethyl Acetate/ Isopropyl alcohol

absorption λ: 325-428 m_µ in U.V. band

Vitamni- A₁

Structure elucidation of vitamin A₁ [Karrer & Heilborn]

- 1) From mass spectroscopy and elemental analysis the M.F. of V it. A_1 (Retinol) is $C_{20}H_{30}O$
- 2) 1°-OH group:-

Acetylation:-

$$C_{20}H_{30}O \xrightarrow{(CH_{3}CO)_{2}O} Mono acetyl derivative.$$

Oxidation:-

$$C_{20}H_{30}O \xrightarrow{[O]} Aldehyde$$

∴ 1° –OH group present

3. Double bond present:-

: 5 double bonds present

4. Presence of β -ionone ring (Ozonolysis):

Vitamin –A₁ on ozonolysis gives geronic acid per mole of Vitamin-A₁ and same compound is obtained by ozonolysis of β -ionone.

From the above reaction it is cleared that $\beta\mbox{-lonone}$ ring present in Vitamin-A $_1$

2- Isoprene unit present as a side chain.

But if Vitamin-A₁ oxidized by hot CrO₃, it furnished three moles of acetic acid.

Vitamin-A₁ Oxidized with Hot
$$CrO_3$$
 $3CH_3COOH$
So, this reaction tells us that third unit of Isoprene must be present in cycle.
Three methyl group in the form of : H_3C CH_3 CH_3

Vitamin-A₁ on heating with ethanolic HCl is converted into some compounds which on dehydrogenation with Se forms 1,6 dimethyl naphthalene.

Formation of this product can only be explained it there are two isoprene units.

Complete oxidation of Vitamin-A₁

Synthesis of perhydro Retinol

(Reduced Vit. A_1)

Conversion of Vit. A₁ to vit. A₂ CH₂OH MnO₂/ Acetone [O] CHO N - bromo succinamide O (NBS) H_2C —Br H₂C СНО Вr

2) Pommer's synthesis:-

Attenburrow Synthesis:-

44

Vitamin – E (Tocopherol) :-

Properties:

>Oily liq. : light yellowish & has characteristic taste \succ Solution in alcohol, ether, CHCl₃, and fixed oil, insoluble in water > Slowly oxidized in air, also affected by UV light & deactivated ➤Tocol is parent compound of all tocopherols.

Constitution of Vitamin E:

- 1. M.F. : C₂₉H₅₀O₂
- 2. Nature of one Oxygen atom:
 - One of the oxygen is present Hydroxy group from Tocopherol forms monoacetate, monoester and monoether.
 - > It shown by an examination of UV spectra of α -Tocopherol and its acetate so it phenolic in nature
 - Color within FeCl₃ also present phenolic group
 - \therefore -OH group is phenolic and inn aromatic ring
- 3. Nature of second Oxygen:
 - It is inactive oxygen and it is not taking part in reactivity that is cyclic ether.
- 4. Pyrolysis:-
 - \succ α Tocopherol when heated at 350 °C

Duroquinol

So position of second oxygen will be in para position.

When heated with selenium:

- From formation of the above product it was concluded that α-Tocopherol is the monomer of duroquinol but no the di-ether of duroquinol
- The possibility of α-Tocopherol as di-ether was ruled out by the fact that α-Tocopherol yields an allophanate which confirms the presence of one free hydroxy group
- Also UV spectrum of α-Tocopherol exhibited the band due to presence of free hydroxyl group so It is phenolic

5. Oxidation of α -Tocopherol :-

Comp was optically active & sat. lactone

the structure of this lactone may be written as under (derived from γ -hydroxy acid)

- Methyl ester of the hydroxy acid can't be hydrolyses
- Hydroxy acid resistance to oxidation & also could not be oxidized to a keto acid.
- All above facts that –OH group in γ hydroxy acid and it is 3° in nature.
- ➢ When α- Tocopherol acetate is oxidized with chromic acid under more vigorous condition, it yield a mixture of an acid C₁₆H₃₂O₂(II) & a ketone C₁₈H₃₆O (III)

Fernholz further showed that acid(II) contain $3-CH_3$ groups by using Kuhn-Roth method, most of naturally compound occurring isoprene units, this led Ferhhlz to following structure of the acid(II)

As per acid(II) is degraded product of the lactone(I) the γ-lactone may be written as follow:

γ**-** lactone

6. Structure of α -Tocopherol:

From the above evidences, it fellows that α -Tocopherol having a substituted benzene ring and long side chain also α -Tocopherol may be either chroman or coumarone structure

- The chroman str. Is more acceptable because chroman are formed from phenol γ, γ di-substituted allyl bromides while Coumarins are formed from phenols and un-substituted ally bromide
- > α -Tocopherol can be synthesized from a hydroquinone(phenol) and Phytyl bromide γ , γ di-substituted allyl bromide.

Synthesis:-

(i) Karrer synthesis:-

 α - tocopherol

4) Phytyl ketone Synthesis:

β -Tocopherol

- > Molecular formula: $C_{28}H_{48}O_2$
- It shows UV absorption at 297 nm.
- From the above point it is cleat that it possess one less methylene group from the Vitamin-E1.
- > On thermal decomposition β -Tocopherol furnished trimethyl quinol.

Result of thermal decomposition of Vitamin- E_1 ; it contain one more methyl group.

On oxidation with CrO₃ it gives same lactone as per Vitamin_E1

Methyl ester

Thus only differ one methyl group in benzene ring substitution hence structure of Vitamin-E2

Synthesis of Vitamin-E₂

γ -Tocopherol

- ➢ Molecular Formula: C₂₈H₄₈O₂
- UV absorption : 298 nm
- > This is isomeric with β -Tocopherol.
- > The only difference is the position of two methyl group.

$\delta\text{-}\mathsf{Tocopherol}$

- > Molecular Formula: $C_{27}H_{46}O_2$
- UV absorption : 298 nm
- > This is isomeric with β -Tocopherol.
- > The only difference is the position of two methyl group.

Vitamin K

Two vitamins: K1 and K2

Source:

K1: green plant ,K2: purified fish, meat, bacteria, soya bean oil Structure:

Deficiency:

Blood coating time increase hence known as antihaemorrhagis vitamins Hyper-vitamininosis K

> Hemolytic anemia jaundice Increase breakdown of RBC

Role:

Coagulation of blood, antihaemorrhagis vit. Precursor of thrombin fibrinogen

They activate prothrombin \rightarrow Thrombin fibrinogen \rightarrow fibrous materials

Properties:

- ➤ K1: yellow oil
- K2: yellow: crystalline solid(mp= 54)
- Sensitive to light and alkali
- Heat resistance
- ≻ λ_{max}: 243,249,260,270nm
- Exhibit band due to presence of Chromophore

Isolation:

Dry plant material Solution + claisen alkali Exetracted with pet-ether, haxane or acetone KOH + H2O + CH3OH(hydrosulphite of soda Solution Alkaline solution passed on ZnCO3 chirophyll absords dil. with H2O Exctaracted with ether cooled wash with NaHSO3 solution is introduced to the NaHSO3 **Reduced** vitamin (reducing agent) Etherrial solution of raduced vit. Reduced vit. solution is concentrated and cool to remove impurities Ag2O(MgSO4) oxidizing agent water removed Exctracted by ether Vitamin K solution ether layer 5% NaOH + NaHSO3 reduction impurities

The molecular formula of vitamin K_1 was found to be $C_{31}H_{46}O_2$. Its redox potential is very similar to that of 1,4-quinone (Karrer et al., 1939). The UV spectra of vitamin K_1 is very similar to that of 2,3-disubstituted-1,4-naphthaquinones (McKee et al., 1939). On the basis of the above, vitamin K_1 appeared to be a 1,4-naphthaquinone derivative; this is supported by the fact that vitamin K_1 is very sensitive to light and alkalies.

Catalytic hydrogenation of vitamin K_1 ($C_{31}H_{46}O_2$) gives a colourless octahydroderivative ($C_{31}H_{54}O_2$) by absorbing four molecules of hydrogen (McKee et al., 1939). It is known that three molecules of hydrogen are added when 1,4-naphthaquinone is reduced under these conditions (Scheme 73); thus the addition of a fourth mole of hydrogen to vitamin indicates the presence of an ethylenic double bond in a side chain.

Vitamin K_1 when subjected to reductive acetylation gave diacetate of dihydrovitamin K_1 (Binkley et al., 1939). This diacetate is difficult to hydrolyse. This property is characteristic of 2,3-disubstituted-1,4naphthaquinones.

Oxidation of vitamin K_1 with chromic acid gave phthalic acid. However, oxidation with chromic acid under controlled conditions gave a product, $C_{13}H_{10}O_4$, which was identified as 2-methyl-1,4-naphthaquinone-3-acetic acid (Binkly et al., 1939)

On the basis of the above findings, the presence of 1,4-naphthaquinone structure in vitamin K_1 is confirmed. It was also clear that in vitamin K_1 one ring is unsubstituted and that the other (quinoid ring) is substituted in positions 2 and 3. These conclusions find support in the fact that the UV spectrum of vitamin K_1 on comparison to the UV spectra of various substituted 1,4-naphthaquinone was found to be very closely similar only to 2,3-dialkyl derivatives of 1,4-naphthaquinones (Ewing et al., 1939).

It has already been stated that vitamin K_1 on subjecting to reductive acetylation gives diacetate of dihyrovitamin K_1 . Ozonolysis of this diacetate gave a compound, $C_{18}H_{36}O$, which was found to be identical with the ketone produced by the oxidation of phytol (McKee et al., 1939)

On the basis of the evidence obtained, vitamin K_1 is 2-methyl-3-phytyl-1,4-naphthaquinone.

Synthesis: (i) From Naphthalene

Almquist Synthesis:

