Shree H. N. Shukla College of Science M.Sc.(Mathematics) Sem-1
 Question Bank

MATH.CMT-1004 : Theory of Ordinary Differential Equations

1. Solve the IVP : $y_{1}^{\prime}=-y_{1}, y_{2}^{\prime}=y_{1}+y_{2},\binom{y_{1}(0)}{y_{2}(0)}=\binom{2}{1}$.
2. Let $p, q: I \rightarrow \mathbb{R}$ be a continuous, $t_{0} \in I, y_{0} \in \mathbb{R}$. Then prove that the IVP: $y^{\prime}+p(t) y=$ $q(t), y\left(t_{0}\right)=y_{0}$ has a unique solution $u(t)=y_{0} e^{-P(t)}+e^{-P(t)} \int_{t_{0}}^{t} e^{p(r)} q(r) d r$, defined on the whole of I, where $P: I \rightarrow \mathbb{R}$ is defined by $P(t)=\int_{t_{0}}^{t} p(r) d r, \forall t \in I$.
3. Show that $\phi(t)=\left(\begin{array}{cc}e^{t} & t e^{t} \\ 0 & e^{t}\end{array}\right)$ is a fundamental matrix of $y^{\prime}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) y$ on \mathbb{R}.
4. State and prove Variation of constant formulae for scalar first order non-homogeneous differential equation.
5. State and prove Variation of constant formulae for scalar second order non-homogeneous differential equation.
6. Find general solution of $y^{(4)}+16 y=0$.
7. Compute the first five terms of the series expansion at zero of the solution of the Legendre's equation $\left(1-t^{2}\right) y^{\prime \prime}-2 t y^{\prime}+\alpha(\alpha+1) y=0$, where α is a constant.
8. Find the solution of the IVP : $y^{\prime}=\left(\begin{array}{cc}3 & 3 \\ -5 & 3\end{array}\right) y+\binom{e^{-t}}{0}, y(0)=\binom{0}{1}$.
9. Find the solution of the IVP : $y^{\prime}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) y+\binom{e^{-t}}{0}, y(0)=\binom{-1}{1}$ on $(-\infty, \infty)$.
10. Prove that the eigen vector corresponding to the distinct eigen values of a $n \times n$ matrix A are linearly independent in \mathbb{K}^{n}.
11. Find fundamental matrix of $y^{\prime}=A(t) y$ on $(-\infty, \infty)$, where $A(t)=\left(\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right)$ on $(-\infty, \infty)$ and find $\exp (t A)$.
12. Let $A(t)$ be a continuous $n \times n$ matrix on $I, \phi(t)$ be a fundamental matrix of $y^{\prime}=A(t) y$ on I and C be a $n \times n$ non-singular constant matrix. Then prove that $\phi(t) \cdot C$ is a fundamental matrix of $y^{\prime}=A(t) y$ on I.
13. Let $A(t)$ be a continuous $n \times n$ matrix on I and $\phi(t), \psi(t)$ be fundamental matrices of $y^{\prime}=A(t) y$ on I. Then prove that there exists a non-singular $n \times n$ matrix C such that $\psi(t)=\phi(t) \cdot C, \forall t \in I$.
14. Let A be a constant 2×2 complex matrix then prove that there exists a constant 2×2 non-singular matrix B such that $B^{-1} A B$ has the following forms:

$$
[a]\left[\begin{array}{ll}
\lambda & 0 \\
0 & \mu
\end{array}\right], \lambda \neq \mu[b]\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right] \text { and }[c]\left[\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right]
$$

15. Let A be a constant 2×2 real matrix with eigen values $\alpha+i \beta$, where $\alpha, \beta \in \mathbb{R}$. Then prove that there exists a constant 2×2 non-singular real matrix T such that $T^{-1} A T=\left(\begin{array}{cc}\alpha & \beta \\ -\beta & \alpha\end{array}\right)$.
16. Prove that $a_{0}(t), a_{1}(t), a_{2}(t)$ which are analytic at t_{0} and t_{0} is a regular singular point of $a_{0}(t) y^{\prime \prime}+$ $a_{1}(t) y^{\prime}+a_{2}(t) y=0$ then given equation can be written in the form $\left(t-t_{0}\right)^{2} y^{\prime \prime}+\left(t-t_{0}\right) \alpha(t) y^{\prime}+$ $\beta(t) y=0$ for some functions $\alpha(t)$ and $\beta(t)$ which are analytic at t_{0} and not all $\alpha\left(t_{0}\right), \beta\left(t_{0}\right)$ and $\beta^{\prime}\left(t_{0}\right)$ are zero.
17. Prove that if $\alpha=2 m$, where $m \geqslant 0$ is an integer then a second linearly independent solution of the legendre equation $\left(1-t^{2}\right) y^{\prime \prime}-2 t y^{\prime}+\alpha(\alpha+1) y=0$ valid in a nbhd of 0 can be expressed in the form of power series converges for $|t|<1$.
18. Show that $t y^{\prime \prime}+y^{\prime}+y=0$ has only one solution of the form $|t|^{z} \sum_{k=0}^{\infty} c_{k} t^{k}, c_{0}=1$ is an excluded nbhd of 0 .
19. State and prove Gronwall's inequality.
20. Locate and classify all singular points of $(t-1)^{3} y^{\prime \prime}+2(t-1)^{2} y^{\prime}-7 t y=0$.
21. Solve $y^{\prime \prime}-3 y^{\prime}+2 y=4 e^{2 t}$ with $y(0)=-3, y^{\prime}(0)=5$ using Laplace Transform.
22. Find $L^{-1}\left(\frac{n!}{(z-c)^{n+1}}\right)$
23. Solve $y^{\prime \prime}+25 y=10 \cos 5 t, y(0)=2, y^{\prime}(0)=0$ using Laplace Transform.
24. Find $L^{-1}\left(\frac{3 z+7}{z^{2}-2 z-3}\right)$
25. State and prove Laplace Transform of Integral.
26. Find $L\left(t^{n} e^{c t}\right)$

© BEST OF LUCK ©

