SHREE H. N. SHUKLA COLLEGE OF SCIENCE M.Sc.(Mathematics) Sem-1 Question Bank

MATH.CMT-1004 : Theory of Ordinary Differential Equations

1. Solve the IVP :
$$y'_1 = -y_1$$
, $y'_2 = y_1 + y_2$, $\begin{pmatrix} y_1(0) \\ y_2(0) \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

2. Let $p, q : I \to \mathbb{R}$ be a continuous, $t_0 \in I$, $y_0 \in \mathbb{R}$. Then prove that the IVP: y' + p(t)y = q(t), $y(t_0) = y_0$ has a unique solution $u(t) = y_0 e^{-P(t)} + e^{-P(t)} \int_{t_0}^t e^{p(r)}q(r)dr$, defined on the whole of *I*, where $P : I \to \mathbb{R}$ is defined by $P(t) = \int_{t_0}^t p(r)dr$, $\forall t \in I$.

3. Show that
$$\phi(t) = \begin{pmatrix} e^t & te^t \\ 0 & e^t \end{pmatrix}$$
 is a fundamental matrix of $y' = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} y$ on \mathbb{R} .

- 4. State and prove Variation of constant formulae for scalar first order non-homogeneous differential equation.
- 5. State and prove Variation of constant formulae for scalar second order non-homogeneous differential equation.
- 6. Find general solution of $y^{(4)} + 16y = 0$.
- 7. Compute the first five terms of the series expansion at zero of the solution of the Legendre's equation $(1 t^2)y'' 2ty' + \alpha(\alpha + 1)y = 0$, where α is a constant.

- 8. Find the solution of the IVP : $y' = \begin{pmatrix} 3 & 3 \\ -5 & 3 \end{pmatrix} y + \begin{pmatrix} e^{-t} \\ 0 \end{pmatrix}, \quad y(0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$
- 9. Find the solution of the IVP : $y' = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} y + \begin{pmatrix} e^{-t} \\ 0 \end{pmatrix}, y(0) = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \text{ on } (-\infty, \infty).$
- 10. Prove that the eigen vector corresponding to the distinct eigen values of a $n \times n$ matrix A are linearly independent in \mathbb{K}^n .
- 11. Find fundamental matrix of y' = A(t)y on $(-\infty, \infty)$, where $A(t) = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$ on $(-\infty, \infty)$ and find exp(tA).
- 12. Let A(t) be a continuous $n \times n$ matrix on I, $\phi(t)$ be a fundamental matrix of y' = A(t)y on I and C be a $n \times n$ non-singular constant matrix. Then prove that $\phi(t) \cdot C$ is a fundamental matrix of y' = A(t)y on I.
- 13. Let A(t) be a continuous $n \times n$ matrix on I and $\phi(t), \psi(t)$ be fundamental matrices of y' = A(t)yon I. Then prove that there exists a non-singular $n \times n$ matrix C such that $\psi(t) = \phi(t) \cdot C, \forall t \in I$.
- 14. Let *A* be a constant 2×2 complex matrix then prove that there exists a constant 2×2 non-singular matrix *B* such that $B^{-1}AB$ has the following forms:

$$\begin{bmatrix} a \end{bmatrix} \begin{bmatrix} \lambda & 0 \\ 0 & \mu \end{bmatrix}, \ \lambda \neq \mu \begin{bmatrix} b \end{bmatrix} \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} \text{ and } \begin{bmatrix} c \end{bmatrix} \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}$$

- 15. Let *A* be a constant 2×2 real matrix with eigen values $\alpha + i\beta$, where $\alpha, \beta \in \mathbb{R}$. Then prove that there exists a constant 2×2 non-singular real matrix *T* such that $T^{-1}AT = \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}$.
- 16. Prove that $a_0(t)$, $a_1(t)$, $a_2(t)$ which are analytic at t_0 and t_0 is a regular singular point of $a_0(t)y'' + a_1(t)y' + a_2(t)y = 0$ then given equation can be written in the form $(t t_0)^2 y'' + (t t_0)\alpha(t)y' + \beta(t)y = 0$ for some functions $\alpha(t)$ and $\beta(t)$ which are analytic at t_0 and not all $\alpha(t_0)$, $\beta(t_0)$ and $\beta'(t_0)$ are zero.

- 17. Prove that if $\alpha = 2m$, where $m \ge 0$ is an integer then a second linearly independent solution of the legendre equation $(1 t^2)y'' 2ty' + \alpha(\alpha + 1)y = 0$ valid in a nbhd of 0 can be expressed in the form of power series converges for |t| < 1.
- 18. Show that ty'' + y' + y = 0 has only one solution of the form $|t|^z \sum_{k=0}^{\infty} c_k t^k$, $c_0 = 1$ is an excluded nbhd of 0.
- 19. State and prove Gronwall's inequality.
- 20. Locate and classify all singular points of $(t-1)^3 y'' + 2(t-1)^2 y' 7ty = 0$.
- 21. Solve $y'' 3y' + 2y = 4e^{2t}$ with y(0) = -3, y'(0) = 5 using Laplace Transform.

22. Find $L^{-1}\left(\frac{n!}{(z-c)^{n+1}}\right)$

23. Solve $y'' + 25y = 10\cos 5t$, y(0) = 2, y'(0) = 0 using Laplace Transform.

24. Find $L^{-1}\left(\frac{3z+7}{z^2-2z-3}\right)$

- 25. State and prove Laplace Transform of Integral.
- 26. Find $L(t^n e^{ct})$

BEST OF LUCK