

sour, 3

MASTER OF SCIENCE MATHEMATICS (W.E.F.-2016) MSC MATHS (2016) Semester - 3 Examination

October - 2024

DIFFERENTIAL GEOMETRY

Faculty Code: 003

Subject Code: 003-1163005

Time: 2.30Hours]

1

[Total Marks: 70

Answer the following: (Any seven out of ten, each of 02 marks) Q.1

14

1. Let $\alpha: R \to R^3$ defined by $\alpha(t) = (t, g(t), 0)$, where $g: R \to R$ be a differentiable function. Show

that, or is a regular curve and find the equation of tangent line.

2. Reparametrize the curve $\propto (u) = (a \cos u, a \sin u, cu)$, where $a, b, c \in R$ and $0 \le u < \pi$ by $t = tan(\frac{u}{2})$.

$$t = tan\left(\frac{u}{2}\right).$$

3

 $\propto (t) = \left(t, \frac{t^2}{2}, 0\right)$ 3. Find the arc length of a curve

4

- 4. What is curvature of a unit speed curve? Prove that, the curvature of a circle with radius r is $\frac{1}{r}$.
- 5. What does the following mean? 5

- - Osculating plane a. Normal plane b.
 - Rectifying plane

6. With a relevant example, define the following: 6 Open set and Simple surface

7

7. Let $X: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $X(u^1, u^2) = ((u^1)^2, (u^2)^2, u^1u^2)$ is simple? Describe your response in

2

2

8. Prove that,
$$\kappa^2 = \kappa_n^2 + \kappa_g^2$$
, where notations are being usual.

- 9 9. Let $\alpha(s)$ be a C^k curve in XY - Plane. Prove that, for non-zero curvature ($\kappa(s) \neq 0$) the values of torsion is must be zero $(\tau = 0)$.

10. Consider the upper hemisphere
$$x(r,s) = (r,s,\sqrt{1-r^2-s^2})$$
 and $y(t) = (sint,0,cost)$ then find κ_g and κ_n , where notations are being usual.

Answer the following: (Any two out of three, each of 07 marks) Q.2

Show that, the right circular helix is a regular curve. Also find the equation of tangent line. 1

Let $a:(a,b)\to R^3$ be a regular curve and $g:(c,d)\to(a,b)$ be a reparametrization in which set

$$\beta = \alpha \circ g$$
. Show that, if $t_0 = g(r_0)$, the tangent vector field T of α at t_0 and the tangent vector

Q.4

Q.5

field
$$S$$
 of β at r_0 satisfy $S = \pm T$.

3 Show that, the arc length of the curve $\propto (t) = (2a(\sin^{-1}t + t\sqrt{1-t^2}), 2at^2, 4at)$ between the points $t = t_1$ to $t = t_2$ is $4a\sqrt{2}(t_2 - t_1)$

1) Demonstrate that a necessary and sufficient condition for a curve to be straight line is that the curvature $\kappa = 0$ at all the points of the curve.

2) Let
$$\propto$$
 (s) be a unit speed curve. Show that, $\forall s$ and $\kappa(s) \neq 0$, the set $\{T(s), N(s), B(s)\}$ is an orthonormal set.

Answer the following: (1 & 2 Both are compulsory, each of 07 marks)

14

(1) State Frenet - Serret appartus of the unit speed curve. Show that the curve

 $\propto (t) = \left(r \cos\left(\frac{s}{r}\right), r \sin\left(\frac{s}{r}\right), 0\right)$ is a unit speed curve and obtain the Frenet – Serret appartus

2

for the unit speed curve $\propto (t)$. $(2) \quad \text{If} \quad E = \{e_1, e_2, ..., e_n\} \text{ is an orthonormal set of } n - \text{dimensional inner product space } V \text{ then } N - \text{dimensional inner product space } V \text{ then } N - \text{dimensional inner product space } V \text{ then } N - \text{dimensional inner product space } V \text{ then } N - \text{dimensional inner product space } V \text{ then } N - \text{dimensional inner product space } V \text{ then } N - \text{dimensional inner product space } V \text{ then } N - \text{dimensional inner product space } V \text{ then } N - \text{dimensional inner product space } V \text{ then } N - \text{dimensional inner product space } V \text{ then } N - \text{dimensional inner product } V \text{ then } N - \text{dimensional inner product } V \text{ then } N - \text{dimensional inner product } V \text{ then } N - \text{dimensional inner product } V \text{ then } V - \text{dimensional inner product } V \text{ th$

show that, a. E is basis for V and b. If $v \in V$, $v = \sum_{i=1}^{n} \langle e_i, v \rangle e_i$.

Q.4 Answer the following:

14

1. State and prove, the Frenet - Serret theorem. 1

2

2. Prove that, the unit speed curve $\alpha(s)$ with $\kappa(s) \neq 0$ is a helix is and only if there is a

constant c such that $\tau = c\kappa$.

Answer the following: (Any two out of four, each of 07 marks) Q.5

14

1

Let $x: u \to R^3$ be a simple surface. Show that,

$$\mathbf{a.} \quad \mathbf{x}_{ij} = L_{ij} \cdot \mathbf{n} + \sum \mathbf{y}_{ij}^{k} \mathbf{x}_{k}$$

b. For any unit speed curve $\gamma(s) = x(\gamma^1(s), \gamma^2(s))$ the values of

$$\kappa_{\mathbf{n}} = \sum_{i,j} L_{ij} (\gamma^i)' (\gamma^j)' \text{ and } \kappa_g \cdot S = \sum_k \left[(\gamma^k)'' + \sum_{i,j} \gamma_{ij}^k (\gamma^i)' (\gamma^j)' \right] x_k$$

2

2. Let g be a matrix associated with proper coordinate patch $x: u \to R^3$ defined by

 $g_{ij} = \langle x_i, x_j \rangle$, $1 \le i, j \le 2$ and elements of inverse of \mathcal{B} , denoted by \mathcal{B}^{ij} . Show that,

a.
$$|g| = |x_1 \times x_2|^2$$

b.
$$g^{11} = \frac{g_{22}}{|g|}, g^{12} = g^{21} = -\frac{g_{12}}{|g|} \text{ and }$$

c.
$$g^{22} = \frac{g_{11}}{|g|} \sum_{k=1}^{2} g_{ik} g^{kj} = \delta_i^j$$

a. If $S^{11} = \frac{g_{22}}{|g|}$, $g^{12} = g^{21} = -\frac{g_{12}}{|g|}$ and C. $g^{22} = \frac{g_{21}}{|g|}$, $\sum_{k=1}^{2} g_{ik} g^{kj} = \delta_i^j$ C. $S^{11} = \frac{g_{22}}{|g|}$, $\sum_{k=1}^{2} g_{ik} g^{kj} = \delta_i^j$ C. $S^{12} = \frac{g_{21}}{|g|}$, $\sum_{k=1}^{2} g_{ik} g^{kj} = \delta_i^j$ C. $S^{13} = \frac{g_{22}}{|g|}$ and C. C. $S^{14} = \frac{g_{22}}{|g|}$ is a simple surface and $f: v \to u$ is a co-ordinate transformation then show

that, $Y = X \circ f: v \to R^3$ is also a simple surface.

4

3

4. State first fundamental form. If $u = \{(u^1, u^2): (u^1)^2 + (u^2)^2 < 1\}$ and coordinate patch is $x(u^1, u^2) = (u^1, u^2, \sqrt{1 - (u^1)^2 - (u^2)^2})$ then find the first fundamental forms and |g| of x.