

Shree H.N.Shukla College of Science MATHEMATICS

T.Y.B.Sc. (Sem.VI) (CBCS)

PAPER- 601
Graph Theory \& Complex Analysis-II QUESTION BANK

\checkmark Answer the following:

[1 mark questions]

1) Write a degree of a pendent vertex.
2) Define: Simple Graph
3) Find the Nullity of connected graph with 4 vertices and 8 edges.
4) Write the number of internal vertices in a binary tree with 13 vertices.
5) Define: Regular Graph
6) How many edges are there in K_{5} graph?
7) What is the degree of an isolated vertex in graph?
8) Write the number of vertices in a connected graph with 2 faces and 6 edges.
9) Write the edge connectivity of a tree.
10) How many edges are there in a tree with 5 vertices?
11) Write the degree of a pendant vertex.
12) Write the maximum number edges in a simple graph with 4 vertices and 2 components.
13) How many vertices are there in K_{5} graph?
14) Write the formula for total number of edges in a complete graph with n vertices.
15) What is the number of pendant vertices in any binary tree with n vertices?
16) Define: Separable graph
17) Define: Self dual graph
18) Define: Acyclic Digraph
19) What is the chromatic number of a complete graph with 5 vertices?
20) Regions of a connected planar graph with 4 vertices and 6 edges are
\qquad -
21) Define: Power series
22) Find radius of convergence of series $\sum \frac{z^{n}}{2^{n-1}}$.
23) Define: Complex Series
24) State Maclaurin series of an analytic function $f(z)$.
25) Define: Residue of $f(z)$ at pole Z_{0}.
26) Find $\operatorname{Res}\left(\frac{\cos z}{z}, 0\right)$
27) Write an isolated singular point for $f(z)=\frac{1}{z-2}$.
28) Define: Singular point
29) Define: Linear mapping
30) Find fixed point of the bilinear transformation $w=\frac{3 z-4}{z-1}$.
31) Define: Mobius mapping
32) Find the critical point of $w=\frac{1}{z-1}$.
33) Define: Circuit vector
34) Every edge in Incidence Matrix of exactly \qquad vertices.
35) Define: Chromatic number of graph
36) Find singular points of $\frac{\cos \pi z}{(z-1)(z-2)}$.
37) Define: Bilinear mapping
38) Write expansion of coshz in maclaurian series.
39) Find radius of convergence for the series $\sum n!z^{n}$
40) Write the formula for finding the residue of $f(z)$ at $m^{\text {th }}$ order pole.

\checkmark Answer the following:

1) Prove that the number of vertices n in a binary tree is always odd.
2) Define: (i) Circuit (ii) Minimally connected graph
3) Define: Path Matrix
4) Define Cut-set vector with example.
5) Expand $\frac{1}{1+z}$ in Maclaurin's series.
6) Discuss about the convergence of series

$$
\sum_{\mathrm{n}=1}^{\infty} \frac{(\mathrm{z}+2)^{\mathrm{n}-1}}{4^{\mathrm{n}}(\mathrm{n}+1)^{3}}
$$

7) Find the residue of $f(z)=\frac{z+2}{(z-1)(z-2)}$ at Simple pole.
8) Find $\operatorname{Res}(f(z), 1)$, where

$$
f(z)=\frac{e^{2 z}}{(z-1)^{2}}
$$

9) Show that $x+y=2$ transform into the parabola $u^{2}=-8(v-2)$ under the transformation $\mathrm{W}=\mathrm{Z}^{2}$.
10) Find critical point of $w=\frac{z-1}{z+1}$.
11) Define: (i) Path (ii) Hamiltonian circuit
12) Derive formula for finding residue of $f(z)$ at simple pole Z_{0}.
13) Show that $W=\frac{a z+b}{c z+}$ is conformal mapping.
14) Find radius of convergence of series $\sum_{n=1}^{\infty} \frac{z^{n}}{3^{n}-1}$
15) Define: (i) Diagraph (ii) Spanning tree
16) State and prove second theorem of Graph theory.
17) In a simple connected planner graph with f regions, n vertices and e edges ($e>2$). Prove that $\mathrm{e} \leq 3 n-6$.
18) Expand sinz in Taylor's series for $z_{0}=0$.
19) Discuss the fixed point of bilinear transformation.
20) Define: (i) Null graph (ii) Pendant vertex

\square Answer the following:

1) Prove that a graph is a tree iff it is minimally connected.
2) State and prove first theorem of Graph theory.
3) A connected simple planner graph G with n-vertices, e-edges and f region then prove that (i) $e \geq \frac{3}{2} f$

$$
\text { (ii) } e \leq 3 n-6
$$

4) Prove that Complete graph K_{4} is Self dual graph.
5) Expand $\frac{1}{z\left(z^{2}-3 z+2\right)}$ in Laurent's series for (i) $1<|z|<2$ (ii) $0<|z|<1$
6) Expand e^{z} in term of ($z-1$).
7) Obtain the formula for finding the residue of $f(z)$ at $m^{\text {th }}$ order pole.
8) Find the value of integral $\int_{C} \frac{d z}{Z^{3}(Z+4)}$ where $C:|Z|=2$
9) Prove that the transformation $w=2 z+z^{2}$ maps the unit circle $|z|=1$ of $z-$ plane into cardiod to w-plane.
10) Show that the composition of bilinear maps is again a bilinear.
11) Prove that every tree is two or more vertices is 2 -chromatic.
12) Find a Mobius mapping which maps three point $1,2,-1$ in z-plane into 2, 1, -2 in w-plane.
13) Prove that

$$
\int_{0}^{2 \pi} \frac{d \theta}{2+\cos \theta}=\frac{2 \pi}{\sqrt{3}}
$$

\boxtimes Answer the following:

1) Prove that a Simple graph with n-vertices and k-components can have at most $\frac{(n-k)(n-k+1)}{2}$ edges.
2) Explain Konigsberg Bridge Problem.
3) Prove that the complete graph of 5-vertices is non-planner graph.
4) Define: Incidence Matrix and its properties
5) State and prove Taylor's infinite series of an analytic function $f(z)$.
6) Prove that

$$
\cosh \left(\mathrm{z}+\mathrm{z}^{-1}\right)=\mathrm{a}_{0}+\sum_{\mathrm{n}=1}^{\infty} \mathrm{a}_{\mathrm{n}}\left(\mathrm{z}^{\mathrm{n}}+\mathrm{z}^{-\mathrm{n}}\right)
$$

Where,

$$
a_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \cosh (2 \cos \theta) \cos n \theta d \theta
$$

7) Prove that

$$
\int_{0}^{\infty} \frac{d x}{\left(x^{2}+a^{2}\right)^{n+1}}=\frac{\pi(2 n)!}{(n!)^{2}(2 a)^{2 n+1}}, \text { where } a>0
$$

8) State and prove Cauchy residue theorem.
9) Discuss the bilinear mapping $W=Z^{2}$.
10) Discuss the mapping of $W=e^{2}$ in Cartesian system.
11) Define: Adjacency Matrix and state its properties
12) Prove that a connected planner graph with n-vertices and e-edges has e-n +2 regions.
13) State and prove Euler theorem.
14) Using residue theorem prove that

$$
\int_{-\infty}^{\infty} \frac{\mathrm{dx}}{\left(1+\mathrm{x}^{2}\right)^{3}}=\frac{3 \pi}{8}
$$

****BEST OF LUCK****

