SHREE H.N.SHUKLA INSTITUTE OF PHARMACEUTICAL EDUCATION AND RESEARCH

B.PHARM
(SEMESTER-I)

SUBJECT NAME: REMEDIAL MATHEMATICS
 SUBJECT CODE: BP107TT
 UNIT 1

CHAPTER-2: LOGARITHMS

Prepared by: Ms. Renuka Dabhi

Topic

Logarithms

\$Definition of logarithm
Properties of logarithm

\#Common logarithms

\#Characteristic and Mantissa

\# Worked examples
\$Application of logarithm to solve pharmaceutical problems

Definition of logarithm

$>$ If x is a real number then its logarithm to the base a is defined as the exponent which when raised to the base of the number x is obtained.

$$
\begin{aligned}
& \log _{a} x=y \\
& x=a^{y} \quad(a>0, a \neq 1, x>0)
\end{aligned}
$$

$>a^{y}=x$ is called exponential form and $\log _{a} x=y$ is called logarithmic form.
$>$ For example;

Sr. No.	Exponential form	Logarithmic form
1	$3^{4}=81$	$\log _{3} 81=4$
2	$2^{5}=32$	$\log _{2} 32=5$
3	$3^{-2}=\frac{1}{9}$	$\log _{3}\left(\frac{1}{9}\right)=-2$
4	$2^{1}=2$	$\log _{2} 2=1$

Properties of logarithm

Negative numbers and zero have no logarithms.
$>$ The logarithm of 1 to any base is zero. $\left(\log _{a} 1=0\right)$
$>$ The logarithm of any number $(\neq 1)$ to the same base is unity.

Laws of logarithm

1) $\log _{a}(m n)=\log _{a} m+\log _{a} n$
2) $\log _{a}\left(\frac{m}{n}\right)=\log _{a} m+\log _{a} n$
3) $\log _{a}\left(m^{n}\right)=n \log _{a} m$
4) $\log _{a}\left(a^{n}\right)=n \log _{a} a=n$

Common logarithms

The logarithms calculated to base 10 are called common logarithms.
$>$ It is denoted by $\log _{10} a$

Example-1:

Write the following in logarithmic form.

1) $8^{3}=512 \Rightarrow \log _{8} 512=3$
2) $32 \frac{3}{5}=8 \Rightarrow \log _{32} 8=\frac{3}{5}$
3) $10^{-2}=0.01 \Rightarrow \log _{10} 0.01=-2$
4) $3^{0}=1 \Rightarrow \log _{3} 1=0$
5) $4^{-3}=\frac{1}{64} \Rightarrow \log _{4}\left(\frac{1}{64}\right)=-3$

Example-2:

Express the following in exponential form.

1) $\log _{9}(6561)=4 \Rightarrow 9^{4}=6561$
2) $\log _{\frac{1}{16}}\left(\frac{1}{8}\right)=\frac{3}{4} \Rightarrow\left(\frac{1}{16}\right)^{3 / 4}=\frac{1}{8}$
3) $\log _{5}\left(\frac{1}{25}\right)=-2 \Rightarrow 5^{-2}=\frac{1}{25}$
4) $\log _{21} 1=0 \Rightarrow 21^{0}=1$

Example-3:

Simplify the following terms;

1) $\log 15-\log 5-\log 2$
2) $\frac{1}{2} \log 49-3 \log 2+\frac{1}{3} \log 27$
3) $\log 3 x+3 \log x$
4) $4 \log 5+2 \log 4$

Solution:

1) $\log 15-\log 5-\log 2=\log 15-(\log 5+\log 2)$

$$
\begin{aligned}
& =\log 15-\log (5 \times 2) \\
& =\log 15-\log 10 \\
& =\log \left(\frac{15}{10}\right) \\
& =\log \left(\frac{3}{2}\right)
\end{aligned}
$$

2) $\frac{1}{2} \log 49-3 \log 2+\frac{1}{3} \log 27=\log (49)^{1 / 2}-\log 2^{3}+\log (27)^{1 / 3}$

$$
\begin{aligned}
& =\log \left(7^{2}\right)^{1 / 2}-\log 8+\log \left(3^{3}\right)^{1 / 3} \\
& =\log 7-\log 8+\log 3 \\
& =(\log 7+\log 3)-\log 8 \\
& =\log (7 \times 3)-\log 8 \\
& =\log \left(\frac{21}{8}\right)
\end{aligned}
$$

3) $\log 3 x+3 \log x=\log 3 x+\log x^{3}$

$$
\begin{aligned}
& =\log \left(3 x \cdot x^{3}\right) \\
& =\log \left(3 x^{4}\right)
\end{aligned}
$$

4) $4 \log 5+2 \log 4=\log 5^{4}+\log 4^{2}$

$$
\begin{aligned}
& =\log 625+\log 16 \\
& =\log (625 \times 16) \\
& =\log (10000) \\
& =\log 10^{4} \\
& =4 \log 10 \\
& =4
\end{aligned}
$$

Example-4:

Find the values of x in each of the following:

1) $\log _{2} x=4$
2) $\log _{x} 64=6$
3) $\log _{10} x=-2$

Solution:

1) $\log _{2} x=4 \Rightarrow 2^{4}=x \Rightarrow x=2 \times 2 \times 2 \times 2=16$
2) $\log _{x} 64=6 \Rightarrow x^{6}=64 \Rightarrow x^{6}=2 \times 2 \times 2 \times 2 \times 2 \times 2=x^{6}=2^{6} \Rightarrow x=2$
3) $\log _{10} x=-2 \Rightarrow x=10^{-2} \Rightarrow x=\frac{1}{10^{2}} \Rightarrow x=0.01$

Example-5:

Prove that

1) $\log \frac{11}{5}+\log \frac{14}{3}-\log \frac{22}{15}=\log 7$
2) $3 \log 4+2 \log 5-\frac{1}{3} \log 64-\frac{1}{2} \log 16=2$

Solution:

1) LHS $=\left(\log \frac{11}{5}+\log \frac{14}{3}\right)-\log \frac{22}{15}$
$=\log \left(\frac{11}{5} \times \frac{14}{3}\right)-\log \frac{22}{15}$
$=\log \left[\frac{\frac{11}{5} \times \frac{14}{3}}{\frac{22}{15}}\right]$

$$
\begin{aligned}
& =\log \left(\frac{15 \times 11 \times 14}{5 \times 3 \times 22}\right) \\
& =\log 7=R H S
\end{aligned}
$$

$\therefore \log \frac{11}{5}+\log \frac{14}{3}-\log \frac{22}{15}=\log 7$
2) $L H S=3 \log 4+2 \log 5-\frac{1}{3} \log 64-\frac{1}{2} \log 16$

$$
\begin{aligned}
& =\log 4^{3}+\log 5^{2}-\log (64)^{1 / 3}-\log (16)^{1 / 2} \\
& =\log 64+\log 25-\log \left(4^{3}\right)^{1 / 3}-\log \left(4^{2}\right)^{1 / 2} \\
& =\log (64 \times 25)-\log 4-\log 4 \\
& =\log (64 \times 25)-2 \log 4 \\
& =\log (64 \times 25)-\log 4^{2} \\
& =\log (64 \times 25)-\log 16 \\
& =\log \left(\frac{64 \times 25}{16}\right) \\
& =\log 100 \\
& =\log 10^{2} \\
& =2 \log 10 \\
& =2=R H S
\end{aligned}
$$

Some standard forms of Decimal and Exponential

Sr. No.	Log form	Exponential form
1	$\log _{10} 1=0$	$10^{0}=1$
2	$\log _{10} 10=1$	$10^{1}=10$
3	$\log _{10} 100=2$	$10^{2}=100$
4	$\log _{10} 0.1=-1$	$10^{-1}=\frac{1}{10}=0.1$
5	$\log _{10} 0.01=-2$	$10^{-2}=\frac{1}{100}=0.01$

Characteristic and Mantissa of a logarithm

\Rightarrow Consider n be a positive real number and let $n=m \times 10^{p}$ be the standard form, where p is an integer and m is a real number between 1 and 10 .
i.e. $1 \leq m<10$
$>$ We have,

$$
\begin{align*}
& n=m \times 10^{p} \\
& \therefore \log n=\log \left(m \times 10^{p}\right)=\log m+\log 10^{p}=\log m+p \log 10 \\
& \therefore \log n=\log m+p \quad \ldots \ldots \ldots \ldots(1) \tag{1}
\end{align*}
$$

$>$ Since p is an integer and $1 \leq m<10$
Now,

$$
1 \leq m<10 \Rightarrow \log 1 \leq \log m<\log 10 \Rightarrow 0 \leq \log m<1
$$

$>$ Thus, the logarithm of positive real number n consists of two parts:
i) The integral part (p), which is an integer.
ii) The decimal part $(\log m)$, which lies between 0 and 1 .
> Therefore, the integral part is known as the Characteristic and the decimal part is known as Mantissa.
$>$ So, from the equation (1), we have

$$
\begin{gathered}
\log n=p+\log m=\text { integral part }+ \text { decimal part } \\
=\text { Characteristic }+ \text { Mantissa }
\end{gathered}
$$

Method to find Characteristic

Method-1: To find the characteristic of a negative number ($n<1$)
Step-1: Let n be the given number
Step-2: Write the number in the standard form $\left(n=m \times 10^{p}\right)$ of decimal
Step-3: The index of 10 in the standard form, that means p is the Characteristic of given number
Method-2: To find the characteristic of a positive number ($n \geq 1$)
Step-1: Let n be the given number
Step-2: Write the number in the standard form $\left(n=m \times 10^{p}\right)$ of decimal
Step-3: If the number is graeater than or equal to 1 , then obtain the Characteristic by using the formula
Characteristic $=($ number of digit to the left of the decimal point $)-1$

Example-6:

Obtain the Characteristic of the logarithms of each of the following numbers by using their standard forms.
a) 2123.50
b) 134.02
c) 75.1330
d) 2.1444
e) 0.39139
f) 0.06213
g) 0.00712
h) 0.00069
i) 0.00003

Solution:

Sr. No.	Number	Standard form	Characteristic
a)	2123.50	2.12350×10^{3}	3
b)	134.02	1.3402×10^{2}	2
c)	75.1330	7.51330×10^{1}	1
d)	2.1444	2.1444×10^{0}	0
e)	0.39139	3.9139×10^{-1}	-1
f)	0.06213	6.213×10^{-2}	-2
g)	0.00712	7.12×10^{-3}	-3
h)	0.00069	6.9×10^{-4}	-4
i)	0.00003	3.0×10^{-5}	-5

Mantissa of a logarithm of a number

$>$ The table of logarithm is used to find the mantissa of logarithm of numbers. (A table of logarithm is appended at the end of the material)
$>$ Table consists of 90 rows and 20 columns.
$>$ In a table, every row begin with two digit number like as $10,11,12,13,14$, $\ldots97,98,99$ and every column is headed by single digit number $0,1,2, \ldots \ldots \ldots \ldots \ldots .8,9$.
$>$ On the right of the table, we have big column, which is divided into 9subcolumns headed by the digits $1,2,3 \ldots \ldots \ldots . .8,9$. This column is called the column of mean differences.

Note:

$>$ If the given number has one digit, we replace it by a two digit number obtained by adjoining zero to the right side of the given number. For example, the number of 3 is to be replaced by 30 for getting the mantissa.
$>$ The digits used to obtain the mantissa of a given number are called the significant digits.

Method to find Mantissa of a logarithm of a number

Step-1: Let n be given number
Step-2: Write the significant digits of a given number
Step-3: Select the first two digit, in the significant digit
Step-4: Look in the row starting with the number, obtained in Step-3 in the logarithm table
Step-5: After getting row in Step-4, look at the number in the number column headed by zero
Step-6: If there is fourth significant digit, then move to the column of mean difference and look under the column headed by the fourth significant digit. Now, find the number there and add this number to number obtained in Step-5. Then, we get the required mantissa of a given number. Otherwise, the number getting in Step-5 is the required mantissa.

Example-7:

Obtain the mantissa of the logarithm of the number 1974

Solution:

We have $\log 1974=n$
First, we look the row starting with 19.
In this row, look at the number in the column headed by 7 .
This number is (2945).
Now, move to the column of mean differences and look under the column headed by 4 in the row corresponding to 19 .
We get the number (9) there.
Here, we add these number as $2945+9=2954$ which is the required mantissa of $\log 1974$.

Example-8:

Calculate the mantissa of the logarithm of the number 74.21

Solution:

We have $\log 74.21=n$
First, we look the row starting with 74.
In this row, look at the number in the column headed by 2.
This number is (8704).
Now, move to the column of mean differences and look under the column headed by 1 in the row corresponding to 74 .
We get the number (1) there.
Here, we add these number as $8704+1=8705$ which is the required mantissa of $\log (74.21)$.

Method to find complete value of $\log n$

Step-1: Let the given number be n
Step-2: Obtain the characteristic
Step-3: Obtain the mantissa
Step-4: The required result is $\log n=$ characterisic + mantissa

Example-9:

Use logarithm table, to calculate the value of the following:
a) $\log (0.00073615)$
b) $\log (2.0017)$
c) $\log (106.0606)$
d) $\log (20.201)$

Solution:

a) Let $n=0.00073615$

We have the first four non-zero digit is 7361
Now, the Characteristic of n is -4 and Mantissa of n is 8670
So, $\log (0.00073615)=-4+0.8670=4.8670$
b) Let $n=2.0017$

We have the first four non-zero digit is 2001
Now, the Characteristic of n is 0 and Mantissa of n is 3012
So, $\log (2.0017)=0+0.3012=0.3012$
c) Let $n=106.0606$

We have the first four non-zero digit is 1060
Now, the Characteristic of n is 2 and Mantissa of n is 0235
So, $\log (106.0606)=2+0.0253=2.0253$
d) Let $n=20.201$

We have the first four non-zero digit is 2020
Now, the Characteristic of n is 1 and Mantissa of n is 3054
So, $\log (20.201)=1+0.3054=1.3054$

Application of logarithm to solve Pharmaceutical problems

1) Glomerular filtration rate (GFR)

The normal range for GFR is $1.25-2.10 \mathrm{~m}=1.25-2.10 \mathrm{~m}^{2} / \mathrm{s}=1.73 \mathrm{~m}^{2}$ and varies with sex and age.
$>$ The basic formula for clearance $\left(C l_{x}\right)$ of a substance X is
$C l_{x}=\frac{U_{x} \cdot V}{P_{x}}$
Where, $U_{x}=$ Urine concentration of X
$\mathrm{V}=$ Urine volume per time
$P_{x}=$ Plasma concentration of X

Taking log of equation (1), we get

$$
\log C l_{x}=\log \left(\frac{U_{x} \cdot V}{P_{x}}\right)=\log U_{x}+\log V-\log P_{x}=A(\text { says })
$$

$>$ Now, taking antilog, we get the value of $\left(C l_{x}\right)$

$$
C l_{x}=\operatorname{antilog}(A)
$$

2) First order kinetics
$>$ The change in drug concentration based on time can be expressed as
$C=C_{0} \cdot e^{-k t}$
Where, $\mathrm{C}=$ concentration at time t
$C_{0}=$ initial concentration
$\mathrm{k}=$ rate constant
$\mathrm{t}=$ time
$\mathrm{e}=$ natural logarithm
Taking logarithm, we get

$$
\begin{aligned}
& \log C=\log \left(C_{0} \cdot e^{-k t}\right) \\
& \quad=\log C_{0}+\log e^{-k}=\log \mathrm{C}_{0}-\mathrm{kt} \log \mathrm{e}=\log \mathrm{C}_{0}-\mathrm{kt}(0.43429)
\end{aligned}
$$

3) Drug-concentration capacity-limit process
$>$ We have,

$$
\log C=\log C_{0}+\frac{\left(C_{0}-C\right)}{2.303 K_{m}}-\frac{V_{\max }}{2.303 K_{m}}
$$

Where, $\mathrm{C}=$ drug concentration
$K_{m}=$ Michaelis-Menten constant
$V_{\max }=$ Theoretical maximum rate of the process

LOGARITHMS TABLES

	0	1	2	3	4	5	6	7	8	9	123	456	8
$1 \cdot 0$. 0000	0043	0086	0128	0170	0212	0253	0294	0334	0374	4812	172125	293337
	-0414	0453 0828	0492 0864	0531 0899	0569	0607	0645	0682	0719	0755	4811	151923	263034
1.2	$\cdot 0792$.1139	0828 1173	0864 1206	0899 1239	0934	0969	1004	1038	1072	1106	3710	141721	$24 \quad 2831$
1.3	-1139	1173	1206	1239	1271	1303	1335	1367	1399	1430	3610	131619	$\begin{array}{llll}23 & 26 & 29\end{array}$
1.4	-1461	1492	1523	1553	1584	1614	1644	1673	1703	1732	369	121518	212427
1.6	- 2	179	1818	1847	1875	1903	1931	1959	1987	2014	368	111417	2022.25
1.6	-2	206	2095	2122	2148	2175	2201	2227	2253	2279	$\begin{array}{lll}3 & 5 & 8\end{array}$	111316	182124
1.7	. 2304	2330	2355	2380 2625	2405	2430	2455	2480	2504	2529	25	101215	172022
1.9	- 2788	2810	2833	2856	2648	2672	2695	2718	2742	2765	25	91214	161921.
										2989	7	91113	161820
2.0	-3010	3032	3054	3075	3096	3118	3139	3160	3181	3201	246	81113	151719
$2 \cdot 2$	- 3222	3243	3263	3284	3304	3324	3345	3365	3385	3404			
2.2 2.3	- 3424	344	3464	3483	3502	3522	3541	3560	3379	3404 3598	$\begin{array}{lll}2 & 4 & 6 \\ 2 & 4 & 6\end{array}$	81012	7
		3636	36	3674	3692	3711	3729	3747	3766	3784	$\begin{array}{lll}2 & 4 & 6 \\ 2 & 6\end{array}$	$\begin{array}{rrrr}8 & 10 \\ 7 & 9 & 11\end{array}$	$\begin{array}{llll}14 & 15 & 17 \\ 13 & 15 & 17\end{array}$
2.4 2.5	-3802 -3979	3820 3997	3838 4014	3856	3874	3892	3909	3927	3945	3962	245	7911	6
2.6	- 4150	4166	4	4031	4048	4065	4082	4099	4116	4133	$\begin{array}{llll}2 & 3 & 5\end{array}$	$7 \quad 910$	121416
						4232	4249	4265	4281	4298	235	7810	$\begin{array}{llll}11 & 13 & 15\end{array}$
2.7 2.8	.4314 .4472	4330	4346	4362	4378	4393	4409	4425	4440	4456	23	9	4
2.9	-4624	4639	4654	4518	4533	4548	4564	4579	4594	4609	$\begin{array}{llll}2 & 3 & 5\end{array}$	6 6 889	$\begin{array}{lll}11 & 13 & 14 \\ 11 & 12\end{array}$
						46	4713	4728	4742		3.4	$\begin{array}{lll}6 & 7 & 9\end{array}$	101213
3.0	4	4786	4800	4814	4829	4843	4857	4871	4886	4900	134	$\begin{array}{llll}6 & 7 & 9\end{array}$	101113
$3 \cdot 1$	- 4914	4928	4942	4955	4969	4983	4997	5011					
$3 \cdot 2$	- 5051	5065	5079	5092	5105	5119	5132	5145	5024 5159	5038 5172 5302	$\begin{array}{lll}1 & 3 & 4 \\ 1 & 3 & 4 \\ 1\end{array}$	$\begin{array}{lll}6 & 7 & 8 \\ 5 & 7 & 8\end{array}$	101112
$3 \cdot 3$	- 5185	5198	5211	5224	5237	5250	5263	5276	5289	5302	13	$\begin{array}{lll} 5 & 7 & 8 \\ 5 & 6 & 8 \end{array}$	$\begin{array}{lll} 9 & 11 & 12 \\ 9 & 10 & 12 \end{array}$
3.5	. 5315	5328	5340	5353	5366	5378							
$3 \cdot 5$. 5451	5453 5575	5465	5478	5490	5502	5514	5403	5416 5539	5428	$1 \begin{aligned} & 13 \\ & 1\end{aligned}$		1011
	- 5	5575	5587	5599	5611	5623	5635	5647	5658	5670	$\begin{array}{lll}1 & 2 & 4\end{array}$	$\begin{array}{lll}5 & 6 & 7\end{array}$	$\begin{array}{llll}9 & 10 & 11 \\ 8 & 10 & 11\end{array}$
3.7	- 5682	5694	5705	5717	5729	5740	5752	5763	5775	5786			
$3 \cdot 8$	- 5798	580	5821	5832	5843	5855	5866	5877	5888	5899	123	$\begin{array}{lll}5 & 6 & 7 \\ 5 & 6 & 7\end{array}$	910
			5933	5944	5955	5966	5977	5988	5999	6010	12.3	$\begin{array}{llll}4 & 5 & 7\end{array}$	8 8 8 910
4.0	-6021	6031	6042	6053	6064	6075	6085	6096	6107	6117	123	4556	8910
4.1	-6128	6138	6149	6160	6170	6180	6191	6201	6212	6222	2		788
$4 \cdot 3$	-6232	6243	6253.	6263	6274	6284	6294	6304	6314	6325	12	4.436	7
$4 \cdot 3$	-6335	6345	6355	6365	6375	6385	6395	6405	6415	6425	123	4456	7 7 8
4.4	-6435	64	6454	6464	6474	6484	6493	6503	6513	6522	123	456	789
4.6	. 6628	6637	6646	6656	6571 6665	6580 6675	6590	6	66	6618	123	6	$\begin{array}{lll}7 & 8 & 9\end{array}$
4.8	. 6812	6821	6739 6830	6839	6848	6767 6857	6776	6785 6875	6794	6803	$\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3\end{array}$	5	678
4	-6902	6911	6920	6928	6937	6946	6955	6964	6972	6981	123	45	$\begin{array}{llll}6 & 7 & 8\end{array}$
5.	. 6990	6998	7007	7016	702	7033	7042	7050	7059	7067	123	345	678
5	- 7076	7084	7093	7101	7110	7118	7126	7135	7143	7152	123	$\begin{array}{llll}3 & 4 & 5\end{array}$	678
5	.7160	7168	7177	7185	7193	7202	7210	7218	7226	7235	122	4	$\begin{array}{lll}6 & 7 & 8\end{array}$
5.3 5.4	.7243 .7324	7332	7259 7340	72		728	7292	7300	7308	7316	122	$\begin{array}{llll}3 & 4 & 5\end{array}$	6
									738		122	$\begin{array}{llll}3 & 4 & 5\end{array}$	7

LOGARITHMS TABLES (Contd.)

