SHREE H.N.SHUKLA INSTITUTE OF PHARMACEUTICAL EDUCATION AND RESEARCH

B.PHARM

(SEMESTER-I)

SUBJECT NAME: REMEDIAL MATHEMATICS

SUBJECT CODE: BP107TT

UNIT 1

CHAPTER-2: LOGARITHMS

Prepared by: <u>Ms. Renuka Dabhi</u>

Shree H.N.Shukla Institute of Pharmaceutical Education and Research

Semester-I

Topic

Logarithms

- **4** Definition of logarithm
- **4** Properties of logarithm
- **4**Common logarithms
- **4**Characteristic and Mantissa
- **Worked examples**

4 Application of logarithm to solve pharmaceutical problems

Unit 1, Chapter-1: Partial Fraction

Definition of logarithm

If x is a real number then its logarithm to the base a is defined as the exponent which when raised to the base of the number x is obtained.

$$\log_a x = y$$

 $x = a^{y} (a > 0, a \neq 1, x > 0)$

- ▶ $a^y = x$ is called exponential form and $\log_a x = y$ is called logarithmic form.
- ➢ For example;

Sr. No.	Exponential form	Logarithmic form
1	$3^4 = 81$	$\log_3 81 = 4$
2	$2^5 = 32$	$\log_2 32 = 5$
3	$3^{-2} = \frac{1}{9}$	$\log_3\left(\frac{1}{9}\right) = -2$
4	$2^1 = 2$	$\log_2 2 = 1$

Properties of logarithm

- Negative numbers and zero have no logarithms.
- > The logarithm of 1 to any base is zero. $(\log_a 1 = 0)$
- > The logarithm of any number $(\neq 1)$ to the same base is unity.

Laws of logarithm

- 1) $\log_a(mn) = \log_a m + \log_a n$
- 2) $\log_a\left(\frac{m}{n}\right) = \log_a m + \log_a n$
- 3) $\log_a(m^n) = n \log_a m$
- 4) $\log_a(a^n) = n \log_a a = n$

Common logarithms

- > The logarithms calculated to base 10 are called common logarithms.
- \succ It is denoted by $\log_{10} a$

Example-1:

Write the following in logarithmic form.

1) $8^{3} = 512 \implies \log_{8} 512 = 3$ 2) $32^{3/5} = 8 \implies \log_{32} 8 = \frac{3}{5}$ 3) $10^{-2} = 0.01 \implies \log_{10} 0.01 = -2$ 4) $3^{0} = 1 \implies \log_{3} 1 = 0$ 5) $4^{-3} = \frac{1}{64} \implies \log_{4} \left(\frac{1}{64}\right) = -3$

Example-2:

Express the following in exponential form.

- 1) $\log_9(6561) = 4 \implies 9^4 = 6561$
- 2) $\log_{\frac{1}{16}}\left(\frac{1}{8}\right) = \frac{3}{4} \implies \left(\frac{1}{16}\right)^{3/4} = \frac{1}{8}$
- 3) $\log_5\left(\frac{1}{25}\right) = -2 \implies 5^{-2} = \frac{1}{25}$

4)
$$\log_{21} 1 = 0 \implies 21^0 = 1$$

Unit 1, Chapter-1: Partial Fraction

Example-3:

Simplify the following terms;

- 1) $\log 15 \log 5 \log 2$ 2) $\frac{1}{2}\log 49 - 3\log 2 + \frac{1}{3}\log 27$
- 3) $\log 3x + 3\log x$
- 4) $4 \log 5 + 2 \log 4$

Solution:

1)
$$\log 15 - \log 5 - \log 2 = \log 15 - (\log 5 + \log 2)$$

 $= \log 15 - \log (5 \times 2)$
 $= \log 15 - \log 10$
 $= \log \left(\frac{15}{10}\right)$
 $= \log \left(\frac{3}{2}\right)$
2) $\frac{1}{2}\log 49 - 3\log 2 + \frac{1}{3}\log 27 = \log (49)^{1/2} - \log 2^3 + \log (27)^{1/3}$
 $= \log (7^2)^{1/2} - \log 8 + \log (3^3)^{1/3}$
 $= \log 7 - \log 8 + \log 3$
 $= (\log 7 + \log 3) - \log 8$
 $= \log (7 \times 3) - \log 8$
 $= \log \left(\frac{21}{8}\right)$
3) $\log 3x + 3\log x = \log 3x + \log x^3$
 $= \log (3x \cdot x^3)$

 $= \log(3x^4)$

Shree H.N.Shukla Institute of Pharmaceutical Education and Research

Semester-I	Unit 1, Chapter-1: Partial Fraction
4) $4 \log 5 + 2 \log 4 = \log 5^4 + \log 4^2$	
$= \log 625 + \log 1$.6
$= \log(625 \times 16)$	
$= \log(10000)$	
$= \log 10^4$	
$= 4 \log 10$	
= 4	

Example-4:

Find the values of x in each of the following:

- 1) $\log_2 x = 4$
- 2) $\log_x 64 = 6$
- 3) $\log_{10} x = -2$

Solution:

- 1) $\log_2 x = 4 \implies 2^4 = x \implies x = 2 \times 2 \times 2 \times 2 = 16$
- 2) $\log_x 64 = 6 \Rightarrow x^6 = 64 \Rightarrow x^6 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 = x^6 = 2^6 \Rightarrow x = 2$
- 3) $\log_{10} x = -2 \Rightarrow x = 10^{-2} \Rightarrow x = \frac{1}{10^2} \Rightarrow x = 0.01$

Example-5:

Prove that

- 1) $\log \frac{11}{5} + \log \frac{14}{3} \log \frac{22}{15} = \log 7$
- 2) $3\log 4 + 2\log 5 \frac{1}{3}\log 64 \frac{1}{2}\log 16 = 2$

Unit 1, Chapter-1: Partial Fraction

Solution:

1)
$$LHS = \left(\log \frac{11}{5} + \log \frac{14}{3}\right) - \log \frac{22}{15}$$

 $= \log\left(\frac{11}{5} \times \frac{14}{3}\right) - \log \frac{22}{15}$
 $= \log\left[\frac{\frac{11}{5} \times \frac{14}{3}}{\frac{22}{15}}\right]$
 $= \log\left(\frac{15 \times 11 \times 14}{5 \times 3 \times 22}\right)$
 $= \log 7 = RHS$
 $\therefore \log \frac{11}{5} + \log \frac{14}{3} - \log \frac{22}{15} = \log 7$
2) $LHS = 3\log 4 + 2\log 5 - \frac{1}{2}\log 64 - \frac{1}{2}\log 16$

$$= \log 4^{3} + \log 5^{2} - \log(64)^{1/3} - \log(16)^{1/2}$$

$$= \log 64 + \log 25 - \log(4^{3})^{1/3} - \log(4^{2})^{1/2}$$

$$= \log(64 \times 25) - \log 4 - \log 4$$

$$= \log(64 \times 25) - 2\log 4$$

$$= \log(64 \times 25) - \log 4^{2}$$

$$= \log(64 \times 25) - \log 16$$

$$= \log\left(\frac{64 \times 25}{16}\right)$$

$$= \log 100$$

$$= \log 10^{2}$$

$$= 2 \log 10$$

$$= 2 = RHS$$

Unit 1, Chapter-1: Partial Fraction

Some standard forms of Decimal and Exponential

Sr. No.	Log form	Exponential form
1	$\log_{10} 1 = 0$	$10^0 = 1$
2	$\log_{10} 10 = 1$	$10^1 = 10$
3	$\log_{10} 100 = 2$	$10^2 = 100$
4	$\log_{10} 0.1 = -1$	$10^{-1} = \frac{1}{10} = 0.1$
5	$\log_{10} 0.01 = -2$	$10^{-2} = \frac{1}{100} = 0.01$

Characteristic and Mantissa of a logarithm

Consider *n* be a positive real number and let $n = m \times 10^p$ be the standard form, where *p* is an integer and *m* is a real number between 1 and 10.

i.e. $1 \le m < 10$

- ➤ We have,
 - $n = m \times 10^p$
 - $\therefore \log n = \log(m \times 10^p) = \log m + \log 10^p = \log m + p \log 10$
- ▶ Since *p* is an integer and $1 \le m < 10$

Now,

 $1 \le m < 10 \implies \log 1 \le \log m < \log 10 \implies 0 \le \log m < 1$

- > Thus, the logarithm of positive real number n consists of two parts:
 - i) The integral part (*p*), which is an integer.
 - ii) The decimal part $(\log m)$, which lies between 0 and 1.
- Therefore, the integral part is known as the Characteristic and the decimal part is known as Mantissa.
- \blacktriangleright So, from the equation (1), we have

 $\log n = p + \log m = integral part + decimal part$ = Characteristic + Mantissa

Unit 1, Chapter-1: Partial Fraction

Method to find Characteristic

Method-1: To find the characteristic of a negative number (n < 1)Step-1: Let *n* be the given number Step-2: Write the number in the standard form $(n = m \times 10^p)$ of decimal Step-3: The index of 10 in the standard form, that means *p* is the Characteristic of given number **Method-2:** To find the characteristic of a positive number $(n \ge 1)$ Step-1: Let *n* be the given number

Step-2: Write the number in the standard form $(n = m \times 10^p)$ of decimal

Step-3: If the number is graeater than or equal to 1, then obtain the Characteristic by using the formula

Characteristic = (number of digit to the left of the decimal point) -1

Example-6:

Obtain the Characteristic of the logarithms of each of the following numbers by using their standard forms.

- a) 2123.50
- b) 134.02
- c) 75.1330
- d) 2.1444
- e) 0.39139
- f) 0.06213
- g) 0.00712
- h) 0.00069
- i) 0.00003

Solution:

Sr. No.	Number	Standard form	Characteristic
a)	2123.50	2.12350×10^3	3
b)	134.02	1.3402×10^{2}	2
c)	75.1330	7.51330×10^{1}	1
d)	2.1444	2.1444×10^{0}	0
e)	0.39139	3.9139×10^{-1}	-1
f)	0.06213	6.213×10^{-2}	-2
g)	0.00712	7.12×10^{-3}	-3
h)	0.00069	6.9×10^{-4}	-4
i)	0.00003	3.0×10^{-5}	-5

Shree H.N.Shukla Institute of Pharmaceutical Education and Research

Unit 1, Chapter-1: Partial Fraction

Mantissa of a logarithm of a number

- The table of logarithm is used to find the mantissa of logarithm of numbers. (A table of logarithm is appended at the end of the material)
- Table consists of 90 rows and 20 columns.

Note:

- If the given number has one digit, we replace it by a two digit number obtained by adjoining zero to the right side of the given number. For example, the number of 3 is to be replaced by 30 for getting the mantissa.
- The digits used to obtain the mantissa of a given number are called the significant digits.

Method to find Mantissa of a logarithm of a number

Step-1: Let *n* be given number

Step-2: Write the significant digits of a given number

Step-3: Select the first two digit, in the significant digit

Step-4: Look in the row starting with the number, obtained in Step-3 in the logarithm table

Step-5: After getting row in Step-4, look at the number in the number column headed by zero

Step-6: If there is fourth significant digit, then move to the column of mean difference and look under the column headed by the fourth significant digit. Now, find the number there and add this number to number obtained in Step-5. Then, we get the required mantissa of a given number. Otherwise, the number getting in Step-5 is the required mantissa.

Unit 1, Chapter-1: Partial Fraction

Example-7:

Obtain the mantissa of the logarithm of the number 1974

Solution:

We have $\log 1974 = n$ First, we look the row starting with 19. In this row, look at the number in the column headed by 7. This number is (2945). Now, move to the column of mean differences and look under the column headed by 4 in the row corresponding to 19. We get the number (9) there. Here, we add these number as 2945+9=2954 which is the required mantissa of log 1974.

Example-8:

Calculate the mantissa of the logarithm of the number 74.21

Solution:

We have $\log 74.21 = n$ First, we look the row starting with 74. In this row, look at the number in the column headed by 2. This number is (8704). Now, move to the column of mean differences and look under the column headed by 1 in the row corresponding to 74. We get the number (1) there. Here, we add these number as 8704+1=8705 which is the required mantissa of log(74.21).

Method to find complete value of log n

Step-1: Let the given number be nStep-2: Obtain the characteristic Step-3: Obtain the mantissa Step-4: The required result is $\log n = characterisic + mantissa$

Example-9:

Use logarithm table, to calculate the value of the following:

- a) log(0.00073615)
- b) log(2.0017)
- c) log(106.0606)
- d) log(20.201)

Solution:

- a) Let n = 0.00073615 We have the first four non-zero digit is 7361 Now, the Characteristic of n is -4 and Mantissa of n is 8670 So, log(0.00073615) = -4 + 0.8670 = 4.8670
 b) Let n = 2.0017 We have the first four non-zero digit is 2001 Now, the Characteristic of n is 0 and Mantissa of n is 3012 So, log(2.0017) = 0 + 0.3012 = 0.3012
 c) Let n = 106.0606
- We have the first four non-zero digit is 1060 Now, the Characteristic of n is 2 and Mantissa of n is 0235 So, log(106.0606) = 2 + 0.0253 = 2.0253
- d) Let n = 20.201We have the first four non-zero digit is 2020 Now, the Characteristic of n is 1 and Mantissa of n is 3054 So, log(20.201) = 1 + 0.3054 = 1.3054

Application of logarithm to solve Pharmaceutical problems

- 1) Glomerular filtration rate (GFR)
 - The normal range for GFR is $1.25 2.10m = 1.25 2.10m^2/s = 1.73m^2$ and varies with sex and age.
 - > The basic formula for clearance (Cl_x) of a substance X is

 $Cl_{x} = \frac{U_{x} \cdot V}{P_{x}} \quad \dots \quad \dots \quad \dots \quad \dots \quad (1)$

Where, U_x =Urine concentration of X

V = Urine volume per time

 P_x =Plasma concentration of X

Unit 1, Chapter-1: Partial Fraction

Semester-I

 \succ Taking log of equation (1), we get $\log Cl_x = \log\left(\frac{U_x \cdot V}{P_x}\right) = \log U_x + \log V - \log P_x = A(says)$ > Now, taking antilog, we get the value of (Cl_x) $Cl_x = antilog(A)$ 2) First order kinetics > The change in drug concentration based on time can be expressed as $C = C_0 \cdot e^{-kt}$ Where, C=concentration at time t C_0 =initial concentration k=rate constant t=time e=natural logarithm ➢ Taking logarithm, we get $\log C = \log(C_0 \cdot e^{-kt})$ $= \log C_0 + \log e^{-k} = \log C_0 - \operatorname{kt} \log e = \log C_0 - \operatorname{kt} (0.43429)$ 3) Drug-concentration capacity-limit process ➤ We have,

 $\log C = \log C_0 + \frac{(C_0 - C)}{2.303K_m} - \frac{V_{max}}{2.303K_m}$ Where, C=drug concentration K_m =Michaelis-Menten constant

 V_{max} =Theoretical maximum rate of the process

Unit 1, Chapter-1: Partial Fraction

LOGARITHMS TABLES

	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	
1.0	•0000	0043	0086	0128	0170	0212	0253	0294	0334	0374	4	8	12	17	21	25	29	33	3
1·1 1·2 1·3	·0414 ·0792 ·1139	0453 0828 1173	0492 0864 1206		0569 0934 1271	0607 0969 1303	0645 1004 1335	0682 1038 1367	0719 1072 1399	0755 1106 1430	3	7	11 10 10	14	19 17 16	21	24	30 28 26	3
1.4 1.5 1.6	·1461 ·1761 ·2041	1492 1790 2068	1523 1818 2095		1584 1875 2148	1614 1903 2175	1931	1673 1959 2227	1703 1987 2253	1732 2014 2279	333	6	988	11	15 14 13	17	20	24 22 21	2
1.7 1.8 1.9	·2304 ·2553 ·2788	2330 2577 2810	2355 2601 2833	2625	2405 2648 2878	2430 2672 2900	2455 2695 2923	2480 2718 2945	2504 2742 2967	2529 2765 2989	2222	5	7777	9	12 12 11	14	16	20 19 18	2
2.0	·3010	3032	3054	3075	3096	3118	3139	3160	3181	3201	2	4	6	1.2.2	11		1.2	17	
2·1 2·2 2·3	·3222 ·3424 ·3617	3243 3444 3636	3263 3464 3655	3284 3483 3674	3304 3502 3692	3324 3522 3711	3345 3541 3729	3365 3560 3747	3385 3579 3766	3404 3598 3784	2	444	6	887	10 10 9	12 12 11	14	16 15 15	1
2.4	·3802 ·3979 ·4150	3820 3997 4166	3838 4014 4183	3856 4031 4200	3874 4048 4216	3892 4065 4232	3909 4082 4249	3927 4099 4265	3945 4116 4281	3962 4133 4298	2		5	7777	9	11 10 10	12 12	14 14 13	1
.7 .8 .9	-4314 -4472 -4624	4330 4487 4639	4346 4502 4654	4362 4518 4669	4378 4533 4683	4393 4548 4698	4409 4564 4713		4440 4594 4742	4456 4609 4757	2	300	5 5 4	666	8	999	11 11	13 12 12	111
-0	•4771	4786	4800	4814	4829	4843	4857	4871	4886	4900		17	1	6	1	9		11	0
1-1 1-2 1-3	·4914 ·5051 ·5185	4928 5065 5198	4942 5079 5211	4955 5092 5224	4969 5105 5237	4983 5119 5250	5132	5145	5024 5159 5289		i	3333	4	5	7	00 00 00	10 9	11 11 10	1
·4 ·5	·5315 ·5441 ·5563	5328 5453 5575	5340 5465 5587		5366 5490 5611		5514	5527	5416 5539 5658	5551	1	322	44	5	6	877	99	10 10 10	11
·7 ·8 ·9	·5682 ·5798 ·5911	5694 5809 5922	5705 5821 5933	5717 5832 5944	5729 5843 5955		5866	5877	5888	5899	1	2222	. 3	5	6	7777	8888	999	1
10	•6021	6031	6042	6053	6064	6075	6085	6096	6107	6117	i	2	3	4	5	6	8	9	
+1 +2 +3	·6128 ·6232 ·6335	10245	10233	6160 6263 6365	6274	1 6284	6294	6304	6212 6314 6415	6222 6325 6425	1	2	3	4	555	666	7777	888	
4·4 4·5 4·6	·6435 ·6532 ·6628	6444 6542 6637	6551	6561	6474 6571 6665	6580	6590	6599	6609	6618	11	2222	3	444	555	666	7777	887	においていたなから
4·7 4·8 4·9	·6721 ·6812 ·6902	6730 6821 6911	6830	6839	6848	6857	6866	6875	6884	6893	1111	2222	333	444	4	555	666	77777	
5.0	·6990		7007	7016	7024	7033	7042	7050	7059	7067	1	2	3	3	4	5	6	7	*
5·1 5·2 5·3 5·4	·7076 ·7160 ·7243 ·7324	7168	717	7185	7193	7202	2 7210	7218	7226	7235	11	2222	22	3333	4444	5555	6666	7766	

Shree H.N.Shukla Institute of Pharmaceutical Education and Research

Unit 1, Chapter-1: Partial Fraction

	0	1	2	3	4	5	6	7	8	9	123	4	5	6	7	8	9
5.5 5.6	·7404 ·7482	7412 7490	7419 7497	7427	7435	7443 7520	7451 7528	7459 7536	7466 7543	7474 7551	1 2 2 1 2 2	33	44	55	55	G	777
5.7 5.8 5.9	-7559 -7634 -7709	7566 7642 7716	7574 7649 7723	7582 7657 7731	7589 7664 7738	7597 7672 7745	7604 7679 7752	7686	7619 7694 7767	7627 7701 7774	$ \begin{array}{c} 1 & 2 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \end{array} $	333	444	544	555	666	777
6.0	.7782	7789	7796	7803	7810	7818	7825	7832	7839	7846	112	3	4	4	5	6	6
6·1 6·2 6·3	•7853 •7924 •7993	7860 7931 8000	7868 7938 8007	7875 7945 8014	7882 7952 8021	7889 7959 8028	7896 7966 8035	7973	7910 7980 8048	7917 7987 8055	$ \begin{array}{c} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \end{array} $	333	433	444	555	665	666
6.4 6.5 6.6	-8062 -8129 -8195	8069 8136 8202	8075 8142 8209	8082 8149 8215	8089 8156 8222	8096 8162 8228	8102 8169 8235	8109 8176 8241	8116 8182 8248	8122 8189 8254	$ \begin{array}{c} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \end{array} $	333	333	444	555	555	666
6.7 6.8 6.9	-8261 -8325 -8388	8267 8331 8395	8274 8338 8401	8280 8344 8407		8293 8357 8420	8299 8363 8426	8306 8370 8432	8312 8376 8439	8319 8382 8445	$ \begin{array}{c} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \end{array} $	332	333	444	544	5 5 5 5	666
7.0	·8451	8457	8463	8470	8476	8482	8488	8494	8500	8506	112	2	3	4	4	5	6
7·1 7·2 7·3	•8513 •8573 •8633	8519 8579 8639	8525 8585 8645	8531 8591 8651	8537 8597 8657	8543 8603 8663	8549 8609 8669		8561 8621 8681	8567 8627 8686	$ \begin{array}{c} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \end{array} $	2222	333	444	444	555	555
7.4	-8692 -8751 -8808	8698 8756 8814	8704 8762 8820	8710 8768 8825	8716 8774 8831	8722 8779 8837	8727 8785 8842	8733 8791 8848	8739 8797 8854	8745 8802 8859	$ \begin{array}{r} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \end{array} $	2022	3 3 3 3	433	4 4 4	555	555
7.7	-8865 -8921 -8976	8871 8927 8982	8876 8932 8987	8882 8938 8993	8887 8943 8998	8893 8949 9004	8899 8954 9009	8904 8960 9015	8910 8965 9020	8915 8971 9025	$ \begin{array}{c} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \end{array} $	2222	333	3,373	444	444	555
B-0	-9031	9036	9042	9047	9053	9058	9063	9069	9074	9079	112	2	3	3	4	4	5
8·1 8·2 8·3	-9085 -9138 -9191	9143	9096 9149 9201	9101 9154 9206		9112 9165 9217	9117 9170 9222		9128 9180 9232	9133 9186 9238	1 1 2 1 1 2 1 1 2	222	333	333	444	444	555
8·4 8·5 8·6	-9243 -9294 -9345	9248 9299 9350	9253 9304 9355	9309	9263 9315 9365	9269 9320 9370	9325	9279 9330 9380	9335	9289. 9340 9390	$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	222	333	300	444	444	555
8·7 8·8 8·9	-9395 -9445 -9494	9400 9450 9499	9455		9415 9465 9513	9420 9469 9518	9425 9474 9523		9484	9440 9489 9538	$\begin{array}{c} 0 \ 1 \ 1 \\ 0 \ 1 \ 1 \\ 0 \ 1 \ 1 \\ \end{array}$	222	222	333	333	444	444
9.0	.9542	9547.	9552	9557	9562	9566	9571	9576	9581	9586	011	2	2	3	3	4	4
9·1 9·2 9·3	-9590 -9638 -9685	9595 9643 9689	9600 9647 9694	9605 9652 9699	9609 9657 9703		9619 9666 9713	9624 9671 9717	9628 9675 9722	9633 9680 9727	$\begin{array}{c} 0 \ 1 \ 1 \\ 0 \ 1 \ 1 \\ 0 \ 1 \ 1 \end{array}$	222	222	333	333	444	444
9.4	•9731 •9777 •9823	9736 9782 9827	9741 9786 9832	9745 9791 9836	9750 9795 9841	9754 9800 9845	9805	9763 9809 9854	9768 9814 9859	9773 9818 9863	011 011 011	2022	222	333	333	444	444
9.7	-9868 -9912 -9956	9872 9917 9961	9877 9921 9965	9881 9926 9969	9886 9930 9974	9934	9894 9939 9983	9943	9903 9948 9991	9908 9952 9996	011 011 011	222	222	333	333	443	444

Shree H.N.Shukla Institute of Pharmaceutical Education and Research

17 1