
SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

1

MSCIT SEM-2 REACTJS

Shree H.N.Shukla college2

vaishali nagar

Near Amrapali Under Bridge,

Raiya road

Rajkot

Ph No:-0281 2440478

Shree H.N.Shukla college3

vaishali nagar

Near Amrapali Under Bridge,

Raiya road

Rajkot

Ph No:-0281 2440478

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

2

Unit :5

 Introduction to Hooks and its

implementation

 Introduction: React Hooks introduction, useState Hook, useState Previous state,

useState with object, useState with array.

 useEffect: useEffect Hook, useEffect after render, Conditionally run effects, run

effects only once,useEffect with cleanup, useEffect with incorrect dependency.

 Fetching data: Fetching data with useEffect, useContext Hook

 useReducer Hook: useReducer – simple state andaction, complex state and action,

multiple useReducers

 useContext: useContext, useReducer, Fetching data with useReduer, useState vs

useReducer

Introduction:

 React Hooks introduction
React Hooks are functions that allow developers to use state and other React features in

functional components. Before the introduction of Hooks, state management and other

React features were primarily used in class components. With the introduction of Hooks

in React 16.8, developers gained more flexibility and simplicity in managing state and

side effects in functional components.

Here are some key points about React Hooks:

useState: This is a Hook that allows functional components to manage state. It returns a

stateful value and a function to update it. Here's a basic example:

import React, { useState } from 'react';

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

3

function Counter() {

 const [count, setCount] = useState(0);

 return (

 <div>

 <p>You clicked {count} times</p>

 <button onClick={() => setCount(count + 1)}>

 Click me

 </button>

 </div>

);

}

useEffect: This Hook adds the ability to perform side effects in functional components.

It's similar to componentDidMount, componentDidUpdate, and componentWillUnmount

lifecycle methods combined. Here's an example:

import React, { useState, useEffect } from 'react';

function Example() {

 const [count, setCount] = useState(0);

 useEffect(() => {

 document.title = `You clicked ${count} times`;

 });

 return (

 <div>

 <p>You clicked {count} times</p>

 <button onClick={() => setCount(count + 1)}>

 Click me

 </button>

 </div>

);

}

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

4

React Hooks are functions that allow developers to use state and other React features in

functional components. Before the introduction of Hooks, state management and other

React features were primarily used in class components. With the introduction of Hooks

in React 16.8, developers gained more flexibility and simplicity in managing state and

side effects in functional components.

Here are some key points about React Hooks:

useState: This is a Hook that allows functional components to manage state. It returns a

stateful value and a function to update it. Here's a basic example:

jsx

import React, { useState } from 'react';

function Counter() {

 const [count, setCount] = useState(0);

 return (

 <div>

 <p>You clicked {count} times</p>

 <button onClick={() => setCount(count + 1)}>

 Click me

 </button>

 </div>

);

}

useEffect: This Hook adds the ability to perform side effects in functional components.

It's similar to componentDidMount, componentDidUpdate, and componentWillUnmount

lifecycle methods combined. Here's an example:

jsx

import React, { useState, useEffect } from 'react';

function Example() {

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

5

 const [count, setCount] = useState(0);

 useEffect(() => {

 document.title = `You clicked ${count} times`;

 });

 return (

 <div>

 <p>You clicked {count} times</p>

 <button onClick={() => setCount(count + 1)}>

 Click me

 </button>

 </div>

);

}

1.useContext: This Hook allows you to consume context within a functional component.

It lets you access context values and subscribe to changes. Here's a basic example:

import React, { useContext } from 'react';

import MyContext from './MyContext';

function MyComponent() {

 const value = useContext(MyContext);

 return <div>{value}</div>; }

1.useReducer: This Hook is a more powerful alternative to useState. It's used for more

complex state logic. It accepts a reducer function and an initial state. Here's an example:

import React, { useReducer } from 'react';

const initialState = { count: 0 };

function reducer(state, action) {

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

6

 switch (action.type) {

 case 'increment':

 return { count: state.count + 1 };

 case 'decrement':

 return { count: state.count - 1 };

 default:

 throw new Error();

 }

}

function Counter() {

 const [state, dispatch] = useReducer(reducer, initialState);

 return (

 <div>

 Count: {state.count}

 <button onClick={() => dispatch({ type: 'increment' })}>+</button>

 <button onClick={() => dispatch({ type: 'decrement' })}>-</button>

 </div>

);

}

These are just a few examples of the many Hooks available in React. They provide a more

concise and readable way to work with state and side effects in functional components,

making React development more efficient and enjoyable.

 useState Hook

In React.js, the useState hook is used to add state to functional components. It allows

you to declare state variables and provides a function to update them. Here's how you

can use the useState hook:

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

7

Example:

import React, { useState } from 'react';

function Example() {

 // Declare a state variable named "count" and its updater function "setCount"

 const [count, setCount] = useState(0);

 return (

 <div>

 <p>You clicked {count} times</p>

 {/* On click, call setCount to update the state */}

 <button onClick={() => setCount(count + 1)}>

 Click me

 </button>

 </div>

);

}

export default Example;

in this example:

We import the useState hook from the react package.

Inside the Example functional component, we call the useState hook with an initial state

value of 0, and it returns an array with two elements: the current state value (count) and

a function (setCount) to update it.

We render the current state value (count) in a paragraph.

When the button is clicked, it calls the setCount function with the new value (count +

1), updating the state.

Remember that you can call useState multiple times in a single component to manage

multiple pieces of state independently. Each call to useState maintains its own state and

update function.

 useEffect After Render

In React.js, the useEffect hook allows you to perform side effects in function

components. Side effects could be anything from fetching data, subscribing to events,

updating the DOM, etc. The useEffect hook runs after every render of the component,

including the initial render and subsequent re-renders. Here's how you can use

useEffect:

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

8

Javascript

Example:-

import React, { useState, useEffect } from 'react';

function Example() {

 const [count, setCount] = useState(0);

 // This effect will run after every render

 useEffect(() => {

 // Update the document title using the count state

 document.title = `You clicked ${count} times`;

 });

 return (

 <div>

 <p>You clicked {count} times</p>

 <button onClick={() => setCount(count + 1)}>

 Click me

 </button>

 </div>

);

}

export default Example;

In this example:

We import the useEffect hook from the react package.

Inside the Example functional component, we call the useEffect hook. The first

argument is a function that contains the side effect you want to perform (in this case,

updating the document title), and the second argument is an array of dependencies. If

any of the dependencies change between renders, the effect function will be called

again.

Since we didn't provide a second argument to useEffect, it will run after every render.

Inside the effect function, we update the document title to reflect the current value of

the count state.

Remember to handle cleanup in useEffect if necessary, and if you only want the effect

to run once (similar to componentDidMount in class components), you can pass an

empty array [] as the second argument to useEffect.

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

9

 Conditionally run effects
To conditionally run effects in React using the useEffect hook, you can provide a

dependency array as the second argument to useEffect. If any of the dependencies in

the array change between renders, the effect function will be called again. If you want

to conditionally run the effect based on certain conditions, you can include those

conditions in the dependency array.

Here's an example of how you can conditionally run effects:

Example:-

 import React, { useState, useEffect } from 'react';

function Example() {

 const [count, setCount] = useState(0);

 const [shouldRunEffect, setShouldRunEffect] = useState(true);

 useEffect(() => {

 if (shouldRunEffect) {

 // Run the effect only if shouldRunEffect is true

 console.log("Effect ran!");

 }

 }, [shouldRunEffect]); // Dependency array with shouldRunEffect as the dependency

 return (

 <div>

 <p>You clicked {count} times</p>

 <button onClick={() => setCount(count + 1)}>

 Click me

 </button>

 <button onClick={() => setShouldRunEffect(!shouldRunEffect)}>

 Toggle Effect

 </button>

 </div>

);

}

export default Example;

In this example:

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

10

We have a state variable shouldRunEffect to determine whether the effect should run or

not.

Inside the useEffect hook, we check the value of shouldRunEffect. If it's true, we perform

the side effect (in this case, logging "Effect ran!").

The dependency array of useEffect contains shouldRunEffect. This means that the effect

will run whenever the value of shouldRunEffect changes.

We have a button to toggle the value of shouldRunEffect. Clicking this button will toggle

whether the effect runs or not.

By changing the value of shouldRunEffect, you can control whether the effect should run

or not based on your conditions.

 run effects only once

To run effects only once in a React component, you can provide an empty dependency

array [] as the second argument to the useEffect hook. This ensures that the effect runs

only after the initial render of the component and doesn't run again for subsequent renders.

Here's how you can achieve that:

Example:-
import React, { useState, useEffect } from 'react';

function Example() {

 const [count, setCount] = useState(0);

 useEffect(() => {

 // This effect will run only once after the initial render

 console.log("Effect ran!");

 }, []); // Empty dependency array ensures the effect runs only once

 return (

 <div>

 <p>You clicked {count} times</p>

 <button onClick={() => setCount(count + 1)}>

 Click me

 </button>

 </div>

);

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

11

}

export default Example;

In this example:

We use the useEffect hook to perform a side effect (logging "Effect ran!") after the initial

render of the component.

We provide an empty dependency array [] as the second argument to useEffect. This tells

React to run the effect only once after the initial render, and not to re-run it when any

dependencies change.

The effect runs only after the initial render, and subsequent updates to the component's

state (such as clicking the button) won't trigger it again.

This pattern is useful for scenarios where you need to perform initialization tasks or

subscribe to external data sources that you only want to do once when the component

mounts.

 useEffect with cleanup
In React, you can use the useEffect hook to perform side effects in function

components. Sometimes, these side effects might require cleanup when the

component unmounts or before the effect runs again due to a change in

dependencies. You can achieve cleanup by returning a cleanup function from the

effect.

Here's an example of how you can use useEffect with cleanup:

Example:-

import React, { useState, useEffect } from 'react';

function Example() {

 const [count, setCount] = useState(0);

 useEffect(() => {

 // This effect will run after every render

 console.log("Effect ran!");

 // Cleanup function

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

12

 return () => {

 console.log("Cleanup");

 // Perform cleanup tasks here (e.g., unsubscribe from subscriptions)

 };

 }, []); // Empty dependency array ensures the effect runs only once

 return (

 <div>

 <p>You clicked {count} times</p>

 <button onClick={() => setCount(count + 1)}>

 Click me

 </button>

 </div>

);

}

export default Example;

In this example:

We use the useEffect hook to perform a side effect (logging "Effect ran!") after the initial

render of the component.

We provide an empty dependency array [] as the second argument to useEffect, so it runs

only once after the initial render.

Inside the effect function, we return a cleanup function. This cleanup function will be

called when the component unmounts or before the effect runs again due to changes in

dependencies.

In the cleanup function, you can perform any necessary cleanup tasks, such as

unsubscribing from subscriptions or clearing timers.

Cleanup functions are crucial for managing resources and preventing memory leaks in

your application. They help ensure that your application is properly cleaned up when

components are unmounted or when dependencies change.

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

13

 useEffect with incorrect dependency.

Using the useEffect hook with incorrect dependencies can lead to unexpected behavior

and bugs in your React application. When you specify dependencies in the dependency

array of useEffect, React will execute the effect whenever any of those dependencies

change. If you provide incorrect or missing dependencies, it can cause your effect to

either run too frequently or not at all, which can lead to issues in your application.

Here are some common mistakes related to dependencies in the useEffect hook and how

to avoid them:

1. Empty Dependency Array ([]):

If you pass an empty dependency array ([]) to useEffect, it will run the effect only once,

similar to componentDidMount in class components. This is useful for effects that don't

depend on any state or props. However, if your effect does depend on state or props,

omitting them from the dependency array can cause the effect to not update when those

values change.

useEffect(() => {

 // Effect code

}, []); // Empty dependency array

To fix this, include the necessary dependencies in the array:

const [count, setCount] = useState(0);

useEffect(() => {

 // Effect code that depends on count

}, [count]); // Include count in the dependency array Missing Dependencies:

2. Missing Dependencies:

Forgetting to include all the dependencies your effect relies on can lead to bugs where the

effect doesn't update when expected. React will only re-run the effect if the values in the

dependency array change.

const [username, setUsername] = useState('');

const [userData, setUserData] = useState(null);

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

14

useEffect(() => {

 // Effect code that depends on username but doesn't include it in the dependencies

 fetchUserData(username).then(data => setUserData(data));

}, []); // Missing username dependency

To fix this, add any missing dependencies to the array:

useEffect(() => {

 // Effect code that depends on username

 fetchUserData(username).then(data => setUserData(data));

}, [username]); // Include username in the dependency array

Using Props Directly in Effect:

When using props inside an effect, make sure to include those props in the dependency

array if the effect depends on their values. This ensures that the effect runs whenever

those props change.

useEffect(() => {

 // Effect code that uses props directly but doesn't include them in dependencies

 console.log(props.someProp);

}, []); // Missing props dependency

To fix this, add the props to the dependency array:

useEffect(() => {

 // Effect code that depends on props

 console.log(props.someProp);

}, [props.someProp]); // Include props.someProp in the dependency array

By following these best practices and ensuring that your useEffect dependencies are

correctly set, you can avoid many common issues related to the useEffect hook in React.

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

15

 Fetching data with useEffect
In React, the useEffect hook is used to perform side effects in function components.

One common use case for useEffect is fetching data from an API when the component

mounts. Here's an example of how you can fetch data using useEffect:

import React, { useState, useEffect } from 'react';

const MyComponent = () => {

 const [data, setData] = useState(null);

 const [loading, setLoading] = useState(true);

 const [error, setError] = useState(null);

 useEffect(() => {

 const fetchData = async () => {

 try {

 const response = await fetch('https://api.example.com/data');

 if (!response.ok) {

 throw new Error('Network response was not ok');

 }

 const result = await response.json();

 setData(result);

 } catch (error) {

 setError(error);

 } finally {

 setLoading(false);

 }

 };

 fetchData();

 // Cleanup function (optional)

 return () => {

 // Perform cleanup actions if needed

 };

 }, []); // Empty dependency array means this effect runs once on mount

 if (loading) return <div>Loading...</div>;

 if (error) return <div>Error: {error.message}</div>;

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

16

 return (

 <div>

 {/* Render your data here */}

 {data && (

 {data.map(item => (

 <li key={item.id}>{item.name}

))}

)}

 </div>

);

};

export default MyComponent;

In this example:

We initialize state variables data, loading, and error using the useState hook.

Inside the useEffect hook, we define an asynchronous function fetchData that fetches data

from the API using fetch and updates the state variables accordingly.

The useEffect hook runs once when the component mounts because we passed an empty

dependency array ([]), indicating that there are no dependencies, so it doesn't need to run

again unless those dependencies change.

The component renders different content based on the state of loading and error, showing a

loading message while the data is being fetched and an error message if an error occurs.

If the data is fetched successfully (data is not null), we render the data in a list.

Remember to replace 'https://api.example.com/data' with the actual API endpoint you want

to fetch data from.

 useContext Hook

The useContext hook in React allows you to consume a context that has been created

using the createContext function. Context provides a way to pass data through the

component tree without having to pass props down manually at every level. Here's

an example of how to use the useContext hook:

First, let's create a context and a provider for that context:

// MyContext.js

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

17

import React, { createContext, useState } from 'react';

// Create a context

const MyContext = createContext();

// Create a provider for the context

const MyProvider = ({ children }) => {

 const [count, setCount] = useState(0);

 const incrementCount = () => {

 setCount(prevCount => prevCount + 1);

 };

 return (

 <MyContext.Provider value={{ count, incrementCount }}>

 {children}

 </MyContext.Provider>

);

};

export { MyContext, MyProvider };

In the code above:

We create a context called MyContext using createContext().

We create a provider component called MyProvider that wraps its children with

MyContext.Provider and provides the context value { count, incrementCount }.

Inside the provider, we have a state variable count and a function incrementCount to

update the count.

Now, let's use this context and provider in a component using the useContext hook:

import React, { useContext } from 'react';

import { MyContext } from './MyContext';

const MyComponent = () => {

 // Use the useContext hook to consume the context

 const { count, incrementCount } = useContext(MyContext);

 return (

 <div>

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

18

 <h1>Count: {count}</h1>

 <button onClick={incrementCount}>Increment Count</button>

 </div>

);

};

export default MyComponent;

In the code above:

We create a context called MyContext using createContext().

We create a provider component called MyProvider that wraps its children with

MyContext.Provider and provides the context value { count, incrementCount }.

Inside the provider, we have a state variable count and a function incrementCount to

update the count.

Now, let's use this context and provider in a component using the useContext hook:

import React from 'react';

import MyComponent from './MyComponent';

import { MyProvider } from './MyContext';

const App = () => {

 return (

 <MyProvider>

 <MyComponent />

 </MyProvider>

);

};

export default App;

Now, when you run your application, MyComponent will have access to the context

values provided by MyProvider through the useContext hook.

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

19

 useReducer – simple state andaction

useReducer is another React hook that is used for managing state, particularly when state

logic involves complex updates or transitions. It's similar to Redux in terms of using

reducers and actions. Let's create a simple example to demonstrate how to use useReducer

with a simple state and action:

import React, { useReducer } from 'react';

// Reducer function

const reducer = (state, action) => {

 switch (action.type) {

 case 'INCREMENT':

 return { count: state.count + 1 };

 case 'DECREMENT':

 return { count: state.count - 1 };

 case 'RESET':

 return { count: 0 };

 default:

 return state;

 }

};

const Counter = () => {

 // Initialize state using useReducer

 const [state, dispatch] = useReducer(reducer, { count: 0 });

 return (

 <div>

 <h1>Count: {state.count}</h1>

 <button onClick={() => dispatch({ type: 'INCREMENT'

})}>Increment</button>

 <button onClick={() => dispatch({ type: 'DECREMENT'

})}>Decrement</button>

 <button onClick={() => dispatch({ type: 'RESET' })}>Reset</button>

 </div>

);

};

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

20

export default Counter;

In this example:

We define a reducer function that takes state and action parameters and returns a new

state based on the action type.

The Counter component uses useReducer to manage the state. It initializes the state

with { count: 0 } and provides the reducer function.

Inside the component, we use the dispatch function returned by useReducer to

dispatch actions with different types (INCREMENT, DECREMENT, RESET).

When a button is clicked, it dispatches the corresponding action to update the state

based on the logic defined in the reducer.

To use this Counter component, you can import it into your main application file and

render it:

import React from 'react';

import Counter from './Counter';

const App = () => {

 return (

 <div>

 <h1>Counter App</h1>

 <Counter />

 </div>

);

};

export default App;

Now, when you run your application, you'll see the Counter component with buttons to

increment, decrement, and reset the count. The state updates and re-renders based on the

actions dispatched to the reducer.

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

21

 useReducer – simple state and action

Certainly! Here's an example of using useReducer hook in React to manage a simple state

and actions:

import React, { useReducer } from 'react';

// Reducer function

const reducer = (state, action) => {

 switch (action.type) {

 case 'INCREMENT':

 return { count: state.count + 1 };

 case 'DECREMENT':

 return { count: state.count - 1 };

 case 'RESET':

 return { count: 0 };

 default:

 return state;

 }

};

const Counter = () => {

 // Initialize state using useReducer

 const [state, dispatch] = useReducer(reducer, { count: 0 });

 return (

 <div>

 <h1>Count: {state.count}</h1>

 <button onClick={() => dispatch({ type: 'INCREMENT' })}>Increment</button>

 <button onClick={() => dispatch({ type: 'DECREMENT' })}>Decrement</button>

 <button onClick={() => dispatch({ type: 'RESET' })}>Reset</button>

 </div>

);

};

export default Counter;

In this example:

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

22

We define a reducer function that takes state and action parameters and returns a new state

based on the action type.

The Counter component uses useReducer to manage the state. It initializes the state with {

count: 0 } and provides the reducer function.

Inside the component, we use the dispatch function returned by useReducer to dispatch

actions with different types (INCREMENT, DECREMENT, RESET).

When a button is clicked, it dispatches the corresponding action to update the state based on

the logic defined in the reducer.

To use this Counter component, you can import it into your main application file and

render it:

import React from 'react';

import Counter from './Counter';

const App = () => {

 return (

 <div>

 <h1>Counter App</h1>

 <Counter />

 </div>

);

};

export default App;

In this example:

We define a reducer function that takes state and action parameters and returns a new state

based on the action type.

The Counter component uses useReducer to manage the state. It initializes the state with {

count: 0 } and provides the reducer function.

Inside the component, we use the dispatch function returned by useReducer to dispatch

actions with different types (INCREMENT, DECREMENT, RESET).

When a button is clicked, it dispatches the corresponding action to update the state based on

the logic defined in the reducer.

To use this Counter component, you can import it into your main application file and

render it:

import React from 'react';

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

23

import Counter from './Counter';

const App = () => {

 return (

 <div>

 <h1>Counter App</h1>

 <Counter />

 </div>

);

};

export default App;

When you run this code, you'll see the Counter component with buttons to increment,

decrement, and reset the count. The state updates and re-renders based on the actions

dispatched to the reducer.

 multiple useReducers
 Using multiple useReducers in a React component can be helpful for managing

different parts of the state independently. Each useReducer manages a specific portion

of the state and has its own reducer function. Here's an example of how you can use

multiple useReducers in a React component:

import React, { useReducer } from 'react';

// First reducer function

const reducer1 = (state, action) => {

 switch (action.type) {

 case 'INCREMENT':

 return { count: state.count + 1 };

 case 'DECREMENT':

 return { count: state.count - 1 };

 default:

 return state;

 }

};

// Second reducer function

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

24

const reducer2 = (state, action) => {

 switch (action.type) {

 case 'TOGGLE':

 return { isOn: !state.isOn };

 default:

 return state;

 }

};

const MultipleReducers = () => {

 // Initialize state using two useReducers

 const [state1, dispatch1] = useReducer(reducer1, { count: 0 });

 const [state2, dispatch2] = useReducer(reducer2, { isOn: false });

 return (

 <div>

 {/* Counter */}

 <h2>Counter</h2>

 <h3>Count: {state1.count}</h3>

 <button onClick={() => dispatch1({ type: 'INCREMENT'

})}>Increment</button>

 <button onClick={() => dispatch1({ type: 'DECREMENT'

})}>Decrement</button>

 {/* Toggle */}

 <h2>Toggle</h2>

 <h3>State: {state2.isOn ? 'On' : 'Off'}</h3>

 <button onClick={() => dispatch2({ type: 'TOGGLE' })}>Toggle</button>

 </div>

);

};

export default MultipleReducers;

In this example:

We define two separate reducer functions (reducer1 and reducer2) to manage different parts

of the state.

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

25

We use useReducer twice in the MultipleReducers component to create two separate state

slices (state1 and state2), each with its own reducer and initial state.

The component renders two sections: one for the counter (state1) and another for the toggle

state (state2).

Each section has its own set of actions (INCREMENT and DECREMENT for the counter,

TOGGLE for the toggle state) that are dispatched to their respective reducers using

dispatch1 and dispatch2.

To use the MultipleReducers component, you can import it into your main application file

and render it:

import React from 'react';

import MultipleReducers from './MultipleReducers';

const App = () => {

 return (

 <div>

 <h1>Multiple Reducers App</h1>

 <MultipleReducers />

 </div>

);

};

export default App;

Now, when you run your application, you'll see the MultipleReducers component with

separate state management for the counter and the toggle functionality.

 useContext

The useContext hook in React allows you to consume a context that has been created using

the createContext function. Context provides a way to pass data through the component

tree without having to pass props down manually at every level. Here's an example of how

to use the useContext hook:

First, let's create a context and a provider for that context:

// MyContext.js

import React, { createContext, useState } from 'react';

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

26

// Create a context

const MyContext = createContext();

// Create a provider for the context

const MyProvider = ({ children }) => {

 const [count, setCount] = useState(0);

 const incrementCount = () => {

 setCount(prevCount => prevCount + 1);

 };

 return (

 <MyContext.Provider value={{ count, incrementCount }}>

 {children}

 </MyContext.Provider>

);

};

export { MyContext, MyProvider };

In the code above:

We create a context called MyContext using createContext().

We create a provider component called MyProvider that wraps its children with

MyContext.Provider and provides the context value { count, incrementCount }.

Inside the provider, we have a state variable count and a function incrementCount to update

the count.

Now, let's use this context and provider in a component using the useContext hook:

import React, { useContext } from 'react';

import { MyContext } from './MyContext';

const MyComponent = () => {

 // Use the useContext hook to consume the context

 const { count, incrementCount } = useContext(MyContext);

 return (

 <div>

 <h1>Count: {count}</h1>

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

27

 <button onClick={incrementCount}>Increment Count</button>

 </div>

);

};

export default MyComponent;

In the MyComponent:

We import the MyContext context from MyContext.js.

We use the useContext hook to access the context values (count and incrementCount).

We render the count and a button that triggers the incrementCount function when clicked.

Finally, to make this work, you need to wrap your component tree with the MyProvider

component at the top level:

import React from 'react';

import MyComponent from './MyComponent';

import { MyProvider } from './MyContext';

const App = () => {

 return (

 <MyProvider>

 <MyComponent />

 </MyProvider>

);

};

export default App;

Now, when you run your application, MyComponent will have access to the context

values provided by MyProvider through the useContext hook.

 UseReducer
The useReducer hook in React is used for managing state in a more complex manner

than what's possible with the useState hook alone. It's particularly useful when the state

logic involves multiple actions and transitions. Here's a detailed example of how to use

useReducer:

First, let's define a reducer function. This function takes the current state and an action,

and returns a new state based on the action type:

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

28

const initialState = {

 count: 0,

};

const reducer = (state, action) => {

 switch (action.type) {

 case 'increment':

 return { count: state.count + 1 };

 case 'decrement':

 return { count: state.count - 1 };

 case 'reset':

 return initialState;

 default:

 throw new Error('Unhandled action');

 }

};

In this example, our state has a single property count, and the reducer handles three

types of actions: increment, decrement, and reset.

Now, let's use the useReducer hook in a component:

import React, { useReducer } from 'react';

const Counter = () => {

 const [state, dispatch] = useReducer(reducer, initialState);

 return (

 <div>

 <h1>Count: {state.count}</h1>

 <button onClick={() => dispatch({ type: 'increment' })}>Increment</button>

 <button onClick={() => dispatch({ type: 'decrement' })}>Decrement</button>

 <button onClick={() => dispatch({ type: 'reset' })}>Reset</button>

 </div>

);

};

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

29

export default Counter;

In the Counter component:

We initialize our state using useReducer, passing the reducer function and the initial

state (initialState).

We destructure state and dispatch from the return value of useReducer.

We render the count from the state, and three buttons that dispatch actions (increment,

decrement, reset) when clicked.

Finally, you can use the Counter component in your main application:

import React from 'react';

import Counter from './Counter';

const App = () => {

 return (

 <div>

 <h1>Counter App</h1>

 <Counter />

 </div>

);

};

export default App;

Now, when you run your application, you'll see the Counter component with buttons to

increment, decrement, and reset the count. The state updates and re-renders based on

the actions dispatched to the reducer.

 Fetching data with useReduer

 To fetch data using useReducer, you'll typically combine it with useEffect to perform

asynchronous operations. Here's an example of fetching data using useReducer:

First, let's define the initial state and the reducer function for handling actions related to

fetching data:

const initialState = {

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

30

 data: null,

 loading: true,

 error: null,

};

const reducer = (state, action) => {

 switch (action.type) {

 case 'FETCH_SUCCESS':

 return { ...state, data: action.payload, loading: false, error: null };

 case 'FETCH_ERROR':

 return { ...state, data: null, loading: false, error: action.payload };

 default:

 throw new Error('Unhandled action');

 }

};

 In this example, initialState contains data, loading, and error properties. The reducer

function handles two types of actions: FETCH_SUCCESS for successful data fetching

and FETCH_ERROR for errors during fetching.

Next, let's use useReducer and useEffect to fetch data in a component:

import React, { useReducer, useEffect } from 'react';

const fetchDataReducer = (state, action) => {

 switch (action.type) {

 case 'FETCH_REQUEST':

 return { ...state, loading: true, error: null };

 case 'FETCH_SUCCESS':

 return { ...state, data: action.payload, loading: false, error: null };

 case 'FETCH_ERROR':

 return { ...state, loading: false, error: action.payload };

 default:

 throw new Error('Unhandled action');

 }

};

const FetchDataExample = () => {

 const [state, dispatch] = useReducer(fetchDataReducer, initialState);

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

31

 useEffect(() => {

 const fetchData = async () => {

 dispatch({ type: 'FETCH_REQUEST' });

 try {

 const response = await fetch('https://jsonplaceholder.typicode.com/posts/1');

 if (!response.ok) {

 throw new Error('Failed to fetch data');

 }

 const data = await response.json();

 dispatch({ type: 'FETCH_SUCCESS', payload: data });

 } catch (error) {

 dispatch({ type: 'FETCH_ERROR', payload: error.message });

 }

 };

 fetchData();

 }, []);

 return (

 <div>

 {state.loading ? (

 <div>Loading...</div>

) : state.error ? (

 <div>Error: {state.error}</div>

) : (

 <div>

 <h1>Data:</h1>

 <pre>{JSON.stringify(state.data, null, 2)}</pre>

 </div>

)}

 </div>

);

};

export default FetchDataExample;

In this example:

We define a fetch Data Reducer function that handles actions related to fetching data.

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

32

We use useReducer to manage state based on this reducer function and initial State.

We use useEffect to trigger the data fetching operation when the component mounts

([] dependency array indicates this effect runs once on mount).

Inside useEffect, we define an asynchronous function fetch Data to fetch data from an

API and dispatch appropriate actions based on success or failure.

When you render the Fetch Data Example component, it will fetch data from the API and

display either the data, a loading message, or an error message based on the state managed

 by useReducer. Adjust the API URL and error handling logic as per your requirements.

 useState vs useReducer
useState and useReducer are two React hooks used for managing state, but they serve

different purposes and are suitable for different scenarios. Let's compare useState and

useReducer based on their features and use cases:

useState:

Simple State Management: useState is used for managing simple state values, such as

numbers, strings, booleans, or objects.

Single State Variable: It manages a single state variable per hook usage.

Update Function: It provides a function to update the state, which can be used to perform

state transitions.

Usage: Ideal for managing independent or localized state within a component.

Example:

import React, { useState } from 'react';

const Counter = () => {

 const [count, setCount] = useState(0);

 const increment = () => setCount(count + 1);

 const decrement = () => setCount(count - 1);

 return (

 <div>

 <h1>Count: {count}</h1>

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

33

 <button onClick={increment}>Increment</button>

 <button onClick={decrement}>Decrement</button>

 </div>

);

};

export default Counter;

useReducer:

Complex State Management: useReducer is used for managing more complex state logic,

especially when state transitions involve multiple actions.

Reducer Function: It uses a reducer function to handle state updates based on dispatched

actions.

Multiple State Variables: It allows managing multiple state variables within a single state

object.

Usage: Suitable for managing global or shared state, or when state updates involve complex

logic or multiple actions.

Example:

import React, { useReducer } from 'react';

const initialState = { count: 0 };

const reducer = (state, action) => {

 switch (action.type) {

 case 'increment':

 return { count: state.count + 1 };

 case 'decrement':

 return { count: state.count - 1 };

 default:

 throw new Error('Unhandled action');

 }

};

const Counter = () => {

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

34

 const [state, dispatch] = useReducer(reducer, initialState);

 return (

 <div>

 <h1>Count: {state.count}</h1>

 <button onClick={() => dispatch({ type: 'increment' })}>Increment</button>

 <button onClick={() => dispatch({ type: 'decrement' })}>Decrement</button>

 </div>

);

};

export default Counter;

In summary, use useState for simple and localized state management within a component,

and use useReducer for more complex state management involving multiple state variables

and actions, especially when managing global or shared state. Choose the appropriate hook

based on the complexity and nature of your state logic.

