[Total Marks: 70]
Time: 1:30 to 04:00
Q.1(A): Answer the following question in short:
(1) Write the equation of the sphere with center (α, β, γ) and radius a.
(2) Find the center and radius of the sphere $|\bar{r}|^{2}-2 \bar{r} \cdot(1,1,1)-1=0$
(3) Define: Right circular cylinder
(4) Write the equation of cylinder whose axis is parallel to X -axis an radius r .
(B) Attempt any one out of two:
[02]
(1) Find the radius of the circle that is obtain as intersection of the plane $x+2 y+2 z=15$ and the sphere is $x^{2}+y^{2}+z^{2}-2 y-4 z-20=0$
(2) Find the equation of the sphere through the circle $x^{2}+y^{2}+z^{2}=9,2 x+3 y+4 z=5$ and point $(1,2,3)$
(C) Attempt any one out of two:
[03]
(1) Obtain the equation of the sohere having the circle $x^{2}+y^{2}+z^{2}+10 y-4 z-8=0$, $x+y+z=3$ as the great circle.
(2) Find the equation of the cylinder whose generator is parallel to $\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$ and passing through $x^{2}+x y+y^{2}=1 ; z=0$
(D) Attempt any one out of two:
[05]
(1) Derive the equation of cylinder whose generator is parallel to $\frac{x}{l}=\frac{y}{m}=\frac{z}{n}$ and passing through the guiding curve $\mathrm{ax}^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0, z=0$
(2) Show that the plane $2 x-2 y+z+12=0$ touches the sphere $x^{2}+y^{2}+z^{2}-2 x-4 y+2 z-3=0$ and find the point of contact.
Q-2 (A) Answer the following question in short:
(1) If $u=\log (\tan x+\tan y)$ then $\sin 2 x \partial u \partial x+\sin 2 y \partial u \partial y=$ \qquad
(2) If $u=\sqrt[{\sqrt[4]{x}+\sqrt[4]{x}}]{\sqrt[3]{x}+\sqrt[3]{x}}$ then find homogeneous degree of the function
(3) If $u=f(x+a t)+g(x-a t)$ then find $\frac{\partial^{2} u}{\partial x^{2}}=$ \qquad
(4) What is implicit function?
(B) Attempt any one out of two:
(1) If $\mathrm{f}(\mathrm{x}, \mathrm{y})=\frac{x\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)} ;(\mathrm{x}, \mathrm{y}) \neq(0,0)$

$$
=0 \quad ;(\mathrm{x}, \mathrm{y})=(0,0) \text { at }(0,0)
$$

Then find f_{x} and f_{y} of the function.
(2) If $\mathrm{w}=\frac{y}{z}+\frac{x}{y}+\frac{z}{x}$ then p.t $\mathrm{x} \frac{\partial w}{\partial x}+\mathrm{y} \frac{\partial_{w}}{\partial_{y}}+z \frac{\partial_{w}}{\partial_{z}}=0$
(C) Attempt any one out of two:
(1) Verify Euler's theorem for the $\mathrm{u}=\mathrm{x}+\left(\frac{y}{x}\right)$
(2) If $\mathrm{u}=\tan ^{-1}\left(\frac{x^{3}+y^{3}}{x-y}\right)$ then prove that $x \frac{d u}{d x}+y \frac{d u}{d y}=\sin 2 u$
(D) Attempt any one out of two:
[05]
(1) If $z(x+y)=x^{2}+y^{2}$ show that $\left(\frac{d z}{d x}-\frac{d z}{d y}\right)^{2}=4\left(1-\frac{d z}{d x}-\frac{d z}{d y}\right)$
(2) If u is a homogenous function of x, y of degree n then prove that $x^{2} \frac{d^{2} u}{d x^{2}}+2 x y \frac{d^{2} u}{d x d y}+y^{2} \frac{d^{2} u}{d y^{2}}=n(n-1) u$

Q-3 (a) Answer the following question in short:
[04]
(1) Define: jacobian.
(2) Find jecobian for cylindrical coordinates
(3) If $u=\frac{x+y}{1-x y} \quad v=\tan ^{-1}+\tan ^{-1}$ then find $\frac{\partial(u, v)}{\partial(x, y)}$
(4) If $x=\cos \theta$ and $y=\sin \theta$ then find jecobian.
(b) Attempt any one out of two:
(1) If $f(x, y)=x^{2} y-3 y$ then find the approximate value of $f(5.12,6.85)$
(2) If there is 0.05% error obtain in measurement of length of sides of rectangle then what should be error in the measurement of its area.
(c) Attempt any one out of two:
[03]
(1) Find the maximum value of $f(x, y, z)=x y z$ subject to the constraint $2 x+2 y+z=108$
(2) Find minima or maxima for the equation $f(x, y)=x^{2}+2 y^{2}-x$.
(d) Attempt any one out of two:
[05]
(1) State and prove tailor's theorem
(2) Expand $x^{2}+3 y-2$ in power of $x-2$ and $y-3$.

Q-4 (a) Answer the following question in short:
(1) Define: orthogonal matrix.
(2) Define: involuntary matrix.
(3)Define: rank of matrix.
(4) What is the value of $\left|\begin{array}{ccc}10 & 4 & 6 \\ 12 & 25 & 50 \\ 5 & 2 & 3\end{array}\right|$?
(b) Attempt any one out of two:
[02]
(1) Check weather matrix $\left[\begin{array}{ccc}0 & 4 & 3 \\ 1 & -3 & -3 \\ -1 & 4 & 4\end{array}\right]$ is involuntary matrix or not?
(2) If $A=\left[\begin{array}{cc}1 & 2 \\ -1 & 3\end{array}\right]$ then find A^{-1}.
(c) Attempt any one out of two:
(1) If $\left[\begin{array}{ccc}0 & 2 m & n \\ l & m & -n \\ l & -m & n\end{array}\right]$ is orthogonal then find $1, m$ and n.
(2)Prove associative law of matrices.
(d) Attempt any one out of two:
(1) every square matrix can be uniquely expressed as a sum of symmetric and anti symmetric matrix.
(2)Using elementary row transformation find the inverse of matrix $\left[\begin{array}{ccc}2 & 1 & -1 \\ 0 & 2 & 1 \\ 5 & 2 & -3\end{array}\right]$

Q-5(a) Answer the following question in short:

(1) Find characteristic equation given matrix $\left[\begin{array}{lll}3 & 5 & 8 \\ 0 & 2 & 8 \\ 7 & 2 & 4\end{array}\right]$
(2) Define: eigen value
(3) What is the rank of identity matrix.
(4) In usual notation if A is any square matrix then $A^{*}=$?
(b) Attempt any one out of two:
(1)If $A=\left[\begin{array}{cc}1 & 2 \\ -1 & 3\end{array}\right]$ then find A^{-1}
(2)If matrix A is idempotent then prove that matrix $I-A$ is also idempotent
(c) Attempt any one out of two:
(1) find rank of matrix $\left[\begin{array}{ccc}0 & -1 & -2 \\ 8 & 9 & 10 \\ 8 & 8 & 8\end{array}\right]$
(2) Prove that for a hermitian matrix two eigen vector corresponding to two different eigen values are orthogonal to each other.
(d) Attempt any one out of two:
(1)Test for consistency and solve
$5 x+3 y+7 z=4,3 x+26 y+2 z=9,7 x+2 y+10 z=5$
(2)State and prove caley hemilton theorem.

ALL THE BEST

