

Shree H.N. Shukla College of Science M.Sc. (Mathematics) Sem-1 IMP questions of Real Analysis

- 1. Outer measure of any interval is its length.
- 2. Let E_1 and E_2 are measurable sets then show that $E_1 \cup E_2$ is measurable.
- 3. Lebesgue measure is translation invariant.
- 4. Let $E \subseteq \mathbb{R}$ be measurable set than there exists a G_{δ} set G in \mathbb{R} with $E \subseteq G$ Such that $m^*(G) = m^*(E)$.
- 5. If f be measurable functions define on measurable set E and f = g a.e on E then g be a measurable.
- 6. f and g are bounded measurable functions define on measurable set E of finite measure then $\int_E f + g = \int_E f + \int_E g$.
- 7. f and g are non negative measurable functions define on measurable set E then $\int_E f + g = \int_E f + \int_E g.$
- 8. f and g are bounded measurable functions define on measurable set E of finite measure then $\int_E f + g = \int_E f + \int_E g$.
- 9. f and g are measurable functions which are integrable over measurable set E then f+g is integrable over E and $\int_E f + g = \int_E f + \int_E g$.
- 10. f and g are measurable functions which are integrable over measurable set E

 $f \leq g$ a.e on E than $\int_E f \leq \int_E g$.

- 11. State and Prove bounded convergence theorem.
- 12. State and Prove monotone convergence theorem.
- 13. State and Prove Lebesgue convergence theorem.
- 14. State and prove Fatou's lemma
- 15. State Fatou's lemma. Show that we may have strict inequality in Fatou's lemma.
- 16. Let $\langle f_n \rangle$ be a sequence of measurable function defined on E and f be A measurable real valued function define on E such that $f_n \rightarrow f$ in measure On E. Show that there is a subsequence $\langle fn_k \rangle$ which is converges to f a.e on E.

17. If $f \in BV[a,b]$ than $P_b^a(f) + N_b^a(f) = T_b^a(f)$.

- 18. If $f \in BV[a,b]$ than $P_b^a(f) N_b^a(f) = f(b)-f(a)$.
- 19. f is function of bounded variation on [a,b] if and only if there are two monotonically increasing function g and h define on [a,b] such that f = g-h.

20. g : [0,1]→R define by

 $g(x) = x^2(\sin(1/x^2))$ if $x \neq 0$

= 0 if x = 0

then show that g is not function of bounded variation on [0,1].

- 21. If f is integrable over on [a,b] and $\int_a^x f(t)dt = 0$ for all $x \in [a,b]$ then show that f = 0 a.e on [a,b].
- 22. f is measurable functions define on [a,b] such that f is integrable over [a,b]. Let F: [a,b] $\rightarrow \mathbb{R}$ define by

$$F(x) = \int_{a}^{x} f(t)dt$$
 than If $F \in BV[a,b]$.

23. f is bounden and measurable functions define on [a,b]. Let $F: [a,b] \rightarrow \mathbb{R}$ define by

$$F(x) = \int_{a}^{x} f(t)dt \text{ than } F'(x) = f(x) \text{ a.e on [a,b]}.$$

- 24. f: $[a,b] \rightarrow \mathbb{R}$ is absolutely continues than $f \in BV[a,b]$.
- 25. If f is integrable over on [a,b] Let F: $[a,b] \rightarrow \mathbb{R}$ define by

 $F(x) = \int_{a}^{x} f(t) dt$ than F is absolutely continues.

- 26. State and prove Holder's inequality.
- 27. State and prove Minkowski's inequality.