

MASTER OF SCIENCE MATHEMATICS Examination

MSC MATHS Semester - 4 MARCH 2025 (Regular) MARCH - 2025

INTEGRATION THEORY Faculty Code: 003 Subject Code: 16SIcMSMA-CO-04-00002 [Total Warks : 70 Time: 230 Hours Instruction All questions are compulsary Answer Briefly any seven of the following (Out of ten) Q.1 14

- Define with example: Signed Measure on measurable space.
- Prove or disprove 'A measure zero set is null set'.

 - Define Positive and negative set with respect to a signed measure.

 State Radon Nikodym theorem for Signed measures.

 If $(A_i, b_i), i = 1, 2$ are Hahn-decomposition of X with respect to signed measure μ then show that $A_1 \triangle A_2$ is pull sets with respect to X. $A_1 \Delta A_2$ is null sets with respect to μ .
 - Define with example: A measure absolutely continuous with respect to another measure.
 - Define with example: Complete measure.
- Define with example: Semi Algebra of subsets of set.
- 9 State Tonelli's theorem without proof.
- 10 Define Baire sets in a locally compact Hausdorff space.
- Q.2 Shower the following (Any Two) 14 Let $^{\mathcal{A}}$ be the $^{\sigma}$ - algebra of all Lebesgue measure bets in $^{\mathbb{R}}$, $^{\mu}$ be the Lebesgue measure on $^{\mathbb{R}}$ and $f: \mathbb{R} \to [0, \infty]$ be a non negative Lebesgue measurable function then show that $\gamma: A \to [0, \infty]$ defined by $\gamma(E) = \int_E f \, d\mu \quad \forall E \in A$ is a measure on (\mathbb{R}, A) defined by $\gamma(E) = \int_{E} f d\mu$, $\forall E \in \mathcal{A}$ is a measure on $(\mathbb{R}, \mathcal{A})$. State and prove Hahn decomposition theorem.
 - Define σ algebra of subset of a set X. If X says set then prove that $\mu: P(X) \to [0,\infty]$

$$\mu(A) = \begin{cases} \text{the number of elements} & ; \text{ if A is finite} \\ \infty & ; \text{ if A is infinite} \end{cases}$$

is measure on (X, P(X))

- Q.3 Answer the following
 - State and prove Lebesgue decomposition theorem.

Answer the following State and prove Caratheodory extension theorem. State and prove Cara.

Let μ be a measure on an algebra μ of subset of a set μ and μ be the outer measure on μ induced by 1 2 μ then prove that every element $E \in \mathcal{A}$ is μ^* (see a surable. Θ Q.4 Answer the following questions (Any Two) wer the following questions (Any Two Space of two σ -finite complete measure spaces ($X, \mathcal{E}, \mathcal{E}, \mathcal{E}, \mathcal{E}, \mathcal{E}, \mathcal{E}$) be the product measure space of two σ -finite complete measure spaces ($X, \mathcal{E}, \mathcal{E},$ $(Y, \mathcal{B}, \gamma) E \in \mathcal{R}_{\sigma\delta}$ and $(\mu \times \gamma)(E) < \infty$ then show that, $g: X \to [0,\infty]$ $g(x) = \gamma(E_x), \ \forall x \in X \text{ is measurable and } \int \overline{g} \, d\mu = (\mu \times \gamma)(E)$ Describe by example that the hypothesis "the non negativity of f" in Tonnelli's Q.5 Answer the following (Any Two) Let $(X \times Y, \mathcal{F}, \mu \times \gamma)$ be the product measure space of two σ -finite complete measure spaces. \mathcal{R} be the 1 14 semialgebra of measurable rectangles in $X \times Y \subset \mathcal{E} \in \mathcal{R}_{\sigma \delta}$ and $x \in X$ then show that E_x is a measurable A-J010729936 Let^X compace Hausdorff locally $C_c(x) = \{f: X \to \mathbb{R}/f \text{ is continuous and supp } f \text{ is compact in } X\}$ is vector space over \mathbb{R} with respect to pointwise addition and scalar multiplication. Prove that every compact Baire set K in a local Compact Housdorff space X is ${}^{G_{\overline{b}}}$. Let X be a locally compact Hausdorff space. M be a G - algebra of subsets of X such that $M \supset B_{\alpha}(X)$ and M is reflect. $m \supset B_a(X)$ and μ be a finite measure on $(X)^{\mu}$. Then prove that if μ is inner regular then μ is regular.

Describe by example that the hypothesis ' μ is σ -finite" in Radon-Nikodym theorem can not be dropped.

2