Shree H.N. Shukla College of Science
 M.Sc. (Mathematics) Sem-3
 IMP questions of Number Theory-1

1. State and Prove : Division Algorithm
2. Let a and b be integers such that $a \neq 0$ or $b \neq 0$ then the GCD of a and b exist and $g=\operatorname{gcd}(a, b)$ then $g=a x_{0}+b_{0}$ for some integer x_{0} and y_{0}
3. State and Prove : Euclid's Algorithm
4. State and Prove : Fundamental theorem of Arithmatic
5. Prove that There are infinitely many prime numbers.
6. Let $\mathrm{m} \neq 0$ then $\mathrm{ax} \equiv \mathrm{ay}(\bmod \mathrm{m})$ if and only if $\mathrm{x} \equiv \mathrm{y}\left(\bmod \frac{m}{(a, m)}\right)$
7. State and Prove : Euler's Theorem
8. State and Prove : Wilson's Theorem
9. Let p be a prime number then there is an integer x_{0} which satisfies $\mathrm{x}^{2}+1 \equiv 0(\bmod \mathrm{p})$ iff $\mathrm{p}=2$ or $p=4 k+1$, for some k
10. If p is prime of the form $4 k+3$ and p divides $a^{2}+b^{2}$ then p divides a and p divides b.
11. State and Prove: Chinese remainder theorem
12. Prove that: Suppose $f(x) \equiv 0(\bmod p)$ has degree n then number of solutions of $f(x) \equiv 0(\bmod p)$ in any $\operatorname{CRS}(\bmod \mathrm{p})$ is less than or equal to n .
13. State and Prove : Hensel's lemma
14. Let $m, m_{1}, m_{2} \geq 1, m=m_{1} m_{2}$ and $\left(m_{1}, m_{2}\right)=1$. Then number of Solutions of $f(x) \equiv 0(\bmod m)$ is equal to the number of solution of $f(x) \equiv 0\left(\bmod m_{1}\right) \times$ the number of solution of $f(x) \equiv 0\left(\bmod m_{2}\right)$
15. Let $m \geq 1$ and g be a primitive root of m then the set $S=\left\{1, g, g^{2}, \ldots, g^{\varphi(m)-1}\right\}$ is RRS $(\bmod m)$
16. If p is a prime number then p has a primitive roots and p has exactly $\varphi(p-1)$ primitive $\operatorname{root}(\bmod p)$
17. If p is a prime number then p^{2} has $(p-1) \varphi(p-1)$ primitive roots $\left(\bmod \mathrm{p}^{2}\right)$
18. If p is a prime number $n \geq 1$ and $p \nmid a$ then either $x^{n} \equiv a(\bmod p)$ has no solutions or there are $\operatorname{gcd}(\mathrm{n}, \mathrm{p}-1)$ solutions $($ in any $\mathrm{CRS}(\bmod \mathrm{p}))$ Also $x^{n} \equiv a(\bmod p)$ has a solution if $a^{\frac{p-1}{(n, p-1)}} \equiv 1(\bmod p)$
19. Let $\alpha \geq 3$ then the set $S=\left\{-5^{2^{\alpha-2}}, \ldots,-5^{3},-5^{2},-5,5,5^{2}, \ldots, 5^{2^{\alpha-2}}\right\}$ is a $\operatorname{RRS}\left(\bmod 2^{\alpha}\right)$
20. Suppose $n \geq 1$ is odd, $\alpha \geq 3$ and a is and integer. Then $x^{n} \equiv a\left(\bmod 2^{\alpha}\right)$ has a unique solution any $\mathrm{CRS}(\mathrm{RRS})\left(\bmod 2^{\alpha}\right)$
21. Suppose $n>1$ is an even number, $\alpha \geq 3$ and a is an odd integer. Let $2^{\beta}=\left(n, 2^{\alpha-2}\right)$.Then $x^{n} \equiv a\left(\bmod 2^{\alpha}\right)$ has $2^{\beta+1}$ solutions, if $a \equiv 1\left(\bmod 2^{\beta+2}\right)$ and no solution otherwise.
22. Suppose $m, m_{1}, m_{2} \geq 1, m=m_{1} m_{2},\left(m_{1}, m_{2}\right)=1$ and $\left(\varphi\left(m_{1}\right), \varphi\left(m_{2}\right)\right) \geq 2$. Then m does not have a primitive root.
23. Let $n \geq 1$, p be a prime number. if $\mathrm{e}=$ the highest power of p which devides n ! then $e=$ $\sum_{j=1}^{\infty}\left[\frac{n}{p^{j}}\right]$.
24. Let $m \geq 1, m_{1}, m_{2}, \ldots, m_{k} \geq 1$ and $m=m_{1}+m_{2}+\cdots+m_{k}$ then $\frac{m!}{m_{1}!m_{2}!\ldots m_{k}!}$ is an integer.
25. Suppose $f: \mathbb{N} \rightarrow \mathbb{C}$ is a multiplicative function. Define $F: \mathbb{N} \rightarrow \mathbb{C}$ as $F(n)=\sum_{d \mid n} f(d)$ Then F is a multiplicative function.
26. State and Prove : Mobius Inversion Theorem
