

Shree H.N. Shukla College of Science M.Sc. (Mathematics) Sem-3 IMP questions of Number Theory-1

- 1. State and Prove : Division Algorithm
- 2. Let a and b be integers such that $a \neq 0$ or $b \neq 0$ then the GCD of a and b exist and g=gcd(a,b) then $g = ax_0 + by_0$ for some integer x_0 and y_0
- 3. State and Prove : Euclid's Algorithm
- 4. State and Prove : Fundamental theorem of Arithmatic
- 5. Prove that There are infinitely many prime numbers.
- 6. Let $m \neq 0$ then $ax \equiv ay \pmod{m}$ if and only if $x \equiv y \pmod{\frac{m}{(am)}}$
- 7. State and Prove : Euler's Theorem
- 8. State and Prove : Wilson's Theorem
- 9. Let p be a prime number then there is an integer x_0 which satisfies $x^2 + 1 \equiv 0 \pmod{p}$ iff p=2 or p=4k + 1, for some k
- 10. If p is prime of the form 4k+3 and p divides a^2+b^2 then p divides a and p divides b.
- 11. State and Prove : Chinese remainder theorem
- 12. Prove that : Suppose $f(x) \equiv 0 \pmod{p}$ has degree n then number of solutions of $f(x) \equiv 0 \pmod{p}$ in any CRS(mod p) is less than or equal to n.
- 13. State and Prove : Hensel's lemma
- 14. Let $m, m_1, m_2 \ge 1, m = m_1m_2$ and $(m_1, m_2) = 1$. Then number of Solutions of $f(x) \equiv 0 \pmod{m}$ is equal to the number of solution of $f(x) \equiv 0 \pmod{m_1} \times$ the number of solution of $f(x) \equiv 0 \pmod{m_2}$
- 15. Let $m \ge 1$ and g be a primitive root of m then the set $S = \{1, g, g^2, ..., g^{\varphi(m)-1}\}$ is RRS (mod m)
- 16. If p is a prime number then p has a primitive roots and p has exactly $\varphi(p-1)$ primitive root (mod p)
- 17. If p is a prime number then p^2 has $(p-1)\varphi(p-1)$ primitive roots (mod p^2)
- 18. If p is a prime number $n \ge 1$ and $p \nmid a$ then either $x^n \equiv a \pmod{p}$ has no solutions or there are gcd(n,p-1) solutions (in any CRS(mod p)) Also $x^n \equiv a \pmod{p}$ has a solution if $a^{\frac{p-1}{(n,p-1)}} \equiv 1 \pmod{p}$
- 19. Let $\alpha \ge 3$ then the set $S = \{-5^{2^{\alpha-2}}, \dots, -5^3, -5^2, -5, 5, 5^2, \dots, 5^{2^{\alpha-2}}\}$ is a RRS(mod 2^{α})
- 20. Suppose $n \ge 1$ is odd, $\alpha \ge 3$ and α is and integer. Then $x^n \equiv a \pmod{2^{\alpha}}$ has a unique solution any CRS(RRS) (mod 2^{α})
- 21. Suppose n > 1 is an even number, $\alpha \ge 3$ and a is an odd integer. Let $2^{\beta} = (n, 2^{\alpha-2})$. Then $x^n \equiv a \pmod{2^{\alpha}}$ has $2^{\beta+1}$ solutions, if $a \equiv 1 \pmod{2^{\beta+2}}$ and no solution otherwise.
- 22. Suppose $m, m_1, m_2 \ge 1, m = m_1 m_2, (m_1, m_2) = 1$ and $(\varphi(m_1), \varphi(m_2)) \ge 2$. Then m does not have a primitive root.
- 23. Let $n \ge 1$, p be a prime number. if e = the highest power of p which devides n! then $e = \sum_{j=1}^{\infty} \left[\frac{n}{n^j}\right]$.

24. Let $m \ge 1, m_1, m_2, ..., m_k \ge 1$ and $m = m_1 + m_2 + \dots + m_k$ then $\frac{m!}{m_1!m_2!\dots m_k!}$ is an integer. 25. Suppose $f: \mathbb{N} \to \mathbb{C}$ is a multiplicative function. Define $F: \mathbb{N} \to \mathbb{C}$ as $F(n) = \sum_{\substack{d \mid n \\ d \ge 1}} f(d)$ Then F

is a multiplicative function.

26. State and Prove : Mobius Inversion Theorem