<u>T.Y.B.Sc. SEM – V</u>

Subject: Physics

Paper- 501

<u>Unit -1</u>

Fourier series

- Introduction
- Fourier series
- Co efficient of Fourier series
- Orthogonality condition
- Application of Fourier series
- Complex form of Fourier series
- Numerical

Miss. BHUMIKA NIMAVAT / PHY/ SEM- 5 / P- 501 / UNIT - 1 / FOURIER SERIES

✤ <u>TITLE JUSTIFICATION :</u>

The title justified as that in 1822 a French mathematician Joseph Fourier invented a **Fourier series** Function. According to Fourier series if we have any **periodic signal** (**means** that signal repeat itself after some particular time) we can calculate their time period and frequency. In short, "Fourier series is a way of representing a periodic function as a (possibly infinite) sum of **sine** and **cosine** functions." Fourier series is a very powerful method to solve ordinary and partial differential equations.

✤ <u>THEME :</u>

In this chapter we will study about the **Fourier series** which is useful to find out the **frequency** of the **periodic function**. The Fourier series is a particular way of rewriting functions as a series of trigonometric functions like in the form of Sine & Cosine for the wave function. For functions that are **not periodic**, the Fourier series is replaced by the **Fourier transform**. Fourier series also use as the **Signal** processing, **Image** Processing, **Heat** distribution, **Wave** simplification, **Radiation** measurement etc....

✤ INTRODUCTION :

* Fourier Series:

- Any piecewise smooth function defined on a finite interval has a Fourier series expansion.
- In 1822 French mathematician J.B. FOURIER invented Fourier series. It is an infinite series representation of periodic function in terms of the trigonometric sine and cosine functions.
 Fourier series is a very powerful method to solve ordinary and partial differential equations.
- Fourier series is possible not only for continuous functions but also for periodic functions, functions which are discontinuous in their values and derivatives.
- "A Fourier series is defined as an expansion of a periodic function or representation of a function in a series of sines and cosines, "

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx$$

Here is the coefficients \mathbf{a}_0 , \mathbf{a}_n and \mathbf{b}_n are the Fourier coefficients of f (x) defined as:

Fourier coefficients of f(x), given by the Euler formulas

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$$
$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx$$
$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx$$

SR.	QUESTION	ANSWER
NO		
1	Expansion of periodic function as sine and cosine is known as	Fourier series
2	What are the Fourier co efficient?	a_0 , a_n and b_n
3	Write the value of a_0 co efficient ?	$\frac{1}{2\pi}\int_{-\pi}^{\pi}f(x)dx$
4	Write the value of a_n co efficient ?	$\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$
5	Write the value of b_n co efficient ?	$\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$
6	Write the Fourier series equation in terms of sine & cosine.	$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx$

* Fourier Series Co - efficient :

Let us further assume that f(x) can be represented by a trigonometric series,

$$f(x) = a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) \qquad -\pi \le x \le \pi$$
....(A)

• FOR DETERMINATION OF **a**₀ :

if we integrate both side of equation (A) :

$$\int_{-\pi}^{\pi} f(x) \, dx = \int_{-\pi}^{\pi} a_0 \, dx + \int_{-\pi}^{\pi} \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right) \, dx$$
$$= 2\pi a_0 + \sum_{n=1}^{\infty} a_n \int_{-\pi}^{\pi} \cos nx \, dx + \sum_{n=1}^{\infty} b_n \int_{-\pi}^{\pi} \sin nx \, dx$$

but

$$\int_{-\pi}^{\pi} \cos nx \, dx = \frac{1}{n} \sin nx \bigg]_{-\pi}^{\pi} = \frac{1}{n} [\sin n\pi - \sin(-n\pi)] = 0$$

because n is an integer. Similarly,

$$\int_{-\pi}^{\pi} \sin nx \, dx = 0.$$
 So

$$\int_{-\pi}^{\pi} f(x) \, dx = 2\pi a_0$$

and solving for a₀ gives

• FOR DETERMINATION OF **a**_n :

For determine we have multiply equation A with cos mx and integrate with limits.

$$\int_{-\pi}^{\pi} f(x) \cos mx \, dx = \int_{-\pi}^{\pi} \left[a_0 + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right) \right] \cos mx \, dx$$
$$= a_0 \int_{-\pi}^{\pi} \cos mx \, dx + \sum_{n=1}^{\infty} a_n \int_{-\pi}^{\pi} \cos nx \cos mx \, dx + \sum_{n=1}^{\infty} b_n \int_{-\pi}^{\pi} \sin nx \cos mx \, dx$$

For using orthogonality function for above equation , the first and third term will be zero for above equation. The only nonzero term is $a_m \pi$ and we get ,

$$\int_{-\pi}^{\pi} f(x) \cos mx \, dx = a_m \pi$$

Solving for am, and then replacing $m \ by \ n$, we have

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx \qquad n = 1, 2, 3, \dots$$
....(2)

• FOR DETERMINATION OF **b**_n :

Similarly, if we multiply both sides of Equation **A** with **sin mx** by and integrate them, we get

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx \qquad n = 1, 2, 3, \dots$$

.... (3)

Miss. BHUMIKA NIMAVAT /PHY/ SEM- 5 / P- 501 / UNIT – 1 / FOURIER SERIES

So we get below result :

6

Fourier coefficients of f(x), given by the Euler formulas

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$$
$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx$$
$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx$$

***** <u>Orthogonality condition :</u>

• F{Trigonometric Poly.} = Itself

- $\int_{-\pi}^{\pi} \sin nx \, \sin mx \, dx = \begin{cases} 0 &: n \neq m \\ \pi &: n = m \end{cases}$
- $\int_{-\pi}^{\pi} \sin nx \, \cos mx \, dx = 0$ always

•
$$\int_{-\pi}^{\pi} \cos nx \, \cos mx \, dx = \begin{cases} 0 & : & n \neq m \\ \pi & : & n = m \end{cases}$$

SR.NO	QUESTION	ANSWER
1	$\cos n\pi =$	$(-1)^n$
2	$\int_{-\pi}^{\pi} \sin nx \cos nx dx =$	0
3	$\int_{-\pi}^{\pi} \cos nx \cos mx dx =$	π

Problems on Fourier Series

1) Find the Fourier series to represent $f(x) = x^2$ in the interval $(0, 2\pi)$.

Sol: We know that, the Fourier series of f(x) defined in the interval $(0, 2\pi)$ is given by

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

where, $a_0 = \frac{1}{\pi} \int_0^{2\pi} f(x) \, dx$

$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos nx \, dx$$
$$b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin nx \, dx$$

Here, $f(x) = x^2$

7

Now, $a_0 = \frac{1}{\pi} \int_0^{2\pi} f(x) dx = \frac{1}{\pi} \int_0^{2\pi} x^2 dx$ $= \frac{1}{\pi} \left[\frac{x^3}{3} \right]_0^{2\pi} = \frac{1}{3\pi} [(2\pi)^3 - 0] = \frac{8}{3} \pi^2$ $\implies \boxed{a_0 = \frac{8}{3} \pi^2}$

Again, $a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos nx \, dx = \frac{1}{\pi} \int_0^{2\pi} \frac{x^2}{u} \underbrace{\cos nx}_v \, dx$

$$= \frac{1}{\pi} \left[x^2 \int \cos nx \, dx - \left\{ \int \frac{d}{dx} (x^2) (\int \cos nx \, dx) dx \right\} \right]$$

$$\left[:\int uv\,dx = u\int v\,dx - \left\{\int \frac{du}{dx}\,.\,(\int v\,dx)dx\right\}\right]$$

$$= \frac{1}{\pi} \left[x^2 \left(\frac{\sin nx}{n} \right) - \left\{ \int 2x \left(\frac{\sin nx}{n} \right) dx \right\} \right]_0^{2\pi}$$

$$= \frac{1}{\pi} \left[x^2 \left(\frac{\sin nx}{n} \right) - \frac{2}{n} \left\{ \int \frac{x}{u} \frac{\sin nx}{v} dx \right\} \right]_0^{2\pi}$$

$$= \frac{1}{\pi} \left[x^2 \left(\frac{\sin nx}{n} \right) - \frac{2}{n} \left(-x \frac{\cos nx}{n} + \int 1 \cdot \frac{\cos nx}{n} dx \right) \right]_0^{2\pi}$$

$$= \frac{1}{\pi} \left[x^2 \left(\frac{\sin nx}{n} \right) - \frac{2}{n} \left(-x \frac{\cos nx}{n} + \frac{1}{n} \int \cos nx dx \right) \right]_0^{2\pi}$$

$$= \frac{1}{\pi} \left[x^2 \left(\frac{\sin nx}{n} \right) - \frac{2}{n} \left(-x \frac{\cos nx}{n} + \frac{1}{n} \frac{\sin nx}{n} \right) \right]_0^{2\pi}$$

$$= \frac{1}{\pi} \left[x^2 \left(\frac{\sin nx}{n} \right) - \frac{2}{n} \left(-x \frac{\cos nx}{n} + \frac{1}{n} \frac{\sin nx}{n} \right) \right]_0^{2\pi}$$

$$= \frac{1}{\pi} \left[x^2 \left(\frac{\sin nx}{n} \right) + \frac{2}{n^2} x \cos nx - \frac{2}{n^3} \sin nx \right]_0^{2\pi}$$

$$= \frac{4}{n^2} \left[\because \frac{\cos 2n\pi}{n} = 1 \right]$$

$$\Rightarrow \boxed{a_n = \frac{4}{n^2}}$$
Again, $b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin nx \, dx = \frac{1}{\pi} \int_0^{2\pi} \frac{x^2}{u} \frac{\sin nx}{u} \, dx$

$$= \frac{1}{\pi} \Big[x^2 \int \sin nx \, dx - \Big\{ \int \frac{d}{dx} (x^2) (\int \sin nx \, dx) \, dx \Big\} \Big]$$

$$\left[\because \int uv \, dx = u \int v \, dx - \Big\{ \int \frac{du}{dx} \cdot (\int v \, dx) \, dx \Big\} \Big]$$

$$= \frac{1}{\pi} \Big[x^2 \left(-\frac{\cos nx}{n} \right) - \Big\{ \int 2x \left(-\frac{\cos nx}{n} \right) \, dx \Big\} \Big]_0^{2\pi}$$

$$= \frac{1}{\pi} \Big[-x^2 \left(\frac{\cos nx}{n} \right) + \frac{2}{n} \Big\{ \int \frac{x}{u} \frac{\cos nx}{v} \, dx \Big\} \Big]_0^{2\pi}$$

$$= \frac{1}{\pi} \Big[-x^2 \left(\frac{\cos nx}{n} \right) + \frac{2}{n} \Big\{ x \frac{\sin nx}{n} + \int 1 \cdot \frac{\sin nx}{n} \, dx \Big\} \Big]_0^{2\pi}$$

$$= \frac{1}{\pi} \Big[-x^2 \left(\frac{\cos nx}{n} \right) + \frac{2}{n} \Big(x \frac{\sin nx}{n} + \frac{1}{n} \int \sin nx \, dx \Big) \Big]_0^{2\pi}$$

$$= \frac{1}{\pi} \Big[-x^2 \left(\frac{\cos nx}{n} \right) + \frac{2}{n} \Big(x \frac{\sin nx}{n} + \frac{1}{n} \frac{\cos nx}{n} \Big) \Big]_0^{2\pi}$$

$$= \frac{1}{\pi} \Big[-x^2 \left(\frac{\cos nx}{n} \right) + \frac{2}{n} \Big(x \frac{\sin nx}{n} + \frac{1}{n} \frac{\cos nx}{n} \Big) \Big]_0^{2\pi}$$

$$= \frac{1}{\pi} \Big[-x^2 \left(\frac{\cos nx}{n} \right) + \frac{2}{n} \Big(x \frac{\sin nx}{n} + \frac{1}{n} \frac{\cos nx}{n} \Big) \Big]_0^{2\pi}$$

$$= \frac{1}{\pi} \Big[-x^2 \left(\frac{\cos nx}{n} \right) + \frac{2}{n^2} x \sin nx + \frac{2}{n^2} \cos nx \Big]_0^{2\pi}$$

$$= -\frac{4\pi}{n} \quad \left[\because \frac{\cos 2n\pi}{\sin 2n\pi} = 0 \right]$$

$$\Rightarrow \boxed{b_n = -\frac{4\pi}{n}}$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

$$\Rightarrow x^2 = \frac{4\pi^2}{x} + \sum_{n=1}^{\infty} \Big(\frac{4}{n^2} \cos nx - \frac{4\pi}{n} \sin nx \Big)$$
This is the Fourier series for the function $f(x) = x^2$

Hence the result

...

2) Find the Fourier series of the periodic function defined as $f(x) = \begin{cases} -\pi & ; -\pi < x < 0 \\ x & ; 0 < x < \pi \end{cases}$

Hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$

Sol: We know that, the Fourier series of f(x) defined in the interval $(-\pi, \pi)$ is given by

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

where, $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$ $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$ $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$ Here, $f(x) = \begin{cases} -\pi & ; -\pi < x < 0 \\ x & ; 0 < x < \pi \end{cases}$ Now, $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \left[\int_{-\pi}^{0} f(x) dx + \int_{0}^{\pi} f(x) dx \right]$ $= \frac{1}{\pi} \left[\int_{-\pi}^{0} (-\pi) dx + \int_{0}^{\pi} x dx \right]$ $= \frac{1}{\pi} \left[(-\pi) \int_{-\pi}^{0} dx + \int_{0}^{\pi} x dx \right]$ $= \frac{1}{\pi} \left[(-\pi) [x]_{-\pi}^{0} + \left[\frac{x^2}{2} \right]_{0}^{\pi} \right] = \frac{1}{\pi} \left[(-\pi) (\pi) + \frac{\pi^2}{2} \right]$ $= \frac{1}{\pi} \left[-\pi^2 + \frac{\pi^2}{2} \right] = -\frac{\pi}{2}$ $\Rightarrow \boxed{a_0 = -\frac{\pi}{2}}$

Also, $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx$

$$= \frac{1}{\pi} \left[\int_{-\pi}^{0} f(x) \cos nx \, dx + \int_{0}^{\pi} f(x) \cos nx \, dx \right]$$

$$= \frac{1}{\pi} \left[\int_{-\pi}^{0} (-\pi) \cos nx \, dx + \int_{0}^{\pi} x \cos nx \, dx \right]$$

$$= \frac{1}{\pi} \left[-\pi \int_{-\pi}^{0} (\cos nx) \, dx + \int_{0}^{\pi} x \cos nx \, dx \right]$$

$$= \frac{1}{\pi} \left[-\pi \left(\frac{\sin nx}{n} \right)_{-\pi}^{0} + \left\{ x \left(\frac{\sin nx}{n} \right) - \int 1 \left(\frac{\sin nx}{n} \right) \, dx \right\}_{0}^{\pi} \right]$$

$$= \frac{1}{\pi} \left[-\frac{\pi}{n} (\sin nx)_{-\pi}^{0} + \left\{ \frac{x \sin nx}{n} - \frac{1}{n} \int \sin nx \, dx \right\}_{0}^{\pi} \right]$$

$$= \frac{1}{\pi} \left[-\frac{\pi}{n} (\sin nx)_{-\pi}^{0} + \left\{ \frac{x \sin nx}{n} - \frac{1}{n} \int \sin nx \, dx \right\}_{0}^{\pi} \right]$$

Miss. BHUMIKA NIMAVAT / PHY/ SEM- 5 / P- 501 / UNIT - 1 / FOURIER SERIES

$$\begin{aligned} &= \frac{1}{\pi} \left[-\frac{\pi}{n} (\sin nx)^0 _{\pi} + \left\{ \frac{x \sin nx}{n} + \frac{1}{n^2} \cos nx \right\}_0^{\pi} \right] \\ &= \frac{1}{\pi} \left[-\frac{\pi}{n} [0 - \sin(-n\pi)] + \left\{ \left(\frac{\pi \sin n\pi}{n} + \frac{1}{n^2} \cos n\pi \right) - \left(0 + \frac{1}{n^2} \cos n\theta \right) \right\} \right] \\ &= \frac{1}{\pi} \left[-\frac{\pi}{n} \sin n\pi + \left\{ \left(\frac{\pi \sin n\pi}{n} + \frac{1}{n^2} \cos n\pi \right) - \frac{1}{n^2} \cdot 1 \right\} \right] & \left[\because \frac{\cos(-\theta) = \cos \theta}{\sin(-\theta) = \sin \theta} \right] \\ \Rightarrow a_n &= \frac{1}{\pi} \left[-\frac{\pi}{n} (0) + \left\{ \left(\frac{\pi (0)}{n} + \frac{1}{n^2} (-1)^n \right) - \frac{1}{n^2} \right\} \right] & \left[\because \frac{\sin n\pi = 0}{\cos n\pi = (-1)^n} \right] \\ &= \frac{1}{\pi} \left[\left[\frac{-1}{n^2} + \frac{1}{n^2} \right] = \frac{1}{\pi n^2} \left[(-1)^n - 1 \right] \\ \Rightarrow & \left[a_n = \frac{1}{\pi n^2} \left[(-1)^n - 1 \right] \right] \\ \text{Again, } b_n &= \frac{1}{\pi} \int_{-\pi}^{\theta} f(x) \sin nx \, dx \\ &= \frac{1}{\pi} \left[\int_{-\pi}^{0} f(x) \sin nx \, dx + \int_{0}^{\pi} x \sin nx \, dx \right] \\ &= \frac{1}{\pi} \left[\int_{-\pi}^{0} (-\pi) \sin nx \, dx + \int_{0}^{\pi} x \sin nx \, dx \right] \\ &= \frac{1}{\pi} \left[-\pi \int_{-\pi}^{0} (\sin nx) \, dx + \int_{0}^{\pi} x \sin nx \, dx \right] \\ &= \frac{1}{\pi} \left[-\pi \left(-\frac{\cos nx}{n} \right)_{-\pi}^0 + \left\{ x \left(-\frac{\cos nx}{n} \right) - \int 1 \left(-\frac{\cos nx}{n} \right) \, dx \right\}_{0}^{\pi} \right] \\ &= \frac{1}{\pi} \left[\frac{\pi}{n} (\cos nx)^0 _{\pi} + \left\{ -\frac{x \cos nx}{n} + \frac{1}{n^2} \sin nx \, dx \right\} \\ &= \frac{1}{\pi} \left[\frac{\pi}{n} (\cos nx)^0 _{\pi} + \left\{ -\frac{x \cos nx}{n} + \frac{1}{n^2} \sin nx \right\}_{0}^{\pi} \right] \\ &= \frac{1}{\pi} \left[\frac{\pi}{n} \left[1 - \cos(-n\pi) \right] + \left\{ \left(-\frac{\pi \cos n\pi}{n} + \frac{1}{n^2} \sin nx \right) - \left(-0 + \frac{1}{n^2} \sin n0 \right) \right\} \right] \\ &= \frac{1}{\pi} \left[\frac{\pi}{n} \left[1 - \cos n\pi \right] - \frac{\pi \cos n\pi}{n} \right] \\ &= \frac{1}{n} \left[\frac{\pi}{n} \left[1 - \cos n\pi \right] - \frac{\pi \cos n\pi}{n} \right] \\ &= \frac{1}{n} \left[\frac{\pi}{n} \left[1 - \cos n\pi \right] - \frac{\pi \cos n\pi}{n} \right] \\ &= \frac{1}{n} \left[\frac{\pi}{n} \left[1 - \cos n\pi \right] \right] + \left\{ \left(-\frac{\pi \cos n\pi}{n} + \frac{1}{n^2} \sin n\pi \right) - \left(-0 + \frac{1}{n^2} \sin n0 \right) \right\} \right] \\ &= \frac{1}{\pi} \left[\frac{\pi}{n} \left[1 - \cos n\pi \right] - \frac{\pi \cos n\pi}{n} \right] \\ &= \frac{1}{n} \left[\frac{\pi}{n} \left[1 - \cos n\pi \right] - \frac{\pi \cos n\pi}{n} \right] \\ &= \frac{1}{n} \left[\frac{\pi}{n} \left[1 - 2 \cos n\pi \right] \right] \\ &= \frac{1}{n} \left[\frac{\pi}{n} \left[1 - 2 \cos n\pi \right] \right] \end{aligned}$$

Hence, the Fourier series for given f(x) is given by

$$f(x) = \frac{-\frac{\pi}{2}}{2} + \sum_{n=1}^{\infty} \left(\frac{1}{\pi n^2} \left[(-1)^n - 1 \right] \cos nx + \frac{1}{n} (1 - 2\cos n\pi) \sin nx \right)$$

Miss. BHUMIKA NIMAVAT / PHY/ SEM- 5 / P- 501 / UNIT – 1 / FOURIER SERIES

 $\Rightarrow f(x) = -\frac{\pi}{4} + \sum_{n=1}^{\infty} \left(\frac{1}{\pi n^2} [(-1)^n - 1] \cos nx + \frac{1}{n} (1 - 2 \cos n\pi) \sin nx \right)$ $\Rightarrow f(x) = -\frac{\pi}{4} - \frac{2}{\pi} \left(\cos x + \frac{\cos 3x}{3^2} + \frac{\cos 5x}{5^2} + \dots \right) + \left(3 \sin x - \frac{\sin 2x}{2} + \frac{\sin 3x}{3} - \frac{\sin 4x}{4} + \dots \right)$ $\text{Deduction: Put } x = \theta \text{ in the above function } f(x) \text{ , we get}$ $f(0) = -\frac{\pi}{4} - \frac{2}{\pi} \left(1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots \right)$ $\text{Since, } f(x) \text{ is discontinuous at } x = 0, f(0 - 0) = -\pi$ $f(0) = -\frac{\pi}{2} [f(0 - 0) + f(0 + 0)]$ $\Rightarrow f(0) = \frac{1}{2} [f(0 - 0) + f(0 + 0)]$ $\Rightarrow f(0) = \frac{1}{2} (-\pi) = -\frac{\pi}{2}$ $\text{Hence, } f(0) = -\frac{\pi}{2} = -\frac{\pi}{4} - \frac{2}{\pi} \left(1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots \right)$ $\Rightarrow \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8} \\ \text{Hence the result}$

3) Expand the function $f(x) = x^2$ as Fourier series in $[-\pi, \pi]$.

Hence deduce that $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \frac{\pi^2}{6}$

Sol: We know that, the Fourier series of f(x) defined in the interval $(-\pi, \pi)$ is given by

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

where, $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$ $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$ $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$ Here, $f(x) = x^2$

Now,
$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$$

= $\frac{1}{\pi} \int_{-\pi}^{\pi} x^2 dx = \frac{2}{\pi} \int_{0}^{\pi} x^2 dx$
= $\frac{2}{\pi} \left[\frac{x^3}{3} \right]_{0}^{\pi} = \frac{2\pi^2}{3}$

$$\Rightarrow a_0 = \frac{2\pi^2}{3}$$

Again, $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx$ $= \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 \cos nx \, dx$ $= \frac{2}{\pi} \int_{0}^{\pi} x^2 \cos nx \, dx$ [:: $f(x) \text{ is even} \Rightarrow \int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$] $= \frac{2}{\pi} \left[\frac{x^2 \sin nx}{n} + \frac{2x \cos nx}{n^2} - \frac{2x \sin nx}{n^3} \right]_{0}^{\pi} = \frac{4}{n^2} (-1)^n$ $\Rightarrow a_n = \frac{4}{n^2} (-1)^n$

Again, $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx$ $= \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 \sin nx \, dx$ $= 0 \qquad [\because f(x) \text{ is odd} \Longrightarrow \int_{-a}^{a} f(x) \, dx = 0]$

Hence, the Fourier series for given f(x) is given by

$$f(x) = x^2 = \frac{\left(\frac{2\pi^2}{3}\right)}{2} + \sum_{n=1}^{\infty} \frac{4}{n^2} (-1)^n \cos nx$$
$$\implies x^2 = \frac{\pi^2}{3} + 4\left(-\cos x + \frac{\cos 2x}{2^2} - \frac{\cos 3x}{3^2} + \frac{\cos 4x}{4^2} - \dots\right)$$

Deduction: Put $x = \pi$ in the above equation, we get

$$\Rightarrow \pi^{2} = \frac{\pi^{2}}{3} + 4\left(-\cos \pi + \frac{\cos 2\pi}{2^{2}} - \frac{\cos 3\pi}{3^{2}} + \frac{\cos 4\pi}{4^{2}} - \dots\right)$$
$$\Rightarrow \pi^{2} - \frac{\pi^{2}}{3} = 4\left(1 + \frac{1}{2^{2}} + \frac{1}{3^{2}} + \frac{1}{4^{2}} + \dots\right)$$
$$\Rightarrow \frac{2\pi^{2}}{3} = 4\left(1 + \frac{1}{2^{2}} + \frac{1}{3^{2}} + \frac{1}{4^{2}} + \dots\right)$$
$$\Rightarrow \frac{\pi^{2}}{6} = 1 + \frac{1}{2^{2}} + \frac{1}{3^{2}} + \frac{1}{4^{2}} + \dots$$

Hence the Result

SR.NO	QUESTION	ANSWER
1	$f(x) = x + x^2 \text{for} -\pi < x < \pi$	$1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots$
2	$f(x) = x + x^2 \text{for} -\pi < x < \pi$	$\frac{\pi^2}{6}$
3	$\frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots$	$\sum_{n=1}^{\infty} \frac{1}{n^2}$
4	$f(x) = \begin{bmatrix} -\pi & -\pi < x < 0 \\ x, & 0 < x < \pi \end{bmatrix}$	$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$
5	$f(x) = \begin{bmatrix} -\pi & -\pi < x < 0 \\ x, & 0 < x < \pi \end{bmatrix}$	$=\frac{\pi^2}{8}$
6	$f(x) = x^2, \qquad -\pi \le x \le \pi$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
7	$f(x) = x^2, \qquad -\pi \le x \le \pi$	$=\frac{\pi^2}{12}$

"Education is not the learning of facts, but the training of the mind to think." -Albert Einstein

Miss. BHUMIKA NIMAVAT / PHY/ SEM- 5 / P- 501 / UNIT - 1 / FOURIER SERIES