SHREE H.N SHUKLA INSTITUE OF PHARMACEUTICAL EDUCATION AND RESEARCH

Question Bank B.PHRAM

(SEMESTER -I)

SUBJECT NAME: PHARMACEUTICAL ANALYSIS - I

SUBJECT CODE: BP102TP

UNIT 1- PHARMACEUTICAL ANALYSIS

1	Write a brief note on different techniques of analysis.
2	Give detail note on scope of pharmaceutical analysis.
3	Write a methods of expressing concentration in detail.
	OR
	Explain following terms: (i) Molarity (ii) Molality (iii) Normality (iv) Formality (v) Parts per
	million (ppm) (vi) Mole fraction
4	Why standardization is required? Give detail notes on primary standard and Secondary
	Standard.
5	Write the principle involved in standardization of sodium thiosulphate.
6	Explain accuracy and precision in detail.
7	Explain the following terms: (i) Primary Standard (ii) Secondary Standard (iii) Accuracy (iv)
	Precision (v) Pharmacopoeia (vi) Significant figures
8	Define error. Classify the error and give the methods for error minimization.
9	Give detail note on Pharmacopoeia.
10	Discuss various sources of impurities in medical agents.
11	Explain the limit test for Arsenic.
12	Explain following terms: (i) Titration (ii) Visual end point (iii) Theoretical end point (iv)
	Standardization
13	COMMENT: Small amount of sodium carbonate or borax is added in preparation of sodium
	thiosulphate solution.

UNIT 2

A.	ACID-BASE TITRATION	
1	Explain Acid-Base Theories.	
2	Explain in detail theories of acid- base indicators.	
3	Enlist end point detection method in acid base titration and explain resonance theory.	

4	What is buffer solution? Derive Henderson Hasselbach equation for finding pH of buffer
	solution?
	OR
	Derive the equation for calculating pH of buffer solution.
5	Explain the types of acid-base titration. (Alkalimetry & Acidimetry)
6	Define Hydrolysis and derive equation for finding pH of aqueous solution of acetic acid with
	ammonium hydroxide.
7	What is hydrolysis? Derive equation for finding pH of aqueous solution of salt of strong acid
	and weak base.
8	Explain the hydrolysis of salts obtained from Weak Acid and Strong Base.
9	Explain neutralization curve for weak acid and strong base.
10	Explain neutralization curve for strong acid and strong base.
11	Explain neutralization curve for weak acid and weak base.
12	Explain: (1) Common ion effect (2) Buffer Capacity (3) Calibration (3) Buffer
13	COMMENT (i) Phenolphthalein gives colour in basic media
	(ii) Methyl orange gives colour in basic media.

В.	NON-AQUEOUS TITRATION
1	What is non-aqueous titration? Write a brief note on types of non-aqueous solvents. Explain
	leveling and differentiating effect of solvent with example?
2	What is non aqueous titration? Give merits (advantages), demerits (disadvantages) and
	application of non-aqueous titration.
3	Solvents used in non-aqueous titration.
4	Write a brief note on non-aqueous titrations.
5	COMMENT: (i) Water is differentiating solvent for HCl and CH ₃ COOH.
	(ii) Acetic acid is a leveling solvent as well as differentiating solvent.
	(iii) Acetic acid is added in preparation of perchloric acid.
	(iv) Acetic Anhydride is added with acetic acid using as a non-aqueous solvent.

UNIT 3

A.	PRECIPITATION TITRATIONS
1	Write is precipitations titration? Write a note on factors affecting precipitations titrations?
	OR
	Write a note on factors affecting solubility of precipitates.
2	Explain in detail Mohr's method. (Argentometric Direct titration)
	OR
	How will you determine halogen by Mohr's method?
3	Write a note on Volhard's method of Precipitation titration. (Argentometric Back titration)
4	Define precipitation titration. Explain the Fajan's method used for detection of end point in
	precipitation titration. (Adsorption indicator method)
5	Discuss the principle involved in estimation of sodium chloride (NaCl).
6	COMMENT: (i) Nitrobenzene is used in Volhard's Method
	(ii) Mohr's titration is carried out in acidic media.
	(iii) Volhard's method is carried out in acidic media.
	(iv) Ba(NO ₃) ₂ is added in non-precipitation (Turbidity method) of sodium
	chloride.
7	The Ksp of AgCl is 1.0×10^{-10} . Calculate molar solubility of AgCl.
8	Calculate the solubility product of MgCO ₃ if 1 liter of its standard solution contains 0.533 gm.
	of MgCO ₃ at 20° C. (mol. Wt of MgCO ₃ = 84.32)
9	Calculate the solubility of Mg(OH) ₂ in mg per liter of Ksp (Mg(OH) ₂) is 6 x 10 ⁻¹⁰ . Molecular
	weight of Mg(OH) ₂ is 58.33.

В.	COMPLEXOMETRIC TITRATION
1	Write the principle used behind complexometric titration? Define Ligands and classify it.
2	Write a short note on (I) Masking and Demasking reagents (II) pM indicators.
3	Define metal ion indicator. What are the ideal requirements of metal ion indicator?
4	Di9fferentiate: Masking and demasking agents.
5	Define Ligand and Chelate. Give an account of different types of EDTA titrations.
6	Enlist different types of EDTA titration and explain any two of them using suitable examples

7	Explain ligand and sequestering agent. Write note on replacement titration.
8	Discuss the principle involved in the assay of Calcium Gluconate.
9	Discuss the principle involved in the assay of magnesium sulphate.
10	COMMENT: EDTA is used as a chelating agent in complexometric titrations.

C.	GRAVIMETRY
1	What is gravimetric analysis? Discuss steps involved in gravimetric analysis.
2	What is gravimetric analysis? Explain advantage, disadvantage and application of gravimetric
	analysis.
3	Enlist types of Co-precipitation and add a note on common source of co-precipitation.
4	Give account of co-precipitation and methods for minimization of co-precipitation.
5	Explain – (i) Co-precipitation (ii) Post-precipitation (iii) Ostwald ripening (Digestion)
6	COMMENT: Electrolyte solution is used for wash precipitate.

D.	DIAZOTISATION TITRATION
1	Discuss in detail about Diazotization titration.
	OR
	Explain sodium nitrite titration.

UNIT 4: REDOX TITRATIONS

1	What is redox titration? Explain redox indicators.
2	Define oxidizing agent and reducing agent and explain redox indicator in detail.
3	Write a detailed note on end point detection method for redox titration?
4	Enlist types of redox titration and explain iodine titration in detail.
5	Differentiate iodometry and iodimetry.
6	Enlist types of redox titration and explain titration with K ₂ Cr ₂ O ₇ in detail.
7	Enlist types of redox titration and explain any two in detail.
8	Enlist types of redox titration. Write a note on permanganatometry (Titration with KMnO ₄)
9	COMMENT: (i) Starch indicator should be added near the end point in iodine titration.

(ii) Starch paste should be freshly prepared.

(iii) Equivalent weight of KMnO4 is change with media.

UNIT 5: ELECTROCHEMICAL METHODS OF ANLYSIS

A.	CONDUCTOMETRY
1.	Explain principle of conductometry.
2.	Describe factors affecting on conductance.
3.	Write a short note on various types of conductometric titration.
4.	Give advantages, disadvantages and application of conductometry.

В	POTENTIOMETRY
1	Enlist different reference electrode used in potentiometer and explain any one in detail.
2	Define Reference electrode. Enlist types of it and write a note on Normal Hydrogen Electrode
	(NHE).
3	Define Reference electrode. Enlist types of it and write a note on Saturated Calomel electrode
	(SCE).
4	Define Indicator electrodes. Enlist types of it and explain glass electrode in detail.
	OR
	Write a principle, construction, working and limitations of Glass Electrode.
5	Write a note on indicator electodes.
6	Explain instrumentation of potentiometer and methods to determine end point of potentiometric
	titration.
7	Give applications of potentiometric titration.

C.	POLAROGRAPHY
1	Write a note on dropping mercury electrode (DME).
	OR
	Write a construction and working of dropping mercury electrode (DME).

Write a construction and working of rotating platinum electrode.
 State the Ilkovic equation and explain the factors affecting it.
 Explain the principle involved in polarographic technique and explain its instrumentation.