Shree H.N.Shukla College of Science Rajkot
 MATHEMATICS

T.Y.B.Sc. (Sem. VI) (CBCS)

UNIT TEST
PAPER- 601
Complex Analysis-II

Time: 1 hour]
[Total Marks: 30

Instruction: (i) All questions are compulsory.

(ii) Figures to the right indicate full marks of the question.

1. (A) Answer the following:
(1) Find singular points of $\frac{\cos \pi z}{(z-1)(z-2)}$.
(2) Find the critical point of $w=\frac{1}{z-1}$
(3) Define: Bilinear mapping
(4) Write expansion of coshz in maclaurian series.
(5) Define Residue of $f(z)$ at pole Z_{0}.
(B) Attempt any one:
(1) Derive formula for finding residue of $f(z)$ at simple pole Z_{0}.
(2) Show that $W=\frac{a z+b}{c z+d}$ is conformal mapping.
(C) Attempt any one:
(1) Find a Mobius mapping which maps three point 1, 2, -1 in z-plane into 2, 1, -2 in w-plane.
(2) Find the value of integral $\int_{C} \frac{d z}{Z^{3}(Z+4)}$ where $C:|Z|=2$
(D) Attempt any one:
(1) State and prove Taylor's infinite series of an analytic function.
(2) State and prove Cauchy's Residue theorem.
2. (A) Answer the following:
(1) Write the formula for finding the residue of $f(z)$ at $m^{\text {th }}$ order pole.
(2) Define: Power series
(3) Find radius of convergence for the series $\sum n!z^{n}$
(4) Define: Complex series
(5) Find $\operatorname{Res}\left(\frac{\cos z}{z}, 0\right)$
(B) Attempt any one:
(1) Show that $x+y=2$ transform into the parabola $u^{2}=-8(v-2)$ under the transformation $\mathrm{W}=\mathrm{Z}^{2}$.
(2) Find radius of convergence of series $\sum_{n=1}^{\infty} \frac{z^{n}}{3^{n}-1}$
(C) Attempt any one:
(1) Prove that the transformation $w=2 z+z^{2}$ maps the unit circle $|z|=1$ of z-plane into cardiod to w-plane.
(2) Show that the composition of bilinear maps is again a bilinear.
(D) Attempt any one:
(1) Prove that
$\int_{0}^{\infty} \frac{d x}{\left(x^{2}+a^{2}\right)^{n+1}}=\frac{\pi(2 n)!}{(n!)^{2}(2 a)^{2 n+1}}$, where $a>0$.
(2) Using residue theorem prove that

$$
\int_{-\infty}^{\infty} \frac{\mathrm{dx}}{\left(1+\mathrm{x}^{2}\right)^{3}}=\frac{3 \pi}{8}
$$

