

normed linear space X is complete.

MASTER OF SCIENCE MATHEMATICS(W.E.F.-2016) MSC MATHS(2016) Semester - 3 Examination

October - 2024

FUNCTIONAL ANALYSIS

Faculty Code: 003

Subject Code: 003-1163002

Time: 2.30Hours [Total Marks: 70 Answer the following: (Any seven out of ten, each of 02 marks) Q.1 14 1. Define with example: Normed Linear Space. 1 2. Define with example: Equivalent norms. 2 3. Define with norm: Quotient Space. 3 4 4. State only: Open Mapping Theorem. 5. Define with example: Sub-linear functional. 5 6 6. State only: Zorn's lemma. 7 7. Define with example: Hilbert Space. 8. Define with example: Bounded Linear Transformation. 8 9 9. Define with example: Orthonormal Set. 10. Define with example: Nowhere dense set. 10 Answer the following: (Any two out of three, each of 07 marks) Q.2 1 1. State and prove, Holder's Inequality. 2 2. State and Prove, Riesz lemma. 3 3. Prove that, Every finite dimensional subspace of a

Q.3	Answer the following: (1 & 2 Both are compulsory, each of 07 marks)	14
Q.5		
	Let X and Y be Normed linear spaces and let $B(X,Y)$ be the space of all bounded	
	linear transformations from X into Y . If Y is a Banach space then prove that,	
	B(X,Y) is also a Banach space.	
	State, Baire's Category theorem. Prove that, a Banachspace cannot have countably infinite Hamel Basis. OR	
	Answer the following: (1 & 2 Both are compulsory, each of 07 marks)	14
	1 State and prove, Closed Graph Theorem.	14
	2	
	Let X be a normed linear space over \mathbb{R} and Y be a closed vector subspace	
	of X and $x_0 \in X \setminus Y$ then prove that, $F \in X'$ such that	
	F = 1	
	(II) $F(y) = 0, \forall y \in Y$	
	(III) $F(x_0) = \inf_{y \in Y} x_0 - y $	
Q.4	Answer the following:	,
	1 State and Prove, Projection Theorem	4
	2 State and prove, Polarization identity.	
	P-0.03, I OMINATION INCOME.	
Q.5	Anguar the fall	
۷,5	Answer the following: (Any two out of four, each of 07 marks)	4
	(a) Show that, $(l^1, \cdot _1)' \cong (l^\infty, \cdot _\infty)$	
	$\lim_{n \to \infty} \lim_{n \to \infty} \mathbf{u} _{\infty} = (\mathbf{u} _{\infty}).$	

(b) State and prove, Uniform Bounded Theorem.

4

(d) Let X_1, \dots, X_n be a norm linear space over K. Then Show that, $(X_1 \times \dots \times X_n, ||\cdot||)$

is a Banach space over K if and only if X_i is a Banach space over K, $\forall i=1,\cdots,n$.

Where $\|(x_1, \dots, x_n)\| = \max_{1 \le i \le n} \|x_i\|$, $\forall (x_1, \dots, x_n) \in X_1 \times \dots \times X_n$.