
SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

1

MSCIT SEM-3 ANGULARJS

Shree H.N.Shukla college2

vaishali nagar

Near Amrapali Under Bridge,

Raiya road

Rajkot

Ph No:-0281 2440478

Shree H.N.Shukla college3

vaishali nagar

Near Amrapali Under Bridge,

Raiya road

Rajkot

Ph No:-0281 2440478

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

2

Unit : 4

Routing & Wrap Up

 Understanding the need of a Router

 Setting Up and implementing Routes

 Navigating to Router Links

 Understanding Router Paths

 Styling Active Router Links

 Understanding Navigation Paths

 Styling Router Links

 Navigating Dynamically

 Using Relative Paths

 Passing Parameters to Routes and fetching route parameters

 Fetching route parameters in a Reactive Way

 Passing query parameters and fragments

 Understanding Nested Routes

 Redirecting and Wildcard routes

 Wrap Up

What is a router?

A router is a device that shares a single internet connection with multiple wired

devices. It serves as a hub and firewall, providing multiple ports for computers,

game consoles, media streamers, and more. It also has a port dedicated to

communicating with a modem or ONT.

A Wi-Fi router (or wireless router) is a device that shares a single internet

connection with multiple wired and wireless devices. A wireless router may have up

to eight external antennas, while other models pack the antennas inside the chassis.

A wireless gateway is a device that functions as a cable or DSL modem and a

router. It typically includes several ports on the back for wired connections. The Wi-

Fi antennas are internal or external, depending on the model.

Think of a router as a small computer dedicated to relaying only network traffic. It

has a processor, system memory, two storage devices with the startup configuration

and the diagnostic software, and flash-based storage for the operating system

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

3

(firmware). There are several ports on the back for wired Ethernet connections and

possibly one or two USB ports for network-shared storage.

Why do we need a router?

You need a router to share a single internet connection to multiple devices. Internet

providers generally issue only one IP address to the first device connected to its

modem or ONT. Think of that address as your internet mailing address—without it,

you can’t receive or send data across the internet.

Because your provider issues only one public address, the router is technically the

only device that can send and receive data. To share the connection, it assigns a

private address to each of your devices, and sends and receives internet data on their

behalf.

A router is also required if you want to manage all your networked devices from one

central point.

 7 Steps To Get Started With React Routing

React is one of the most used JavaScript-based front-end framework right now. As

routing is a common task when implementing React web application this article runs you

through the process of setting up routing with React router in your React project quickly.

React Router is a fully-featured client and server-side routing library for React. The

project’s website is available at https://reactrouter.com/:

Activating React Router for your React web application is easy and just comprises few

steps. Let’s start the process by setting up a new fresh React project first.

Step 1: Setting Up A React Project

The easiest way to setup a new React project is to use the create-react-app script in the

following way:

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

4

$ npx create-react-app react-router-test

Once the command has finished downloading and installing the new React project in

folder react-router-test you should see the following output on the command line:

Step 2: Installing React Router

Now we have a new React project folder react-router-test. Change into this new folder by typing in:

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

5

Then use the Node.js Package Manager command line tool NPM to install the React Router package:

Here you can see the output on the command line when executing this command:

Step 3: Use BrowserRouter Component To Activate

The Router

In the project folder open file index.js and change the default implementation to the following:

import React from 'react';
import ReactDOM from 'react-dom/client';

import './index.css';

import App from './App';

import { BrowserRouter } from "react-router-dom";

const root = ReactDOM.createRoot(

document.getElementById('root')

);

root.render(
<BrowserRouter>

<App />

</BrowserRouter>

);

Here we’re importing the BrowserRouter component from package react-router-dom. We

use BrowserRouter as the top level element in the call of root.render. In the next step

we’ll embed the route configuration of our app inside the element

right here.

<BrowserRouter>

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

6

import React from 'react';

import ReactDOM from 'react-dom/client';

import './index.css';

import { BrowserRouter, Routes, Route } from "react-router-dom";

import App from './App';

import Projects from "./routes/projects";

import About from "./routes/about";

const root = ReactDOM.createRoot(

document.getElementById('root')

);

root.render(

<BrowserRouter>

<Routes>

<Route path="/" element={<App />}>

<Route path="projects" element={<Projects />} />

<Route path="about" element={<About />} />

</Route>
</Routes>

</BrowserRouter>

);

Inside <BrowserRouter> we need to add a <Routes> element which is containing the route

configuration as single <Route> elements as childs.

First a <Route> element is added to cover the default route of the app (/) and connect this

route to the output of App component. Inside this route configuration two route elements are

included which are connecting route /projects to the output of component Projects and route

/about to the output of component About.

Step 5: Implement Components For Routes

Next we need to implement the two React components which have been connected to the routes: Projects and

About.

Step 4: Configure Routes

For adding the route configuration we need extend the import statement to also import

Routes and Route. By using these two components we’ll add the route configuration in

the following way:

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

7

return (
<main style={{ padding: "1rem 0" }}>

<h2>Projects</h2>

</main>

);

}

src/routes/about.jsx:

export default function About() {

return (

<main style={{ padding: "1rem 0" }}>

<h2>About</h2>

</main>

);

}

Step 6: Using Link And Outlet Component
Now let’s bring everything together and open file App.js which contains the default implementation of

the main React application component App. Change the default implementation to the code which is

available in the following listing:

src/routes/projects.jsx:

import './App.css';

import { Link, Outlet } from "react-router-dom";

function App() {

return (
<div className="App">

<h1>Learn React Router</h1>

<Link to="/">Home</Link> {" | "}

<Link to="/projects">Projects</Link> {" | "}
<Link to="/about">About</Link>

<Outlet />

</div>

);

export default function Projects() {

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

8

}

export default App;

Two components are imported from the react-router-dom package: Link and Outlet.

The Link component is used to output links to the routes of our application. The target route is specified by using

the to property.

The Outlet component is used to specify where the output of child routes should be inserted.

Step 7: Try it out!

Finally let’s start the development web server and try out if everything works.

Type in

$ npm start

The web server start and the React application open in the browser, so that you

should see the following output:

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

9

Clicking on the link Projects takes you directly to the /projects route of our
application and displays the output which is coming from Projects components

without reloading the page:

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

10

Clicking on the About link shows you the output from About component on route

/about:

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

11

Introduction
In Angular, RouterLink is a directive for navigating to a different

route declaratively. Router.navigate and Router.navigateByURL are two methods available to

the Router class to navigate imperatively in your component classes.

Let’s explore how to use RouterLink, Router.navigate, and Router.navigateByURL.

React Route is working as expected. Feel free to play around with the project and

start adding additional routes to your web application.

Navigating to Router Links

Angular Router: NavigationUsing RouterLink, Navigate, or NavigateByUrl

https://www.digitalocean.com/community/tutorials/angular-navigation-routerlink-navigate-navigatebyurl#introduction

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

12

Using RouterLink

A typical link in HTML looks like this:

Copy

This example link will direct the user to the /example page.

However, a single page application (SPA) does not have different pages to link to.

Instead, it has different views to display to the user. To allow a user to navigate and

change the view, you will want to use the RouterLink directive instead of href:

Copy

This RouterLink example will direct the user to the component at /users/sammy.

The different URL segments can also be passed in an array like this:

Copy
These two examples are formatted differently but will be directed to the same

component at /users/sammy.

Relative Paths

You can use '../ to go up to higher levels in the navigation using something like this:

Copy
In that example, if the user is at /users/sammy, the navigation will change

to /posts/sammy.

It is possible to prepend the first URL segment with a ./, ../, or no leading slash.

Link that uses a string.

Example HTML link.

<a [routerLink]="['/', 'users', 'sammy']">

Link that uses an array.

<a [routerLink]="['../', 'posts', 'sammy']">

Link that goes up a level.

https://www.digitalocean.com/community/tutorials/angular-navigation-routerlink-navigate-navigatebyurl#using-routerlink
https://www.digitalocean.com/community/tutorials/angular-navigation-routerlink-navigate-navigatebyurl#relative-paths

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

13

Parameters

You can pass in parameters to the navigation with an object in the list of URL

segments:

Copy
In that example, the Router will navigate to /users;display=verbose/sammy.

Named Outlets

You can tell the Router what to place in a named outlet with something like this:

Copy

In that example, the sammy segment will be placed in the outlet named side.

It is also possible to tell the Router what to place in multiple named outlets with

something like this:

Copy
In this example, the sammy segment will be placed in the outlet named side and

the sharks segment will be placed in the outlet named footer.

Using Router

There are two methods available on Angular’s Router class to navigate imperatively

in your component classes: Router.navigate and Router.navigateByUrl. Both

methods return a promise that resolves to true if the navigation is successful, null if

there’s no navigation, false if the navigation fails, or is completely rejected if there’s

an error.

To use either method, you’ll first want to make sure that the Router class is injected

into your component class.

First, import Router into your component class:

Copy

import { Component } from '@angular/core';

import { Router } from '@angular/router';

<a [routerLink]="['/', 'users', { outlets: { side: ['sammy'], footer: ['sharks'] } }]">

Link with a side and footer outlets.

<a [routerLink]="['/', 'users', { outlets: { side: ['sammy'] } }]">

Link with a side outlet.

<a [routerLink]="['/', 'users', {display: 'verbose'}, 'sammy']">

Link with parameter.

https://www.digitalocean.com/community/tutorials/angular-navigation-routerlink-navigate-navigatebyurl#parameters
https://www.digitalocean.com/community/tutorials/angular-navigation-routerlink-navigate-navigatebyurl#named-outlets
https://www.digitalocean.com/community/tutorials/angular-navigation-routerlink-navigate-navigatebyurl#using-router

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

14

Then, add Router to the dependencies:

Copy

Now, you can use Router.navigate or Router.navigateByUrl.

Router.navigate

You pass in an array of URL segments to Router.navigate.

Here’s a basic example using the Router.navigate method:

Copy
And here’s an example demonstrating how Router.navigate is thenable:

Copy
If Router.navigate is successful in this example, it will display true.

If Router.navigate is unsuccessful in this example, it will display an error.

Router.navigateByUrl

Router.navigateByUrl is similar to Router.navigate, except that a string is passed in

instead of URL segments. The navigation should be absolute and start with a /.

goPlaces() {

this.router.navigate(['/', 'users'])

.then(nav => {

console.log(nav); // true if navigation is successful

}, err => {

console.log(err) // when there's an error

});

}

goPlaces() {

this.router.navigate(['/', 'users']);

}

@Component({

// ...

})

export class AppComponent {

constructor(private router: Router) {

// ...

}

// ...

}

https://www.digitalocean.com/community/tutorials/angular-navigation-routerlink-navigate-navigatebyurl#router-navigate
https://www.digitalocean.com/community/tutorials/angular-navigation-routerlink-navigate-navigatebyurl#router-navigatebyurl

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

15

Here’s a basic example using the Router.navigateByUrl method:

Copy

In this example, Router.navigateByUrl will navigate

to /users;display=verbose/sammy.

Conclusion

In this article, you learned about navigation in Angular applications. You were

introduced to RouterLink, Router.navigate, and Router.navigateByURL.

If you’d like to learn more about Angular, check out our Angular topic page for

exercises and programming projects.

What is path in Angular routing?
The path refers to the part of the URL that determines a unique view that should be displayed, and

component refers to the Angular component that needs to be associated with a path. Based on a

route definition that we provide (via a static RouterModule.

 How to get current route URL in Angular
get current route Url in Angular

Arunkumar Gudelli

Last updated on Feb 11, 2021 2 min read

Steps to get current route URL in Angular.

1. Import Router,NavigationEnd from ‘@angular/router’ and inject in the

constructor.

2. Subscribe to the NavigationEnd event of the router.

3. Get the current route url by accessing NavigationEnd’s url property.

Now we will take an example and understand it further.

I have created an Angular app which contains three routes. About,Service and

Dashboard.

import { Component } from '@angular/core';

import { Router,NavigationEnd } from '@angular/router';

goPlaces() {

this.router.navigateByUrl('/users;display=verbose/sammy');

}

https://www.digitalocean.com/community/tutorials/angular-navigation-routerlink-navigate-navigatebyurl#conclusion
https://www.digitalocean.com/community/tags/angularjs
https://www.angularjswiki.com/authors/admin/

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

16

@Component({

 selector: 'my-app',

 templateUrl: './app.component.html',

 styleUrls: ['./app.component.css']

})

export class AppComponent {

 name = 'Get Current Url Route Demo';

 currentRoute: string;

 constructor(private router: Router){

 console.log(router.url);

 router.events.filter(event => event instanceof NavigationEnd)

 .subscribe(event =>

 {

 this.currentRoute = event.url;

 console.log(event);

 });

}

}

I have created a variable called currentRoute, to display current router url value in

the component HTML file.

In the subscribe event of NavigationEnd, I am updating currentRoute value.

 <li routerLinkActive="active">
 <a [routerLink]="['/about']">About

 <li routerLinkActive="active">

 <a [routerLink]="['/service']">Service

 <li routerLinkActive="active">

 <a [routerLink]="['/dashboard']">Dashboard

 The current Route Is {{currentRoute}}

 <router-outlet></router-outlet>

Here is the demo.

You might get current route by accessing router.url as well.

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

17

But If you are navigating the routes with Hash location strategy, the router.url is

always return “/”.

So it’s advisable to listen for NavigationEnd event of router to get the current route

url in Angular.

NavigationEndEvent

 RouterLinkActive
DIRECTIVE

Tracks whether the linked route of an element is currently active, and allows you to specify one or
more CSS classes to add to the element when the linked route is active.

Exported from

 RouterModule

Selectors

 [routerLinkActive]

Properties

Property Description

links:

QueryList<RouterLink>

isActive

Read-Only

@Input()

routerLinkActiveOptions:
{ exact: boolean; } |

IsActiveMatchOptions

Options to configure how to determine if the router link is active.

These options are passed to the Router.isActive() function.

See also:
 Router#isActive

https://angular.io/api/router/RouterModule
https://angular.io/api/router/RouterLinkActive
https://angular.io/api/core/QueryList
https://angular.io/api/router/RouterLink
https://angular.io/api/core/Input
https://angular.io/api/router/IsActiveMatchOptions
https://angular.io/api/router/Router#isActive
https://angular.io/api/router/Router#isActive

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

18

 Property Description

@Input()
ariaCurrentWhenActive?:

'page' | 'step' | 'location' |

'date' | 'time' | true | false

Aria-current attribute to apply when the router link is active.

Possible values: 'page' | 'step' | 'location' | 'date' | 'time' | true | false.

See also:
 aria-current

@Output()
isActiveChange:

EventEmitter<boolean>

Read-Only

You can use the output isActiveChange to get notified each time
the link becomes active or inactive.

Emits: true -> Route is active false -> Route is inactive
content_copy<a

routerLink="/user/bob"

routerLinkActive="active-link"

(isActiveChange)="this.onRouterLinkActive($event)">Bob

@Input()

routerLinkActive: string |

string[]

Write-Only

Template variable references

Identifier Usage

routerLinkActive

#myTemplateVar="routerLinkActive"

Description

Use this directive to create a visual distinction for elements associated with an active route. For

example, the following code highlights the word "Bob" when the router activates the associated

route:

content_copyBob

https://angular.io/api/core/Input
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/Attributes/aria-current
https://angular.io/api/core/Output
https://angular.io/api/core/EventEmitter
https://angular.io/api/router/RouterLink
https://angular.io/api/router/RouterLinkActive
https://angular.io/api/core/Input
https://angular.io/api/router/RouterLinkActive
https://angular.io/api/router/RouterLinkActive
https://angular.io/api/router/RouterLinkActive
https://angular.io/api/router/RouterLink
https://angular.io/api/router/RouterLinkActive

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

19

Whenever the URL is either '/user' or '/user/bob', the "active-link" class is added to the anchor tag.

If the URL changes, the class is removed.

You can set more than one class using a space-separated string or an array. For example:

content_copyBob

Bob

To add the classes only when the URL matches the link exactly, add the option exact: true:

content_copy<a routerLink="/user/bob" routerLinkActive="active-link"

[routerLinkActiveOptions]="{exact:

true}">Bob

To directly check the isActive status of the link, assign the RouterLinkActive instance to a template

variable. For example, the following checks the status without assigning any CSS classes:

content_copy

Bob {{ rla.isActive ? '(already open)' : ''}}

You can apply the RouterLinkActive directive to an ancestor of linked elements. For example, the

following sets the active-link class on the <div> parent tag when the URL is either '/user/jim' or

'/user/bob'.

content_copy<div routerLinkActive="active-link" [routerLinkActiveOptions]="{exact: true}">

Jim

Bob

</div>

The RouterLinkActive directive can also be used to set the aria-current attribute to provide an

alternative distinction for active elements to visually impaired users.

For example, the following code adds the 'active' class to the Home Page link when it is indeed

active and in such case also sets its aria-current attribute to 'page':

content_copyHome

Page

https://angular.io/api/router/RouterLink
https://angular.io/api/router/RouterLinkActive
https://angular.io/api/router/RouterLink
https://angular.io/api/router/RouterLinkActive
https://angular.io/api/router/RouterLink
https://angular.io/api/router/RouterLinkActive
https://angular.io/api/router/RouterLinkActive
https://angular.io/api/router/RouterLink
https://angular.io/api/router/RouterLinkActive
https://angular.io/api/router/RouterLinkActive
https://angular.io/api/router/RouterLinkActive
https://angular.io/api/router/RouterLinkActive
https://angular.io/api/router/RouterLink
https://angular.io/api/router/RouterLink
https://angular.io/api/router/RouterLinkActive
https://angular.io/api/router/RouterLink
https://angular.io/api/router/RouterLinkActive

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

20

 Adding navigation

This guide builds on the first step of the Getting Started tutorial, Get started with a basic Angular

app.

At this stage of development, the online store application has a basic product catalog.

In the following sections, you'll add the following features to the application:

 Type a URL in the address bar to navigate to a corresponding product page
 Click links on the page to navigate within your single-page application
 Click the browser's back and forward buttons to navigate the browser history intuitively

Associate a URL path with a component

The application already uses the Angular Router to navigate to the ProductListComponent. This

section shows you how to define a route to show individual product details.

1. Generate a new component for product details. In the terminal generate a new product-

details component by running the following command:

content_copyng generate component product-details

2. In app.module.ts, add a route for product details, with

a path of products/:productId and ProductDetailsComponent for the component.
src/app/app.module.ts

content_copy@NgModule({

imports: [

BrowserModule,

ReactiveFormsModule,

RouterModule.forRoot([

{ path: '', component: ProductListComponent },

{ path: 'products/:productId', component: ProductDetailsComponent },

])

],

declarations: [

https://angular.io/start
https://angular.io/start
https://angular.io/api/router/Router
https://angular.io/api/core/NgModule
https://angular.io/api/platform-browser/BrowserModule
https://angular.io/api/forms/ReactiveFormsModule

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

21

AppComponent,

TopBarComponent,

ProductListComponent,

ProductAlertsComponent,

ProductDetailsComponent,

],

3. Open product-list.component.html.

4. Modify the product name anchor to include a routerLink with the product.id as a parameter.
src/app/product-list/product-list.component.html

content_copy<div *ngFor="let product of products">

<h3>

<a

[title]="product.name + ' details'"

[routerLink]="['/products', product.id]">

{{ product.name }}

</h3>

<!-- . . . -->

</div>

The RouterLink directive helps you customize the anchor element. In this case, the route, or

URL, contains one fixed segment, /products. The final segment is variable, inserting

the id property of the current product. For example, the URL for a product with an id of 1

would be similar to https://getting-started-myfork.stackblitz.io/products/1.

5. Verify that the router works as intended by clicking the product name. The application

should display the ProductDetailsComponent, which currently says "product-details works!"

https://angular.io/api/router/RouterLink
https://angular.io/api/common/NgFor
https://angular.io/api/router/RouterLink
https://angular.io/api/router/RouterLink

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

22

Notice that the URL in the preview window changes. The final segment

is products/# where # is the number of the route you clicked.

View product details

The ProductDetailsComponent handles the display of each product. The Angular Router displays

components based on the browser's URL and your defined routes.

In this section, you'll use the Angular Router to combine the products data and route information to

display the specific details for each product.

1. In product-details.component.ts, import ActivatedRoute from @angular/router,
import OnInit from @angular/core, and the products array from ../products.
src/app/product-details/product-details.component.ts

content_copyimport { Component, OnInit } from '@angular/core';

import { ActivatedRoute } from '@angular/router';

import { Product, products } from '../products';

2. Define the product property. The implements OnInit statement indicates that the class

implements the OnInit interface, requiring the implementation of the ngOnInit method for

initialization tasks when the component is created.
src/app/product-details/product-details.component.ts

content_copyexport class ProductDetailsComponent implements OnInit {

product: Product | undefined;

/* ... */

https://angular.io/start/start-routing#define-routes
https://angular.io/api/router/ActivatedRoute
https://angular.io/api/core/OnInit
https://angular.io/api/core/Component
https://angular.io/api/core/Component
https://angular.io/api/router/ActivatedRoute
https://angular.io/api/core/OnInit
https://angular.io/api/core/OnInit
https://angular.io/api/core/OnInit

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

23

}

3. Inject ActivatedRoute into the constructor() by adding private route: ActivatedRoute as an

argument within the constructor's parentheses.
src/app/product-details/product-details.component.ts

content_copyexport class ProductDetailsComponent implements OnInit {

product: Product | undefined;

constructor(private route: ActivatedRoute) { }

}

ActivatedRoute is specific to each component that the Angular Router

loads. ActivatedRoute contains information about the route and the route's parameters.

By injecting ActivatedRoute, you are configuring the component to use a service.

The Managing Data step covers services in more detail.

4. In the ngOnInit() method, extract the productId from the route parameters and find the

corresponding product in the products array.
src/app/product-details/product-details.component.ts

content_copyngOnInit() {

// First get the product id from the current route.

const routeParams = this.route.snapshot.paramMap;

const productIdFromRoute = Number(routeParams.get('productId'));

// Find the product that correspond with the id provided in route.

this.product = products.find(product => product.id === productIdFromRoute);

}

The route parameters correspond to the path variables you define in the route. To access the

route parameters, we use route.snapshot, which is the ActivatedRouteSnapshot that contains

information about the active route at that particular moment in time. The URL that matches

https://angular.io/api/router/ActivatedRoute
https://angular.io/api/router/ActivatedRoute
https://angular.io/api/core/OnInit
https://angular.io/api/router/ActivatedRoute
https://angular.io/api/router/ActivatedRoute
https://angular.io/api/router/ActivatedRoute
https://angular.io/api/router/ActivatedRoute
https://angular.io/start/start-data
https://angular.io/api/router/ActivatedRouteSnapshot

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

24

the route provides the productId . Angular uses the productId to display the details for each

unique product.

5. Update the ProductDetailsComponent template to display product details with an *ngIf. If a

product exists, the <div> renders with a name, price, and description.
src/app/product-details/product-details.component.html

content_copy<h2>Product Details</h2>

<div *ngIf="product">

<h3>{{ product.name }}</h3>

<h4>{{ product.price | currency }}</h4>

<p>{{ product.description }}</p>

</div>

The line, <h4>{{ product.price | currency }}</h4>, uses the currency pipe to

transform product.price from a number to a currency string. A pipe is a way you can

transform data in your HTML template. For more information about Angular pipes,

see Pipes.

When users click on a name in the product list, the router navigates them to the distinct URL for

the product, shows the ProductDetailsComponent, and displays the product details.

For more information about the Angular Router, see Routing & Navigation.

https://angular.io/api/common/NgIf
https://angular.io/api/common/NgIf
https://angular.io/api/common/CurrencyPipe
https://angular.io/api/common/CurrencyPipe
https://angular.io/api/common/CurrencyPipe
https://angular.io/guide/pipes
https://angular.io/guide/router

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

25

 Styling Active Router Link in Angular



Styling the active router link in angular allows the user to differentiate between the active

router link and inactive router links. Angular provides a special mechanism to work with

active router links.

Approach:

 Create the Angular app to be used.

 Create the header component that contains the navigation links.
 Then apply the “routerLinkActive” on each router link and provide the CSS class to

this property. Here we have created the “active” class in CSS file.

 Provide the { exact : true } to the root route to avoid multiple active router links.

Syntax:
Home

Example: We have created the header component with specified routes.

 header.component.html

Home

<a routerLink="/products"

routerLinkActive="active">Products

<a routerLink="/about"

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

26

Here we have provided the “routerLinkActive” which is routing functionality that
automatically activate the current route, and we have to provide the CSS class as well. Here

in routerLinkActive = “active” active is a CSS class that automatically applied to the

activated route.

But here, it still causes an issue our Home route is always active even we navigate to some
other route the reason behind this is the way “routerLinkActive” works. The home route

works on “localhost:4200/” and other routes

are “localhost:4200/about” so “routerLinkActive” finds “localhost:4200/” inside every

other route and the Home router link is always active to deal with this angular provide

another directive called routerLinkActiveOptions.

Updated

  header.component.htm

 header.component.css

.active{

background: 'white'

}

routerLinkActive="active">About Us

<a routerLink="/contact"

routerLinkActive="active">Contact Us

<router-outlet></router-outlet>

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

27

So routerLinkActiveOptions allow only the exact path match as an active route for the
Home component.

<a routerLink="/" routerLinkActive="active"

[routerLinkActiveOptions]={exact:true}>Home

<a routerLink="/products"

routerLinkActive="active">Products

<a routerLink="/about"

routerLinkActive="active">About Us

<a routerLink="/contact"

routerLinkActive="active">Contact Us

<router-outlet></router-outlet>

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

28

Output:

Navigating to Routes from Code in Angular

Introduction

Hello friends! As you know, Angular is a single-page application, and it doesn't have

multipage HTML pages to create different routes, so we require a client-side routing

solution. The Angular Router helps us to create client-side routing in a few simple

steps, and then we can render using routerLink. Today, I will walk you through different

options to navigate from components to various other components using code so you

can navigate the user dynamically using different conditions.

What We Will Cover

 The need for dynamic routing

 Making routes with different components
 Navigating between components using routes from code

The Need for Dynamic Routing
Let's take a real-life and straightforward example. Suppose you have multiple roles in your

application, and depending on the role, you have to decide whether or not users are authorized to

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

29

access your application. If they have the authority, you'll navigate them to the home page of the

application; otherwise, you'll take them to a different page, preferably with a 403 status code.

In this scenario, you will need to decide the route in one hit at the time of form submission on the

login page. So what are you going to do?

Here dynamic routing comes into the picture. First, you will check the condition, and depending on

that condition, you will dynamically decide the routes where a user will be sent.

Let's get started with the next section by making routes in app-routing.module.ts.

Making Routes with Different Components
Now we're going to make some of the components that will help us to understand Angular Router

more clearly. I am going to create three components: FirstComponent, SecondComponent,

and FirstChildComponent, respectively. FirstChildComponent will be used in

the FirstComponent as a child component.

The following commands will create the components.

shell
We have successfully created the components; now, we will map it with different URI.

After successfully configuring app-routing.module.ts, it will look as follows.

1ng g c first --skipTests=true

2ng g c second --skipTests=true

3ng g c first-child --skipTests=true

1import { NgModule } from '@angular/core';

2import { Routes, RouterModule } from '@angular/router';

3import { SecondComponent } from './second/second.component';

4import { FirstComponent } from './first/first.component';

5import { FirstChildComponent } from './first-child/first-child.component';

6

7const routes: Routes = [

8 {

9 path: 'first',

10 component: FirstComponent,

11 children: [

12 {

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

30

ts
In the routes file, we have created two main routes, /first and /second, and a default route

that will redirect to /first. Mainly, it is for redirecting the user to the home page initially.

We have also created children routing to explain the dynamic navigation for the parent-

child relationship.

It's time to write the chunks of code for navigating between the component using routes.

13

14

15

16

path: 'first-child',

component: FirstChildComponent

}

]

17 },

18 {

19 path: 'second',

20 component: SecondComponent

21 },

22 {

23 path: "",

24 redirectTo: '/first',

25 pathMatch: 'full'

26 }

27];

28

29@NgModule({

30 imports: [RouterModule.forRoot(routes)],

31 exports: [RouterModule]

32})

33export class AppRoutingModule { }

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

31

Navigate Between the Components using

Routes from Code

I am not going to write a condition for now; rather, I will make a couple of buttons

in app.component.html. On click, it will navigate to different components.

html
As you can see, we have successfully added two buttons in app.component.html, and on click

events methods are going to call navigateToFirst() and navigateToSecond(), respectively. These

methods will call the navigate() method of the Router class to navigate to another view.

So let's add these functions to our app.component.ts file.

1import { Component } from '@angular/core';

2import { Router } from '@angular/router';

3

4@Component({

5 selector: 'app-root',

6 templateUrl: './app.component.html',

7 styleUrls: ['./app.component.scss']

8})

9export class AppComponent {

10

11 constructor(private _router: Router) { }

12

13 navigateToFirst() {

1<div>

2 <button type="button" class="btn" (click)="navigateToFirst()">First</button>

3 <button type="button" class="btn" (click)="navigateToSecond()">Second</button>

4</div>

5

6<router-outlet></router-outlet>

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

32

ts
Here we have injected the router class in the constructor that enables us to navigate

from one view to another. It has two methods, navigate and navigateByUrl, that navigate the

routes. They are similar; the only difference is that the navigate method takes an array that

joins together and works as the URL, and the navigateByUrl method takes an absolute path.

For example, if we have to navigate to /students/1, we can navigate to this URL in two

ways.

1. this._router.navigate('students',1)

2. this._router.navigateByUrl('/students/1')

On button click, you can add some condition to navigate the user on different
conditions.

Now I am going to apply some of the CSS to beautify our application. I'll put it in

the style.scss file.

14 this._router.navigate(['first'])

15 }

16 navigateToSecond() {

17 this.router.navigateByUrl('/second')

18 }

19

20}

1.btn{

2 color: white;

3 background-color: blue;

4 border: none;

5 padding: .5em 2em;

6 border-radius: 2em;

7 box-shadow: 0 0 2px 2px;

8 font-size: 18px;

9 margin-left: 5px;

10 margin-right: 5px;

https://www.pluralsight.com/guides/navigating-to-routes-from-code-in-angular

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

33

11 outline: none;

12 &:hover{

13 background-color: gray;

14 cursor: pointer;

15

16}

}

scss
I have used SCSS here. If you're not familiar with it, you can read about it here. You

can use CSS, too, if you're not comfortable with SCSS.

Our output will look like this.

Now It's time to bring the FirstChildComponent into the picture. We'll make a button

like app.component.html in first.component.html.

html
After making changes in first.component.ts, it will look like the above snippet in which we

have a button that will call a function on click event, which will then navigate it and

show the child view.

Now we're going to make a function in first.component.ts to navigate to FirstChildComponent.

1<p>first works!</p>

2<button type="button" class="btn" (click)="navigateToFirstChild()">First</button>

3<router-outlet></router-outlet>

1import { Component, OnInit } from '@angular/core';

2import { Router, ActivatedRoute } from '@angular/router';

3

4@Component({

5 selector: 'app-first',

6 templateUrl: './first.component.html',

7 styleUrls: ['./first.component.scss']

https://sass-lang.com/guide

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

34

ts
Note: In the navigate() method, I have passed an extra parameter. It is a kind of object

known as NavigateExtras. We have used relativeTo of NavigateExtras, and in the value, we have

given the instance of ActivatedRoute. So you don't need to provide the whole URL in the

array, and it will automatically extend the current parameter after the existing URL.

Finally, our output looks like this.

8})

9export class FirstComponent implements OnInit {

10

11 constructor(

12 private _router: Router,

13 private _activatedRoute:ActivatedRoute

14) { }

15

16 navigateToFirstChild() {

17 this._router.navigate(["first-child"],{relativeTo:this._activatedRoute}) 18

}

19

20}

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

35

 Angular.js: using relative paths

One of the issues I had with Angular.js (but also with other JavaScript frameworks) is that URL’s

you create on the client are relative to the server root address. This is fine as long as your

application is hosted on the server root(e.g. www.myservername.com), but the moment you start

using virtual directories(e.g. www.myservername.com/virtualdirectoryname), you’re into trouble.

Let’s have a look for example to the following Angular service:

"use strict";

(function (app) {

var applicationsService = function ($http) {

var getApplications = function () {

return $http.get("/api/applications");

};

return {

getApplications: getApplications,

};

};

applicationsService.$inject = ["$http"];

app.factory("applicationsService", applicationsService);

}(angular.module("maintenanceApp")));

The problem is that when you host this service in a virtual directory, the HTTP call will be send

to http://www.myservername.com/api/applications and not

to www.myservername.com/virtualdirectoryname/api/applications as you would expect.

There a multiple ways to solve this issue. I did it by rendering the rootUrl inside my ASP.NET

Razor view. This url is generated by the server and embedded in the page:

http://www.myservername.com/
http://www.myservername.com/virtualdirectoryname
http://www.myservername.com/api/applications
http://www.myservername.com/virtualdirectoryname/api/applications

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

36

<head>

<meta charset="utf-8" />

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<link id="linkRoot" href="~/" />

</head>

Inside my Angular app, I added some code that read this value from the html and register it as a

constant value:

var maintenanceApp = angular.module('maintenanceApp', ['ngRoute']);

maintenanceApp

.config(["$provide", function ($provide) {

var rootUrl = $("#linkRoot").attr("href");

$provide.constant('rootUrl', rootUrl);

}])

This allows me to inject this value anywhere I need it, let’s have a look at the refactored service:

"use strict";

(function (app) {

var applicationsService = function ($http, rootUrl) {

var getApplications = function () {

return $http.get(rootUrl+ "/api/applications");

};

return {

getApplications: getApplications,

};

};

applicationsService.$inject = ["$http", "rootUrl"];

app.factory("applicationsService", applicationsService);

}(angular.module("maintenanceApp")));

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

37

Passing Parameters to Routes and fetching
route parameters

In this post we’ll see how to pass and retrieve route parameters in Angular routing.

 Table of contents

 Route parameters in Angular

 Passing Route parameters in Angular

 Retrieving route parameters in Angular

 Route parameters in Angular example

Route parameters in Angular
In our web apps we do need to navigate to a specific resource. For example we want the details
of a specific account number then we can navigate to that account number by using URL-

/account/A1001 or to another account by using URL- /account/A1002.
It is not practical to hardcode the path segment for each account number, you will use a route

parameter instead that acts as a placeholder. Value passed for the placeholder becomes the value

of the route parameter.

In a route that takes a parameter, route parameter is specified by prefixing it with a colon. So the

route definition will be like- /route/:routeparam

You can pass more than one route parameter too- /route/:param1/:param2/:param3

For example if you have to a give route definition for a route- /account/A1001 where /A1001

part represents an account number and should be passed as a route parameter.

Passing Route parameters in Angular
1. You can pass route parameters with RouterLink directive. For a dynamic link, pass an array
of path segments (which includes path and route parameters). For example

generates a link to /account/A1001 or to /account/A1002 based on what is passed as value for
the string variable accountnumber.

2. You can also pass route parameters programmatically using Router.navigate() method. For

example onAccountClick() method is called with account number as argument and then it

creates a URL with route parameter using navigate() method. Here account number gets added

as a route parameter to the current route.

on AccountClick(accountNo: string){

this.router.navigate([accountNo], {relativeTo:this.route});

}

[router Link]="['/account', accountnumber]"

{path: 'account/:acctno', component: COMPONENT_NAME}

https://www.netjstech.com/2020/08/setting-fetching-route-parameters-angular.html#RouteParamAngular
https://www.netjstech.com/2020/08/setting-fetching-route-parameters-angular.html#RouteParamAngularPassing
https://www.netjstech.com/2020/08/setting-fetching-route-parameters-angular.html#RouteParamAngularRetrieve
https://www.netjstech.com/2020/08/setting-fetching-route-parameters-angular.html#RouteParamAngularExp

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

38

 Retrieving route parameters in Angular 

vcHuaerrireaebnvltaesl.unYeapopsuahscosatendofailntshoaecercxottnurotaecr.topuaterapmaeratemreftreormistahsesrigonueted utosinacgc ttthNeo

 Route parameters in Angular example 

To extract the parameter, params observable of the ActivatedRoute interface is used

and we subscribe to it so that when ever there is a change in the route parameter it is

extracted into a variable.

this.route.params.subscribe((params: Params)=> this.acctNo = params['acctno']);

this.acctNo = this.route.snapshot.params['acctno'];

In the example we show user a list of account numbers. Then the details of the

account number, that is clicked, are showed using a separate component. In this

scenario you can pass the clicked account number as route parameter.

Here are the route definitions for the routes. Here AccountsComponent displays all

the account numbers for a user and AccountComponent shows details for the selected

account number.

const routes: Routes = [

{path: 'home', component: HomeComponent},
{path: 'account', component: AccountsComponent},

{path: 'account/:acctno', component: AccountComponent},

{path: 'service', component: ServiceComponent},

{path: '', redirectTo:'/home', path Match: 'full'}

];

As you can see there is a route with route parameter- {path:

'account/:acctno', component: AccountComponent}

Code for menu and adding link for routes is done in the

app.component.html template itself for this example.

<nav class="navbar navbar-expand-md bg-dark navbar-dark">

<div class="container -fluid">

<div class="collapse navbar-collapse" id="collapsibleNavbar" >

<ul class="nav navbar-nav">

<li class="nav-item" router LinkActive="active">

Home

<li class="nav-item" router LinkActive="active">

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

39

Accounts

<li class="nav-item" router LinkActive="active">

Services

</div>

</div>

</nav>

<div class="container">

<div class="row"><p></p></div>

<div class="row">

<div class="col-md-12">

<router-outlet></router -outlet>

</div>
</div>

</div>

Components

We’ll concentrate here on AccountsComponent and AccountComponent for the code

of other components please refer- Angular Routing Concepts With Example.

AccountsComponent (accounts.component.ts)

IonnAthcecocounmtpColnicekn(t) wtoe nh aaa vvvieg aaatne apr rrroagyrtaomsmhaotwicacllcyoutont anurmobuetr s and a method

import { Component } from '@angular/core' ;

import { ActivatedRoute, Router } from '@angular/router';

@Component({

selector: 'app-accounts',

templateUrl: './accounts.component.html'

})

export class AccountsComponent {
accounts = ['A1001', 'A1002'];

constructor (private router: Router, private route: Activated Route) {}

on AccountClick(account: string){

this.router.navigate([account], {relativeTo:this.route});

}

}

Two classes Router class and ActivatedRoute class are injected into

the component.

 Router class has navigate() method using which we navigate

to a URL dynamically.

https://www.netjstech.com/2020/08/angular-routing-concepts-with-example.html

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

40

 ActivatedRoute class provides access to information about the

current route.

This line of code instructs Angular to navigate to the path which is

relative to current route (localhost:4200/account in our example)

and adds the value of account to it making it a route in this format -

http://localhost:4200/account/ACCOUNT_NUMBER

this.router.navigate([account], {relativeTo:this.route});

Since we already have a route definition with a route parameter
{path: 'account/:acctno', component: AccountComponent} which

matches any route in this format

http://localhost:4200/account/ACCOUNT_NUMBER so that’s how

AccountComponent gets called.

accounts.component.html

<div class= "row">
<div class="col-xs-4 col-md-6">

<h 2>Account Numbers</h 2>

<div class="list-group">

<a [router Link]=""

(click)="on AccountClick(account)"
class="list-group-item"

*ngFor="let account of accounts" >

{{ account }}

</div>
</div>

</div>

If you want to use RouterLink directive then your template can be

written as-

<div class= "row">

<div class="col-xs-4 col-md-6">

<h 2>Account Numbers</h 2>

<div class="list-group">

<a [router Link]="['/account', account]" class="list-group-item"

*ngFor="let account of accounts" >

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

41

{{ account }}

</div>

</div>

</div>

In this case onAccountClick() method can be removed from

typescript code as navigation is configured in the template itself.

AccountComponent (account.component.ts)

In this component we simulate a scenario where we have details for

all the account numbers and we have to get the details for the

account number which is sent as route parameter.

To extract the parameter route.params observable is used and we

subscribe to it so that when ever there is a change the parameter is

extracted into a acctNo variable. Using the fetched account number

we find the related object in the array using the find() method.

import { Component, On Init } from '@angular/core';

import { ActivatedRoute, Params } from '@angular/ router';

@Component({

selector: 'app-account',

templateUrl: './account.component.html'

})

export class AccountComponent implements On Init{

acctNo: string;

account: {accountnumber: string, type: string, balance: number};

constructor (private route: ActivatedRoute){ }

accountDetails = [
{

accountnumber: 'A1001',

type: 'Saving',

balance: 22000

},

{

accountnumber: 'A1002',

type: 'Checking' ,

balance: 1000

}

];

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

42

account.component.html

ngOn Init() {

//this.acctNo = this.route.snapshot.params['acctno'];

this.route.params.subscribe((params: Params)=> this.acctNo = params['acctno']);
this.account = this.accountDetails.find(e=>e.accountnumber === this.acctNo);

}

}

Note that you can also extract parameter from the route using the

current snapshot of the route. But route.params observable is

preferred.

this.acctNo = this.route.snapshot.params['acctno'];

<h 2>Account Details</h 2>

<div class="row">

<div class="col-xs-6">

<label>Account Number: </label> {{ account.accountnumber }}

</div>

</div>

<div class="row">

<div class="col-xs-6">

<label>Account Type: </label> {{ account.type }}

</div>
</div>

<div class="row">

<div class="col-xs-6">

<label>Balance: </label> {{account.balance}}

</div>

</div>

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

43

 Passing query parameters and fragments

Via: HTML file

to pass query params, we will add [queryParams] attribute it takes an object. As

Shown in the Picture, and for the fragment, we take fragment property and write our

fragment.

dynamic-component.component.ts

For progmatically navigate,

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

44

we use the router from @angular/router and inject it to the constructor same.

dynamic-component.component.ts

We use navigate function to pass our path, query params, and fragment.

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

45

Made it Simple:

The router navigate function takes two arguments.

 The first argument takes an array and we specify our paths in the array

 The second one is Object, In key queryParams: we pass our query params

in the object as in key and value.

 In fragment, we specify our fragment.

OUTPUT

on clicking of params by tag it passes through the tag, and on clicking on pass

dynamically

function. It will the value dynamically of query params and fragments.

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

46

 Nested Routes

 PARAMETERISED ROUTES

 ROUTER GUARDS

 Learning Objectives
 How to configure child routes.

 How to define paths relative to the current path or the root of the application.

 How to get access to parent parameterised route params.

In this video I'm using an online editor called Plunker to write and run Angular

code. The book and code has since been updated to use StackBlitz instead. To

understand more about why and the differences between read this.

1. Learning Objectives

2. Goal

3. Setup

4. Route Configuration

5. Relative Routes

6. Child Routes

7. Parent Route Parameters

8. Summary

9. Listing

https://plnkr.co/
https://stackblitz.com/
https://codecraft.tv/courses/angular/quickstart/overview/#_plunker_vs_stackblitz

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

47

 Goal

The goal for this lecture is to change our iTunes search app so that when we click

on a search result we are taken to an Artist page.

This Artist page has two more menu items, Tracks and Albums. If we click

on Tracks we want to show the list of tracks for this artist, if we click on Albums we

want to show the list of albums for this artist.

Figure 1. Artist Track Listing Page

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

48

Figure 2. Artist Album Listing Page

We can get information about an Artist using the iTunes API by passing in the id

of an artist

https://itunes.apple.com/lookup?id=16586443

A list of tracks for that artist by additionally passing in entity=song:

https://itunes.apple.com/lookup?id=16586443&entity=song

A list of albums for that artist by additionally passing in entity=album:

https://itunes.apple.com/lookup?id=16586443&entity=album

The concept of having two sets of menu items. A top level

between Home, Search and Artist and a second level

under Artist between Tracks and Albums is called Nested Routing and it’s the topic

of this lecture.

https://itunes.apple.com/lookup?id=16586443
https://itunes.apple.com/lookup?id=16586443&entity=song
https://itunes.apple.com/lookup?id=16586443&entity=album

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

49

Setup
We’ve added 3 more components to our sample project and included them

in our NgModule declarations:

1. ArtistComponent — This shows some details about an Artist and contains

either the ArtistTrackListComponent or ArtistAlbumListComponent.

2. ArtistTrackListComponent — This will show a track listing for the

current Artist.

3. ArtistAlbumListComponent — This will show an Album listing for the

current Artist.

For now each component’s template just has a heading with the name of the

component, like so:

TypeScript

TypeScript

Copy@Component({

selector: 'app-artist-track-list',

template: `

<h1>Artist Track Listing</h1>

`

})

class ArtistTrackListComponent {

}

Copy@Component({

selector: 'app-artist',

template: `

<h1>Artist</h1>

`

})

class ArtistComponent {

}

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

50

TypeScript

 Route Configuration

We need another route for our ArtistComponent, we want to pass to this component

an artistId so it needs to be a parameterised route, the aritstId is mandatory so we

are not using optional params.

TypeScript

Copy@Component({

selector: 'app-artist-album-list',

template: `

<h1>Artist Album Listing</h1>

`

})

class ArtistAlbumListComponent {

}

Copyconst routes: Routes = [

{path: '', redirectTo: 'home', pathMatch: 'full'},

{path: 'find', redirectTo: 'search'},

{path: 'home', component: HomeComponent},

{path: 'search', component: SearchComponent},

{path: 'artist/:artistId', component: ArtistComponent}, (1)

{path: '**', component: HomeComponent}

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

51

Add a path of 'artist/:artistId' for ArtistComponent
In our search results listing we add a routerLink to the result item so it navigates

to our Artist page.

HTML

Add routerLink directive.

 Relative Routes

];

Copy<div class="list-group">

<a [routerLink]="['artist', track.artistId]" (1)

class="list-group-item list-group-item-action"

*ngFor="let track of itunes.results">

{{ track.name }} by {{ track.artist }}

</div>

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

52

If we ran the above code you’ll notice that searching for U2 transforms the URL to:

and then if we click on a U2 song the URL incorrectly becomes

And we don’t get shown the Artist page.

The URL looks incorrect, it’s a concatenation of the search URL with

the artist URL. We should be expecting a URL like so:

That’s because when we navigated to

we did so relative to the current URL and the current URL at the time was

the search URL.

What we want to do is to navigate relative to the _root _of our application, relative

to / — we can do that simply by pre-pending / to our path, like so:

Copy/#/search;term=U2

Copy/#/search;term=U2/artist/78500

Copy/#/artist/78500

Copy[routerLink]="['artist', item.artistId]"

Copy[routerLink]="['/artist', item.artistId]"

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

53

Now when we navigate we do so relative to the root URL and when we click

the first U2 song the URL changes to /#/artist/78500 and we are shown the artist

page.

 Child Routes

When the Artist page is shown we want there to be two menu options, one

called Tracks and the other called Albums, like so:

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

54

When a user clicks on Tracks underneath I would like to show a list of all the tracks

this artist has released, if the user clicks on Albums then I want to show a list of all

the albums they have released.

Explained in terms that the Router would understand:

“Inside the ArtistComponent I want to conditionally show either

the AritstAlbumsListComponent or the ArtistTrackListComponent depending

on which menu item the user has selected”.

Let me first define the route configuration, each route can have a property

called children where you can define the child routes of this route. I’m going to add

my routes for AritstAlbumsListComponent and ArtistTrackListComponent, like so:

TypeScript

Copyconst routes: Routes = [

{path: '', redirectTo: 'home', pathMatch: 'full'},

{path: 'find', redirectTo: 'search'},

{path: 'home', component: HomeComponent},

{path: 'search', component: SearchComponent},

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

55

If a user navigates to say /artist/1234 it will redirect to /artist/1234/tracks (since we

would at least want one of either the track or album components to be shown).

This route matches a URL like /artist/1234/tracks.

This route matches a URL like /artist/1234/albums.

Now I can add the menu items to my artist template, like so:

HTML

Important

Notice that the paths in the routerLink directives above don’t start with / so they

are relative to the current URL which is the /artist/:artistId route.

A more explicit way of saying you want to route relative to the current URL is

to prepend it with ./ like so:

{

path: 'artist/:artistId',

component: ArtistComponent,

children: [

{path: '', redirectTo: 'tracks'}, (1)

{path: 'tracks', component: ArtistTrackListComponent}, (2)

{path: 'albums', component: ArtistAlbumListComponent}, (3)

]

},

{path: '**', component: HomeComponent}

];

Copy<h1>Artist</h1>

<p>

<a [routerLink]="['tracks']">Tracks |

<a [routerLink]="['albums']">Albums

</p>

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

56

HTML

Note

Pre-pending with ./ clearly expresses our intent that the path is relative so let’s use

this syntax instead.

The final thing we need to do is to tell Angular where we want

the ArtistTrackListComponent and ArtistAlbumListComponent components to be

injected into the page, we do that by adding in another router-outlet directive in our

Artist template like so:

HTML

Now we have two router-outlets one nested inside another Angular figures

out which outlet to insert the component in by the nesting level of the route and the

router outlet.

 Parent Route Parameters

Copy<h1>Artist</h1>

<p>

<a [routerLink]="['./tracks']">Tracks |

<a [routerLink]="['./albums']">Albums

</p>

Copy<h1>Artist</h1>

<p>

<a [routerLink]="['./tracks']">Tracks |

<a [routerLink]="['./albums']">Albums

</p>

<router-outlet></router-outlet>

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

57

To query the list of tracks for an Artist from

the iTunes API the ArtistTrackListComponent needs the artistId.

As a reminder the route configuration for our ArtistTrackListComponent is

JSON

and the route configuration for its parent is

JSON

The parent route has the :artistId as a route param, however if we

injected ActivatedRoute into our child ArtistTrackListComponent and tried to print

out the params surprisingly we just get an empty object printed out.

TypeScript

Copy{path: 'tracks', component: ArtistTrackListComponent}

Copy{

path: 'artist/:artistId',

component: ArtistComponent,

children: [

{path: '', redirectTo: 'tracks'},

{path: 'tracks', component: ArtistTrackListComponent},

{path: 'albums', component: ArtistAlbumListComponent},

]

}

Copyclass ArtistTrackListComponent {

constructor(private route: ActivatedRoute) {

this.route.params.subscribe(params => console.log(params)); // Object {}

}

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

58

The reason for this is that ActivatedRoute only passes you the parameters

for the current component’s route and since the route

for ArtistTrackListComponent doesn’t have any route parameters it gets passed

nothing, we want to get the params for the parent route.

We can do this by calling parent on our ActivatedRoute like so:

TypeScript

This returns the params for the parent route.

 Summary

We can nest routes, this means that for a given URL we can render a tree

of components.

We do this by using multiple router-outlet directives and configuring child routes

on our route configuration object.

}

Copyclass ArtistTrackListComponent {

constructor(private route: ActivatedRoute) {

this.route.parent.params.subscribe(params => console.log(params)); // Object {artistId: 12345}

}

}

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

59

Next up we will learn about protecting access to different routes via the use

of Router Guards.

Note

The application above is complete in terms of child routing but still needs rounding

out in terms of making the other API requests for tracks and albums and prettying up

the template HTML.

You won’t learn anything else about routing from going through the process

of finishing off the app, but for your interest i’ve provided the full listing below.

As with all our examples they are for illustrative purposes only, to follow the official

style guides we should be putting each component in a separate file

and our HTTP request should all be wrapped in a separate service.

I will however leave that as an exercise for the reader if they so wish.

 Listing

Listing 1. main.ts
TypeScript

Copyimport { NgModule, Component, Injectable } from "@angular/core";

import { BrowserModule } from "@angular/platform-browser";

import { platformBrowserDynamic } from "@angular/platform-browser-dynamic";

import { ReactiveFormsModule, FormControl, FormsModule } from "@angular/forms";

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

import {

HttpClientJsonpModule,

HttpClientModule,

HttpClient

} from "@angular/common/http";

import { Routes, RouterModule, Router, ActivatedRoute } from "@angular/router";

class SearchItem {

constructor(

public name: string,

public artist: string,

public link: string,

public thumbnail: string,

public artistId: string

) {}

}

@Injectable()

class SearchService {

apiRoot: string = "https://itunes.apple.com/search";

results: SearchItem[];

constructor(private http: HttpClient) {

this.results = [];

}

search(term: string) {

return new Promise((resolve, reject) => {

this.results = [];

let apiURL = `${this.apiRoot}?term=${term}&media=music&limit=20`;

this.http

.jsonp(apiURL, "callback")

.toPromise()

.then(

60

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

res => {

// Success

this.results = res.results.map(item => {

return new SearchItem(

item.trackName,

item.artistName,

item.trackViewUrl,

item.artworkUrl30,

item.artistId

);

});

resolve();

},

msg => {

// Error

reject(msg);

}

);

});

}

}

@Component({

selector: "app-search",

template: `<form class="form-inline">

<div class="form-group">

<input type="search"

class="form-control"

placeholder="Enter search string"

#search>

</div>

<button type="button"

class="btn btn-primary"

(click)="onSearch(search.value)">

61

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

Search

</button>

</form>

<hr />

<div class="text-center">

<p class="lead"

*ngIf="loading">Loading...</p>

</div>

<div class="list-group">

<a [routerLink]="['/artist', track.artistId]"

class="list-group-item list-group-item-action"

*ngFor="let track of itunes.results">

{{ track.name }} by {{ track.artist }}

</div>

`

})

class SearchComponent {

private loading: boolean = false;

constructor(

private itunes: SearchService,

private route: ActivatedRoute,

private router: Router

) {

this.route.params.subscribe(params => {

console.log(params);

if (params["term"]) {

this.doSearch(params["term"]);

}

62

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

});

}

doSearch(term: string) {

this.loading = true;

this.itunes.search(term).then(_ => (this.loading = false));

}

onSearch(term: string) {

this.router.navigate(["search", { term: term }]);

}

}

@Component({

selector: "app-home",

template: `

<div class="jumbotron">

<h1 class="display-3">iTunes Search App</h1>

</div>

`

})

class HomeComponent {}

@Component({

selector: "app-header",

template: `<nav class="navbar navbar-light bg-faded">

<a class="navbar-brand"

[routerLink]="['home']">iTunes Search App

<ul class="nav navbar-nav">

<li class="nav-item"

[routerLinkActive]="['active']">

<a class="nav-link"

[routerLink]="['home']">Home

63

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

<li class="nav-item"

[routerLinkActive]="['active']">

<a class="nav-link"

[routerLink]="['search']">Search

</nav>

`

})

class HeaderComponent {

constructor(private router: Router) {}

goHome() {

this.router.navigate([""]);

}

goSearch() {

this.router.navigate(["search"]);

}

}

@Component({

selector: "app-artist-track-list",

template: `

<ul class="list-group">

<li class="list-group-item"

*ngFor="let track of tracks">

<a target="_blank"

href="{{track.trackViewUrl}}">{{ track.trackName }}

64

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

`

})

class ArtistTrackListComponent {

private tracks: any[];

constructor(private http: HttpClient, private route: ActivatedRoute) {

this.route.parent.params.subscribe(params => {

this.http

.jsonp(

`https://itunes.apple.com/lookup?id=${

params["artistId"]

}&entity=song`,

"callback"

)

.toPromise()

.then(res => {

console.log(res);

this.tracks = res.results.slice(1);

});

});

}

}

@Component({

selector: "app-artist-album-list",

template: `<ul class="list-group">

<li class="list-group-item"

*ngFor="let album of albums">

<a target="_blank"

href="{{album.collectionViewUrl}}">{{ album.collectionName }}

65

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

`

})

class ArtistAlbumListComponent {

private albums: any[];

constructor(private http: HttpClient, private route: ActivatedRoute) {

this.route.parent.params.subscribe(params => {

this.http

.jsonp(

`https://itunes.apple.com/lookup?id=${

params["artistId"]

}&entity=album`,

"callback"

)

.toPromise()

.then(res => {

console.log(res);

this.albums = res.results.slice(1);

});

});

}

}

@Component({

selector: "app-artist",

template: `<div class="card">

<div class="card-block">

<h4>{{artist?.artistName}} {{artist?.primaryGenreName}}</h4>

<hr />

<footer>

<ul class="nav nav-pills">

<li class="nav-item">

66

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

<a class="nav-link"

[routerLinkActive]="['active']"

[routerLink]="['./tracks']">Tracks

<li class="nav-item">

<a class="nav-link"

[routerLinkActive]="['active']"

[routerLink]="['./albums']">Albums

</footer>

</div>

</div>

<div class="m-t-1">

<router-outlet></router-outlet>

</div>

`

})

class ArtistComponent {

private artist: any;

constructor(private http: HttpClient, private route: ActivatedRoute) {

this.route.params.subscribe(params => {

this.http

.jsonp(

`https://itunes.apple.com/lookup?id=${params["artistId"]}`,

"callback"

)

.toPromise()

.then(res => {

console.log(res);

67

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

this.artist = res.results[0];

console.log(this.artist);

});

});

}

}

@Component({

selector: "app",

template: `

<app-header></app-header>

<div class="m-t-1">

<router-outlet></router-outlet>

</div>

`

})

class AppComponent {}

const routes: Routes = [

{ path: "", redirectTo: "home", pathMatch: "full" },

{ path: "find", redirectTo: "search" },

{ path: "home", component: HomeComponent },

{ path: "search", component: SearchComponent },

{

path: "artist/:artistId",

component: ArtistComponent,

children: [

{ path: "", redirectTo: "tracks", pathMatch: "full" },

{ path: "tracks", component: ArtistTrackListComponent },

{ path: "albums", component: ArtistAlbumListComponent }

]

},

{ path: "**", component: HomeComponent }

];

68

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

69

@NgModule({

imports: [

BrowserModule,

ReactiveFormsModule,

FormsModule,

HttpClientJsonpModule,

HttpClientModule,

RouterModule.forRoot(routes, { useHash: true })

],

declarations: [

AppComponent,

SearchComponent,

HomeComponent,

HeaderComponent,

ArtistAlbumListComponent,

ArtistTrackListComponent,

ArtistComponent

],

bootstrap: [AppComponent],

providers: [SearchService]

})

class AppModule {}

platformBrowserDynamic().bootstrapModule(AppModule);

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

70

 Angular Basics: Router Links and Wildcard

Routing in Angular

 What Is Routing?

In the last article, we looked at how Angular makes it easy to bring in the navigation

to your application through the router module. We also saw how routing can be set

up in Angular with ease. Now that we have set up routing, there are a few more

things we can do with the routing module.

 What We Are Building

Today we are building a simple navbar component with navigation in a single-page

application (SPA) and a wildcard page to guide users every time they enter a wrong

URL. We are going to continue from the last post, so download the source file from

here into your machine.

 Setting Up

Open the new file in VS Code and inside the terminal run the command below:

 npm install

https://github.com/viclotana/ngRouter_Template
https://github.com/viclotana/ngRouter_Template

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

71

This ensures all the node modules and dependencies needed for the project are

properly installed. Your folder should have an app component with two child

components: about and contact. The app component.html file should look like this:

HTML
You can save your work and run the dev server to see that it all works well in the

browser at localhost:4200.

ng serve

<div class="container">

<ul class="nav justify-content-center">

<li class="nav-item">

Home

<li class="nav-item">

About

<li class="nav-item">

Contact

<router-outlet></router-outlet>

</div>

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

72

Single-Page Applications (SPAs)

A single-page web application is one that does not have to reload as you interact

with it and navigate from one view to another—rather it dynamically displays views

as requested. The first thing you notice with the application we have now is that

every new click reloads the entire application, so it is not an SPA.

Router links are element properties provided by the router module that makes a link

initiate navigation. You can liken it to href for anchor tags, so in our case, we replace

the href tags with router links.

<div class="container">

<ul class="nav justify-content-center">

<li class="nav-item">

Home

<li class="nav-item">

About

<li class="nav-item">

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

73

HTML

 Wildcards

Now that we have set up routes, what happens if a user types in the wrong URL? A

good application should always gracefully handle scenarios like this, where a user

enters a URL that does not exist. Angular helps you do this with ease. You can set

up a wildcard route to that effect.

Once you set up a wildcard route, it just tells the router to select this route anytime a

requested URL does not match the specified routes in the app module. The syntax

for defining a wildcard route looks like this:

{ path: ‘**’, component: WildcardComponent}

TypeScript

Let us see it in action with our application. Generate a new component, and call it

Page404.

Contact

<router-outlet></router-outlet>

</div>

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

74

ng generate component page404
Now that you have created your wild card component, let us make it really clear.

Open the page404 component.html file and change the paragraph content inside the

html file from “page404 works” to “This URL you just entered is incorrect, kindly

try again.”

<p>This URL you just entered is incorrect, kindly try again.</p>

HTML

Open the app module file and copy the code block below inside it:

import { BrowserModule } from '@angular/platform-browser';

import { NgModule } from '@angular/core';

import { RouterModule, Routes } from '@angular/router';

import { AppComponent } from './app.component';

import { AboutComponent } from './about/about.component';

import { ContactComponent } from './contact/contact.component';

import { Page404Component } from './page404/page404.component';

const routes: Routes = [

{path:'about', component: AboutComponent},

{path:'contact', component: ContactComponent},

{path:'**', component: Page404Component}

];

@NgModule({

declarations: [

AppComponent,

AboutComponent,

ContactComponent,

Page404Component

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

75

TypeScript
Now if you try putting in any wrong URL, this is what you get:

],

imports: [

BrowserModule,

RouterModule.forRoot(routes)

],

providers: [],

bootstrap: [AppComponent]

})

export class AppModule { }

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

76

 Redirecting the Routes

Besides creating a separate wildcard component like we have done, you can just

redirect the route to go to another route like the Homepage or the Contact page

whenever a user enters an incorrect URL.

TypeScript

import { BrowserModule } from '@angular/platform-browser';

import { NgModule } from '@angular/core';

import { RouterModule, Routes } from '@angular/router';

import { AppComponent } from './app.component';

import { AboutComponent } from './about/about.component';

import { ContactComponent } from './contact/contact.component';

import { Page404Component } from './page404/page404.component';

const routes: Routes = [

{path:'about', component: AboutComponent},

{path:'contact', component: ContactComponent},

{ path: '**', redirectTo: '/contact'}

];

@NgModule({

declarations: [

AppComponent,

AboutComponent,

ContactComponent,

Page404Component

],

imports: [

BrowserModule,

RouterModule.forRoot(routes)

],

providers: [],

bootstrap: [AppComponent]

})

export class AppModule { }

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

77

Now when you save the files, you will see that every incorrect URL redirects to the

Contact page

wrap up

 USER INTERACTION & OUTPUTS

 ACTIVITY

In this quick start section you created your first Angular Application!

You should now have at least a top-level view of what an Angular application is,

how it functions and how to go about architecting it.

We covered:

Environment
How to use stackblitz.com to write Angular apps in a browser

Components
Which let us extend the HTML language to create new tags and forms

the basis of an Angular application.

Bootstrapping
How to actually make Angular load and take control of a HTML page.

Binding
String interpolation with {{ }} and both input property binding as well

as output event binding.

NgFor

https://codecraft.tv/courses/angular/quickstart/summary/stackblitz.com

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

78

How to render multiple elements using the built-in NgFor directive.

Data Modelling
We touched on data modelling, by creating our own Joke class which

encapsulated all our data and logic relate to a joke.

Template Local Variables
Capturing user input from users by adding # variables to input controls.

Architecture
We started to see how we go about building Angular apps by wiring

together inputs and outputs in order to glue Components together.

We’ll be going into much more detail into each of these topics, and others, in future

chapters.

However since Angular is based on TypeScript it makes sense to get a good

understanding of those features before we dive into the rest of this course so that’s

the topic of the next section.

	Routing & Wrap Up
	What is a router?
	Why do we need a router?
	 7 Steps To Get Started With React Routing

	Introduction
	The Need for Dynamic Routing
	Making Routes with Different Components
	Navigate Between the Components using Routes from Code
	Passing Parameters to Routes and fetching route parameters
	 Route parameters in Angular
	 Passing Route parameters in Angular

	Made it Simple:
	 PARAMETERISED ROUTES
	 Goal
	TypeScript
	TypeScript (1)
	HTML

	 Relative Routes
	 Child Routes
	TypeScript
	HTML
	HTML (1)
	HTML (2)

	 Parent Route Parameters
	JSON
	JSON (1)
	TypeScript
	TypeScript (1)

	 Summary
	 Listing
	TypeScript

	Angular Basics: Router Links and Wildcard Routing in Angular
	 Setting Up

	 npm install
	ng serve
	ng generate component page404

	wrap up
	Components
	Bootstrapping
	Binding
	NgFor
	Data Modelling
	Template Local Variables
	Architecture

