

Shree H.N.Shukla College of Science Rajkot <u>MATHEMATICS</u> <u>S.Y.B.Sc. (Sem. IV) (CBCS)</u> <u>UNIT TEST</u> <u>PAPER- 401</u> Linear Transformation

Time: 1 hour]

[Total Marks: 30

Instruction: (i) All questions are compulsory.

(ii) Figures to the right indicate full marks of the

question.

1. (A) Answer the following:

- 1) Define: Zero linear transformation
- 2) Define: Kernal of a linear transformation
- 3) Let T: U \rightarrow V be a linear transformation and let θ and θ' be zero vectors of U and V respectively. Prove that T(θ)= θ'
- 4) Define: Idempotent linear transformation

(B) Attempt any one:

- 1) Find a linear transformation T: $R^3 \rightarrow R^3$ such that R_T =SP{(1,5,0), (0,7,3)}
- 2) Find N_T and n(T) for the linear transformation T: $R^3 \rightarrow R^2$, T(x,y,z)=(x-y+z,x+y-z), $\forall (x,y,z) \in R^3$

(C) Attempt any one:

- 1) Prove that composition of two linear transformations is again a linear transformation.
- 2) Find the linear transformation T: $R^3 \rightarrow R^2$ such that T(e₁)=(1,1), T(e₁+e₂)=(1,0), T(e₁+e₂+e₃)=(1,-1). Also find T (2, 5, 7), where {e₁, e₁+e₂, e₁+e₂+e₃} is a basis of R^3 .

[03]

[02]

[05]

(D) Attempt any one:

- 1) State and prove Rank-Nullity theorem.
- 2) Prove that L (U, V) is a vector space over R with respect to addition and scalar multiplication of linear transformation.

2. (A) Answer the following:

- 1) Define: Dual of a vector space
- 2) Define: Eigen value of a linear transformation
- 3) If dimU=4, dimV=3, then find the dimL (U, V).
- 4) Define: Eigen basis of a linear transformation

(B) Attempt any one:

- 1) Let T: $R^2 \rightarrow R^2$, T(x,y)=(x, -y), \forall (x,y) $\in R^2$ and B₁={(1,1), (1,0)} and B₂={(2,3), (4,5)}. Then find [T;B₁, B₂].
- 2) Define: Matrix associated with a linear transformation

(C) Attempt any one:

- 1) Find Eigen values of the linear transformation T: $R^2 \rightarrow R^2$ defined as T(x, y) = (3y, 2x-y).
- 2) $A = \begin{bmatrix} 3 & 2 & 5 \\ -1 & 4 & -6 \end{bmatrix}$ is the corresponding matrix of linear transformation T: $R^3 \rightarrow R^2$ with standard bases of R^3 and R^2 . For the new bases $B_1 = \{(1,1,1), (1,1,0), (1,0,0)\}$ and $B_2 = \{(1,1), (1,0)\}$. Find $[T;B_1, B_2]$.

(D) Attempt any one:

- 1) Find the Eigen value and Eigen vector for the linear transformation T: $R^3 \rightarrow R^3$, T(x, y, z)=(-2y-2z, -2x-3y-2z, 3x+6y+5z), \forall (x,y,z) $\in R^3$ by considering the standard basis of R^3 .
- 2) Let T: V \rightarrow V be a linear transformation and let B be any basis of V. Then T is singular if and only if det ([T; B]) =0.

****BEST OF LUCK****

[05]

[02]

[03]

[05]