Shree H.N.Shukla College of Science Rajkot MATHEMATICS

S.Y.B.Sc. (Sem. IV) (CBCS)

UNIT TEST
PAPER- 401

Linear Transformation

Time: 1 hour]
[Total Marks: 30
Instruction: (i) All questions are compulsory.
(ii) Figures to the right indicate full marks of the question.

1. (A) Answer the following:
1) Define: Zero linear transformation
2) Define: Kernal of a linear transformation
3) Let $\mathrm{T}: ~ U \rightarrow V$ be a linear transformation and let θ and θ^{\prime} be zero vectors of U and V respectively. Prove that $T(\theta)=\theta^{\prime}$
4) Define: Idempotent linear transformation
(B) Attempt any one:
5) Find a linear transformation $T: R^{3} \rightarrow R^{3}$ such that $R_{T}=S P\{(1,5,0),(0,7,3)\}$
6) Find N_{T} and $n(T)$ for the linear transformation $T: R^{3} \rightarrow R^{2}, T(x, y, z)=(x-y+z, x+y-z)$, $\forall(x, y, z) \in R^{3}$
(C) Attempt any one:
7) Prove that composition of two linear transformations is again a linear transformation.
8) Find the linear transformation $T: R^{3} \rightarrow R^{2}$ such that $T\left(e_{1}\right)=(1,1), T\left(e_{1}+e_{2}\right)=(1,0)$, $T\left(e_{1}+e_{2}+e_{3}\right)=(1,-1)$. Also find $T(2,5,7)$, where $\left\{e_{1}, e_{1}+e_{2}, e_{1}+e_{2}+e_{3}\right\}$ is a basis of R^{3}.

(D) Attempt any one:

1) State and prove Rank-Nullity theorem.
2) Prove that $L(U, V)$ is a vector space over R with respect to addition and scalar multiplication of linear transformation.
2. (A) Answer the following:
1) Define: Dual of a vector space
2) Define: Eigen value of a linear transformation
3) If $\operatorname{dim} U=4, \operatorname{dim} V=3$, then find the $\operatorname{dimL}(U, V)$.
4) Define: Eigen basis of a linear transformation
(B) Attempt any one:
5) Let $T: R^{2} \rightarrow R^{2}, T(x, y)=(x,-y), \forall(x, y) \in R^{2}$ and $B_{1}=\{(1,1),(1,0)\}$ and $B_{2}=\{(2,3),(4,5)\}$. Then find $\left[T ; B_{1}, B_{2}\right]$.
6) Define: Matrix associated with a linear transformation
(C) Attempt any one:
7) Find Eigen values of the linear transformation $T: R^{2} \rightarrow R^{2}$ defined as $T(x, y)=(3 y, 2 x-y)$.
8) $A=\left[\begin{array}{ccc}3 & 2 & 5 \\ -1 & 4 & -6\end{array}\right]$ is the corresponding matrix of linear transformation $T: R^{3} \rightarrow R^{2}$ with standard bases of R^{3} and R^{2}. For the new bases $B_{1}=\{(1,1,1),(1,1,0),(1,0,0)\}$ and $B_{2}=\{(1,1),(1,0)\}$. Find $\left[T ; B_{1}, B_{2}\right]$.
(D) Attempt any one:
9) Find the Eigen value and Eigen vector for the linear transformation $T: R^{3} \rightarrow R^{3}$, $T(x, y, z)=(-2 y-2 z,-2 x-3 y-2 z, 3 x+6 y+5 z), \forall(x, y, z) \in R^{3}$ by considering the standard basis of R^{3}.
10) Let $T: V \rightarrow V$ be a linear transformation and let B be any basis of V. Then T is singular if and only if $\operatorname{det}([T ; B])=0$.

****BEST OF LUCK ${ }^{* * * *}$

