M. Sc (Mathematics) (Sem. 1)

Test

MATH.CMT-1002: Real Analysis

[Time: 2.30 Hours]
1 Answer any seven
(a) Let $\mathrm{A} \subseteq \mathbb{R}$ and $\mathrm{m}^{*}(\mathrm{~A})=0$ then show that A is measurable.
(b) Let $\mathrm{A} \subseteq \mathbb{R}$ and A be G_{δ} set then show that A^{c} is F_{σ} set.
(c) If a measurable function f is integrable over a measurable set E , then show that $|f|$ is integrable over E.
(d) State Monotone convergence theorem.
(e) $\mathrm{f}:[0,1] \rightarrow \mathrm{R}$ be a increasing function verify that f is function of bounded variation over $[0,1]$.
(f) Let $(\mathrm{X},\|\cdot\|)$ be a norm linear space. Let $\mathrm{d}: \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{R}$ be given by $d(x, y)=\|x-y\|$ then show that d is metric.
(g) Define Lebesgue outer measure. $\mathrm{m}^{*}((0,1) \cup(2,3))=$?
(h) Show that every continues function is measurable.
(i) Define Lebesgue integral of bounded measurable function define on measurable set E .
(j) When we say that $f:[a, b] \rightarrow R$. is function of bounded variation over [a, b].

2 Answer any two $2 \times 7=14$
(a) Let $\mathrm{A} \subseteq \mathbb{R}$. Let $\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}, \ldots, \mathrm{E}_{\mathrm{n}}$ be finite sequence of disjoint measurable sets.

Show that $\mathrm{m}^{*}\left(\mathrm{~A} \cap\left(\mathrm{U}_{i=1}^{n} E i\right)\right)=\sum_{i=1}^{n} m^{*}\left(A \cap E_{\mathrm{i}}\right)$.
(b) Let $\mathrm{a}, \mathrm{b} \in \mathbb{R}$ be a such that $\mathrm{a} \leq \mathrm{b}$ prove that $m^{*}[a, b]=b-a$.
(c) Let $\mathrm{f}, \mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ be a measurable function. Prove that the function $\mathrm{f}+\mathrm{g}, \mathrm{fg}$ and $f+c$ are measurable. Where $c \in R$.
(a) f and g are bounded measurable function define on a set E of finite measure.

$$
\text { If } \mathrm{f} \leq \mathrm{g} \text { a.e on } \mathrm{E} \text {, then prove that } \int_{\mathrm{E}} \mathrm{f} \leq \int_{\mathrm{E}} \mathrm{~g} \text {. }
$$

(b) If $f \in B V[a, b]$, then show that $P_{a}^{b}(f)-N_{a}^{b}=f(b)-f(a)$.
(c) If f be measurable function define on measurable set E and $\mathrm{f}=\mathrm{g}$ a.e on E , then prove that g is measurable.

OR

3
(a) Prove that every borel set is measurable.
(b) State Fatou's lemma. Show that we may have strict inequality in Fatou's lemma.
(c) $\mathrm{g}:[0,1] \rightarrow \mathrm{R}$ define by

$$
\begin{aligned}
g(x) & =x^{2}\left(\sin \left(1 / x^{2}\right)\right) & & \text { if } x \neq 0 \\
& =0 & & \text { if } x=0
\end{aligned}
$$

then show that g is not function of bounded variation.

4 Answer any two

(a) State and Prove monotone convergence theorem.
(b) prove that a function f is function of bounded variation on [a,b] if and only if there are two monotonically increasing function g and h define on $[\mathrm{a}, \mathrm{b}]$ such that $\mathrm{f}=\mathrm{g}-\mathrm{h}$.
(c) State and prove Minkowski inequality.

5 Answer any two

(a) State and prove Holder's inequality.
(b) If f is integrable over on $[\mathrm{a}, \mathrm{b}]$ and $\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}(\mathrm{t}) \mathrm{dt}=0$ for all $\mathrm{x} \in[\mathrm{a}, \mathrm{b}]$ then show that $f(t)=0$ a.e on $[a, b]$.
(c) Let $\left\langle\mathrm{f}_{\mathrm{n}}\right\rangle$ be a sequence of measurable function defined on E and f be A measurable real valued function define on E such that $f_{n} \rightarrow f$ in measure On E . Show that there is a subsequence $\left\langle\mathrm{f}_{n_{k}}\right\rangle$ which is converges to f a.e on E.

