M. Sc (Mathematics) (Sem. 1)

Test

MATH.CMT-1002: Real Analysis

[Time: 2.30 Hours]

[Total Marks: 70]

- 1 Answer any seven 7x2=14
- (a) Let $A \subseteq \mathbb{R}$ and $m^*(A) = 0$ then show that A is measurable.
- (b) Let $A \subseteq \mathbb{R}$ and A be G_{δ} set then show that A^{c} is F_{σ} set.
- (c) If a measurable function f is integrable over a measurable set E, then show that | f | is integrable over E.
- (d) State Monotone convergence theorem.
- (e) f: [0,1]→R be a increasing function verify that f is function of bounded variation over [0,1].
- (f) Let (X, ||·||) be a norm linear space. Let d: X x X → R be given by
 d(x, y) = ||x-y|| then show that d is metric.
- (g) Define Lebesgue outer measure. $m^*((0,1)\cup(2,3))=?$
- (h) Show that every continues function is measurable.
- (i) Define Lebesgue integral of bounded measurable function define on measurable set E.
- (j) When we say that f:[a, b] → R. is function of bounded variation over [a, b].
- 2 Answer any two 2x7=14
 - (a) Let $A \subseteq \mathbb{R}$. Let $E_1, E_2, E_3, \dots, E_n$ be finite sequence of disjoint measurable sets. Show that $m^*(A \cap (\bigcup_{i=1}^n E_i)) = \sum_{i=1}^n m^*(A \cap E_i)$.
 - (b) Let $a, b \in \mathbb{R}$ be a such that $a \le b$ prove that $m^*[a, b] = b a$.
 - (c) Let $f,g: R \to R$ be a measurable function. Prove that the function f+g, fg and f+c are measurable. Where $c \in R$.

- (a) f and g are bounded measurable function define on a set E of finite measure. If $f \le g$ a.e on E, then prove that $\int_E f \le \int_E g$. 5
- (b) If $f \in BV[a,b]$, then show that $P_a^b(f) N_a^b = f(b) f(a)$. 4
- (c) If f be measurable function define on measurable set E and f = g a.e on E, then prove that g is measurable.

OR

3

(a) Prove that every borel set is measurable.(b) State Fatou's lemma. Show that we may have strict inequality in Fatou's

4

2x7 = 14

lemma.

(c) g : $[0,1] \rightarrow R$ define by

 $g(x) = x^{2}(\sin(1/x^{2}))$ if $x \neq 0$

$$= 0$$
 if x = 0
then show that g is not function of bounded variation. 5

4 Answer any two 2x7=14

- (a) State and Prove monotone convergence theorem.
- (b) prove that a function f is function of bounded variation on [a,b] if and only if there are two monotonically increasing function g and h define on [a,b] such that f = g-h.
- (c) State and prove Minkowski inequality.

5 Answer any two

- (a) State and prove Holder's inequality.
- (b) If f is integrable over on [a,b] and $\int_a^b f(t)dt = 0$ for all $x \in [a,b]$ then show that f(t) = 0 a.e on [a,b].
- (c) Let $\langle f_n \rangle$ be a sequence of measurable function defined on E and f be A measurable real valued function define on E such that $f_n \rightarrow f$ in measure On E. Show that there is a subsequence $\langle f_{n_k} \rangle$ which is converges to f a.e on E.

BEST OF LUCK