

MASTER OF SCIENCE MATHEMATICS(W.E.F.-2016) MSC MATHS(2016) Semester - 3 Examination

October - 2024

DISCRETE MATHEMATICS

Faculty Code: 003

Subject Code: 003-1163004

Time: 2.30Hours] Control [Total N			70
		755	
Q.1	Answ	ver the following: (Any seven out of ten, each of 02 marks)	14
χ.1		Define: Subsemigroup and Submonoid.	
		Does there exist surjective homomorphism from $(Z,+)$ to $(N,+)$? Justify.	
		Give two examples of modular lattice which are not distributive.	
		Define: Boolean expression.	
		Define: Predicate with example.	
		Write any two valid argument forms,	
		Construct finite automata of language of all stings containing even number of zeros.	
		Define extended transition function in NFA.	
		Define the role of encoder and decoder in communication system.	
		Find distance between codewords 11101 and 01011.	
		2	
Q.2	Answ	ver the following: (Any two out of three, each of 07 marks)	14
	1	Show that $(N \cup \{0\}, +)$ is isomorphic to some quotient semigroup of $\{0,1\}^*$.	
	2	Let $n \ge 1$ then (D_n, \le_{div}) is complemented iff n is a product of unique primes.	
	3	Show that a binary code C can correct up to k errors in any codeword if and only if $d(C) \ge 2k + 1$.	
0.2	Angu	ver the following: (1 & 2 Both are compulsory, each of 07 marks)	14
Q.3		State pumping lemma for regular languages. Using it show that $L = \{0^i 1^i i \ge 0\}$ is not regular.	
	2	Show that a lattice (L, \leq) is distributive iff for all $a, b, c \in L$, $(a \land b) \lor (b \land c) \lor (c \land a) = (a \lor b) \land (b \lor c) \land (c \lor a)$	
		OR OR	
	Answ	ver the following: (1 & 2 Both are compulsory, each of 07 marks)	14

Show that for any NFA $M = (Q, \Sigma, q_0, A, \delta)$ accepting a language $L \subseteq \Sigma^*$, there is an FA

"If M is any sublattice of (L, \leq) , then M can not be isomorphic to the pentagon lattice"

 $M_1 = (Q_1, \Sigma, q_1, A_1, \delta_1)$ that also accepts L.

2

A lattice (L, \leq) is modular if and only if the following statement holds:

Q.4 Answer the following:

- Define argument and check whether the following argument is logically valid or not. "If I save money, I will buy house. I did not buy house. Therefore I did not save money".
- 2 State and prove the generalized DeMorgan's laws in first order logic.

Q.5 Answer the following: (Any two out of four, each of 07 marks)

- 1 State and prove the fundamental theorem of homomorphism of semigroups.
- Let G be a group and H is a normal subgroup of G then the relation G defined on G by g_1Rg_2 iff $g_1g_2^{-1} \in H_{\frac{1}{2}}$ a congruence relation.
- Suppose L_1 and L_2 are subset of $\{0,1\}^*$ such that, $L_1 = \{x \mid 00 \text{ is not a substring of } x\}$ $L_2 = \{x \mid x \text{ ends in } 01\}$. Find FA that recognize $L_1 - L_2$ and $L_1 \cup L_2$.
- Devise a binary Hamming code of length seven with three parity bits which can correct a single error if any due to noise.