SHREE H. N. SHUKLA GROUP OF COLLEGES

M.Sc. (Mathematics) Semester-2

IMP Questions of Complex Analysis

- 1. State and prove fundamental theorem of algebra.
- 2. State and prove Liouvilles theorem.
- 3. State Orientation principle. And show that the concept of symmentric points with respect to a circle Γ is independent of choice of three points $z_2, z_3, z_4 \in \Gamma$.
- 4. Find the Laurent's series expansion in the powers of z for function

$$f(z) = \frac{z+2}{z^2-2z+3}$$
 in

- (i) |z| < 1;
- (ii) 1 < |z| < 3;
- (iii) |z| > 3.
- 5. State and prove Cauchy integral formula for second version.
- 6. State and prove Cauchy's theorem.
- 7. Prove that $\int_0^{2\pi} \frac{e^{is}}{e^{is}-z} ds = 2\pi, \forall z \in \mathbb{C}, |z| < 1.$
- 8. State and prove maximum modulus theorem.
- 9. Prove that $\int_{-\infty}^{\infty} \frac{x^2}{1+x^4} dx = \frac{\pi}{\sqrt{2}}.$
- 10. Find the bilinear transformation S taking $1 \to 2$, $3 \to \infty$, $\infty \to 0$.
- 11. Define removable singularity of complex function "f" of a complex variable and give an example. Prove that $a \in \mathbb{C}$ is a removable singularity of f if and only if $a_n = 0$, $\forall n \leq -1$ in the Laurent's expansion $\sum_{n=-\infty}^{\infty} a_n (z-a)^n \text{ of } f \text{ at } a.$
- 12. State Rouche's theorem. Using the Rouche's theorem prove that $3z^7 + 5z 1$ has exactly one zero in |z| < 1 and is a real zero in (0,1).

- 13. Show that the set $M = \{S : S \text{ is a bilinear transformation}\}$ is a group under composition.
- 14. Prove that every bilinear transformation can be written as composition of translation, dilation and inversion.
- 15. State and prove minimum modulus theorem. Also give an example of a non-constant analytic function in \mathbb{C} which may attain its minimum value.
- 16. Prove that for analytic function : $G \to \mathbb{C}$; where G be an open connected subset of \mathbb{C} and $G^* = \{\bar{z} : z \in \mathbb{C}\}$, then $f^* : G^* \to \mathbb{C}$ defined by $f^*(z) = \overline{f(\bar{z})}$; is an analytic function.
- 17. Prove that if $f: G \{a\} \to \mathbb{C}$ is an analytic function a is a pole of f then there exists $m \in \mathbb{N}$ and $g: G \to \mathbb{C}$ such that $f(z) = \frac{g(z)}{(z-a)^m}$.
- 18. Find $\int_{\gamma} \frac{1}{z} dz$, where $\gamma = [1 i, 1 + i, -1 + i, -1 i, 1 i]$.
- 19. Define the right side, left side of a circle Γ in \mathbb{C}_{∞} w.r.t. an orientation of Γ . Find The right side of the imaginary axis L w.r.t. the orientation (-i, 0, i) and the left side of the unit circle Γ with center at 0 w.r.t. the orientation (-i, -1, i).
- 20. If γ is a rectifiable curve in \mathbb{C} , $f : \{\gamma\} \to \mathbb{C}$ is continuous and $c \in \mathbb{C}$, then prove that $\int_{\gamma} f(z) dz = \int_{\gamma+c} f(z-c) dz$.

-----ALL THE BEST-----