	SY BSC SEM 3 UNIT 5 CHAPTER - 7 SINGLE STAGE TRANSISTOR AMPLIFIER				
SR NO	QUESTIONS		OPTIONS	ANSWER	
		А	two transistor		
1	A single stage transistor amplifier contains along with associated	В	three transistor	С	
1	circuitary.	С	one transistor	L.	
		D	four transistor		
		А	360°		
2	The phase difference between input voltage and output voltage of a CE ampliifer	В	180°	В	
2		С	270°	D	
		D	90°		
	The transistor should have input impedence .	A	very law	B	
3		В	very high		
5		С	high		
		D	low		
		Α	grounded base	_	
4	A CE amplifier is also known as circuit.	В	grounded collector	С	
т	A CL ampliner is also known as circuit.	С	grounded emitter	L.	
		D	none of this		
		А	forward bias the emitter		
5	The purpose of d.c. condition in a transistor is to	В	reverse bias the emitter	С	
5		С	set up the operating point	L L	
		D	none of this		
		А	zero		
6	In a CE amplifier the phase difference betweeen voltage across collector	В	180°	٨	
0	load and input volatage is	С	270°	A	
		D	90°	1	
		Α	provide biasing		
7	The nurness of conscitors in a transistor amplification to	В	cool the transistor	D	
7	The purpose of capacitors in a transistor amplifier is to	С	protect transistor		
		D	couple or bypass the a.c.		

		А	less than	
		B	the negetive of	
8	The slope of a.c. load line is that of d.c. load line	C	more than	С
		D	the same as	
		A	as volts	
		B	as currents	
9	The voltage gain of an amplifier is generally expressed	<u>с</u>	as a number	С
		D	none of these	
		A	high resistance into low res	
		B	a.c. power into d.c. power	
10	A transistor in a voltage amplifier converts	C D		С
		<u>ר</u> D	d.c. power into a.c. power	
			bypass the d.c.	
		A	collector has reverse bias	
11	A transistor amplifier has high output impedence because	B	emitter is reverse biased	А
		С	base is forward biased	
		D	none of this	
	The d.c. load of a transistor amplifier is generally that of the a.c. load.	А	more than	А
12		В	the same as	
14		С	less than	
		D	none of this	
		А	transistor	
13	The output power of a transistor amplifier is more than the input power, the	В	capacitors	р
13	additional power comes from	С	biasing resistors	D
		D	collector supply Vcc	
		А	CE	
		В	СВ	
14	For highest power gain the configuration should be used is	С	СС	А
		D	None of this	
		A	operating point	
1 -		B	cut off point	
15	The point of intersection of a.c. and d.c. load lines is called	C	as a number	А
		D	none of this	
		Α	will change bias conditions	
16	Short circuiting the input capacitor of a transistor amplifier	В	will destroy transistor	A
	shore encluting the input capacitor of a transistor amplifier	<u>C</u>	will black input signal	
		D	none of these	

		A	15 V	
	In a transistor amplifier Vcc = 10 V then the collector cut off voltage under	В	10 V	р
17	d.c. conditions is	С	20 V	В
		D	5 V	
		Α	d.c. load line	
10	When input signal is applied to an amplifier , the operating point moves	В	a.c. load line	п
18	along	С	remains unmoved	В
		D	none of these	
	A single stage transistor amplifier with no load sees an a.c. load of	Α	$R_c + R_E$	D
10		В	R _c . R _E	
19		С	R_c / R_E	
		D	R _c	
		А	open	
20	The capacitors are considered as in the d.c. euqivalent circuit of	В	short	
20	transistor amplifier.	С	partially short	A
		D	partially open	

	ANSWER THE FOLLOWING QUESTIONS : 2 MARKS
1	Explain single stage ampifier.
2	What is a d.c. load line ?
3	What is a a.c. load line ?
4	Define : fequency response
5	Define : bandwidth
6	Explain collector current variation with the help of output characteristics .
	ANSWER THE FOLLOWING QUESTIONS : 3 MARKS
1	What is a.c. and d.c.load lines ? How they will be constructed on the output characteristics?
2	Explain 180° phase reversal with the help of graphical representation.
3	Derive an equation for the volatge gain of a transistor ampliifier from it's a.c. circuit .
4	Show that output voltage of a single stage CE ampliifer is 180° out of phase with the input voltage .
5	Find the voltage of an amplifier having Rc = 5 K Ω , RL = 10 K Ω , Rm = 2K Ω and β = 100.
6	Explain classification of amplifiers.
	ANSWER THE FOLLOWING QUESTIONS : 5 MARKS
1	Find the transistor amplifier having Rc = 12 K Ω , R _E = 10 K Ω , Vcc = 20 V, R in = 2K Ω and β = 200. find the volatge gain.
2	Draw the circuit of a single stage amplifier and explain the functions of its various elements .
3	Derive an expression for the voltage gain of a transistor amplifier from its a.c. equivalent circuit.
4	A standard CE amplifier has the following values : VCC = 30V, R1 = 51 k Ω , R2 = 5.1 k Ω , RC = 5.1 k Ω , RE = 910 Ω and β = 250. Determine the voltage gain of the amplifier.
5	Explain practical circuit of transistor amplifier with their various circuit element.

	SY BSC SEM 3 UNIT 5 CHAPTER - 6 TRANSISTOR BIASING & STABILISATION OF OPERATING POINT				
SR NO	QUESTIONS		OPTIONS	ANSWER	
1	Transistor biasing represents conditions.	A B C D	a.c. d.c. both a.c. and d.c. none of the above	В	
2	Operating point represents	A B C D	values of IC and VCE when signal is applied the magnitude of signal zero signal values of IC and VCE none of the above	С	
	If biasing is not done in an amplifier circuit, it results in	A B C D	decrease in base current unfaithful amplification excessive collector bias none of the above	В	
4	Transistor biasing is generally provided by a	A B C D	biasing circuit bias battery diode none of the above	А	
5	The circuit that provides the best stabilisation of operating point is	A B C D	base resistor bias collector feedback bias potential divider bias none of the above	С	
6	The point of intersection of d.c. and a.c. load lines represents	A B C D	operating point current gain voltage gain none of the above	А	

-				
		Α	100	
7	An ideal value of stability factor is	В	200	D
	An ideal value of stability factor is	С	more than 200	D
		D	1	
		Α	is complicated	
8	The disadvantage of base resistor method of transistor biasing is that it	В	is sensitive to changes in β	
8		С	provides high stability	В
		D	none of the above	
		А	proper forward bias	
9	For proper operation of the transistor, its collector should have	В	proper reverse bias	
9		С	very small size	В
		D	none of the above	
	The operating point is also called the	Α	cut off point	
10		В	quiescent point	
10		С	saturation point	- B
		D	none of the above	
	Four and an annull Grantian law a two winters air and t	Α	the end point	В
11	For proper amplification by a transistor circuit,	В	middle	
11	the operating point should be located	С	the maximum current point	
	at of the d.c. load line.	D	none of the above	
		А	also lies	
12	The operating point on the a.c. load	В	does not lie	
12	line.	С	may or may not lie	A
		D	data insufficient	
		Α	high stability factor	
13	The disadvantage of voltage divider bias is	В	low base current	С
13	that it has	С	many resistors	L
		D	none of the above	
		A	collector is reverse biased	
14	Thermal runaway occurs when	В	transistor is not biased	В
	Thermal runaway occurs when	С	emitter is forward biased	
		D	junction capacitance is high	

		Α	amplifier circuits	
15	The base resistor method is generally used in	В	switching circuits	В
15		С	rectifier circuits	D
		D	none of the above	
		А	be zero	
16	For germanium transistor amplifier, V _{CE}	В	be 0.2 V	С
10	should for faithful amplification.	С	not fall below 0.7 V	Ն
		D	none of the above	
		Α	the same as	
17	The stability factor of a collector feedback bias circuit is that of base resistor bias.	В	more than	C
17		С	less than	С
		D	none of the above	
	If the value of collector current $I_{\rm C}$ increases, then value of $V_{\rm CE}$	Α	remains the same	В
18		В	decreases	
10		С	increases	
		D	none of the above	
		А	remains the same	
19	If the temperature increases, the value of VBE	В	is increased	C
19		С	is decreased	С
		D	none of the above	
		٨	depends upon IC to moderate	
		А	extent	В
20	The value of V _{BE}	В	is almost independent of IC	
		С	is strongly dependent on IC	
		D	none of the above	

	ANSWER THE FOLLOWING QUESTIONS : 2 MARKS
1	What is operating point?
2	What is thermal runway?
3	Explain transistor biasing : Why it is need?
4	Define : Stability factor
5	Define : faithful amplification
6	Give the advantages of base resistor method.
	ANSWER THE FOLLOWING QUESTIONS : 3 MARKS
1	Derive the general expression of stability factor for CE configuration.
2	Mention step to design for transistor biasing
3	Derive stability factor of biasing with feedback resistor method.
4	Derive stability factor of voltage divider biasing method.
5	Write a short note on variation of transistor parameter.
6	Why stabilization of the operating point is necessary ?
	ANSWER THE FOLLOWING QUESTIONS : 5 MARKS
1	Explain voltage divider biasing method .
2	Explain base resistor method with their advantages & disadvantages.
3	Explain biasing with feedback resistor method .
4	Describe the various methods used for transistor biasing. State their advantages and disadvantages.
5	Write short notes on the following : (i) Operating point (ii) Stabilisation of operating point

	SY BSC SEM 3 UNIT 4 CHAPTER - 5 MAGNETIC FIELDS IN MA	ГТЕR	-	
SR NO	QUESTIONS		OPTIONS	ANSWER
1	The presence of parallel alignment of magnetic dipole moment is given by which materials?	A B C D	Diamagnet Ferromagnet Paramagnet None of the above	В
2	Which material acquires a weak magnetisation aligned with an external applied magnetic filed and lose magnetization?	A B C D	Diamagnet Ferromagnet Paramagnet None of the above	С
3	Diamagnets acquires a weak magnetization an external applied magentic field, lose their allignment.	A B C D	aligned with opposite align in same direction None of the above	В
4	Ferromagnets material are known as	A B C D	linear Non linear symmetric None of the above	В
5	Magnetic dipole moment of the loop is m =	A B C D	Iab Ia/b I/ab None of the above	A
6	Electrons do not spin only ,they also revolve around the nucleas ina orbit. True/ False.	A B C D	True False	А

		А	opposite	
	The property of diamagnetism is that magnetic dipole moment is the	B	aligned with	1 .
7	direction to the applied field.	С	align in same direction	A
		D	None of the above	
		А	opposite	
8	The property of paramagnetism is that magnetic dipole moment is the direction to the applied field.	В	aligned with	С
8		С	in same	L L
		D	None of the above	
		Α	Magnetization	
9		В	polarization	_
9	Magnetic dipole moment per unit volume is known as	С	magnetic flux	A
		D	None of the above	
		А	Copper chloride	
10	is a paramagnetic substance.	В	NaCl	А
10		С	lead	A
		D	None of the above	
	is a diamganetic substance.	А	Copper chloride	В
11		В	NaCl	
11		С	aluminium	
		D	None of the above	
		А	0	
12	If the material exhibit solenoidal symmetry using Ampere's law is known as $\nabla \times M = $	В	1	А
12	$\nabla \times M = $	С	2	А
		D	None of the above	
		А	X m	
13	Magnatic suscentiblity is sorres as	В	μ ₀	А
15	Magnetic susceptiblity is serves as	С	ε ₀	Л
		D	none of the above	1
14	Magnatia guagantihlitu ia dimangianlaga guantitu. Tuya (Eslas	А	True	A
14	Magnetic susceptiblity is dimensionless quantity. True /False	В	False	

-		<u>г</u>		
	Paramagentic material have value of magnetic susceptibility.	A	Positive	
15		В	Negative	А
15		С	zero	Л
		D	None of the above	
		Α	Positive	
10		В	Negative	D
16	Diamagentic material have value of magnetic susceptibility.	С	zero	В
		D	None of the above	
		А	Χe	
17	Permeability of free space serves as	В	μ ₀	В
17		С	ε ₀	
		D	none of the above	
		Α	True	
10	In feromagnets the individual dipole moments interact with each other . True/ False.	В	False	
18		С		A
	,	D		
		Α	True	
10		В	False	
19	Diamagnetism is actually a quantom mechanical effect. True/ False.	С		A
		D		
		Α	scalar	
20	Magnatization is a substitu	В	vector	р
20	Magnetization is quantity.	С	dimensionless	В
		D	none of the above	

	ANSWER THE FOLLOWING QUESTIONS : 2 MARKS
1	Explain the mechanism responsible for dimagentism.
2	Define : linear media
3	Explain the physical origin of magnetic dipoles.
4	Give the mechanism responsible for paramgnetism.
5	Define : Magnetization.
6	Define : macroscopic magnetic field.
	ANSWER THE FOLLOWING QUESTIONS : 3 MARKS
1	Define : diamagnets, paramgnets, and ferromagnets.
2	Explain the magnetization of material.
3	Derive equation for torque acting on a magnetic dipole in a magnetic field.
4	Derive the equation for force acting magnetic dipole in a magnetic field.
5	Explain linear media derive relationship involving magnetic intensity H. \rightarrow
	ANSWER THE FOLLOWING QUESTIONS : 5 MARKS
1	Derive the equation for the field of a magnetised object.
2	Give the phyiscal interpretation of bound currents.
3	Derive equation of Ampere's law in magnetised material.
4	Explain the effect of magnetic field on atomic orbits with necessary equations.
5	Explain the magentic field inside matter, derive equation for a small sphere of radius r.

SY BSC SEM 3 UNIT 4 CHAPTER - 4 ELECTRIC FIELDS IN MATTER							
SR NO	QUESTIONS		OPTIONS	ANSWER			
1	The dielectric serves as a	A B C D	semiconductor insulator conductor nonr of the above	В			
2	A dielectric is always an insulator. But an insulator is not necessarily a dielectric. State True/False.	A B	True False	А			
3	Dipole induced dipole forces occur in molecules, it is having a mixture of	A B C D	polar and non polar compounds polar and polar compounds sulphur containing compounds Light compounds	A			
4	The best definition of polarisation is	A B C D	Orientation of dipoles in random direction Electric dipole moment per unit volume Orientation of dipole moments Change in polarity of every dipole	В			
5	Polarizability is defined as the	A B C D	Product of dipole moment and electric field Ratio of dipole moment to electric field Ratio of electric field to dipole moment Product of dielectric constant and dipole moment	В			

		А			
			They are asymmetrical	4	
6	Which statement is true about Polar Molecules?	В	they have similar charges on one end	A	
0		С	They dissolve with non polar compund	11	
		D	none of the above		
		Α	They are symmetrical		
7	Which statement is true about Non Polar Molecules?	В	they have different charges on one end	А	
/	Which statement is true about Non Folar Molecules:	С	They dissolve with polar compund	A	
		D	none of the above		
		Α	Polar		
8	molecules experiences a torque when they are subjected to an electric field.	В	Non polar	А	
0		С	Die electric	A	
		D	None of the above		
	The atomic polarizibility identified by	Α	∂		
9		В	α	В	
9		С	β		
		D	None of the above		
		Α	linear dielectric		
10	The field is not too strong, the polarisation is prapotional to	В	semiconductor	А	
10	the electirc field , these material called	С	insulator	Л	
		D	none of the above		
		А	Χe		
11	Electric susceptiblity serves as	В	μ ₀	А	
11		С	ε ₀	11	
		D	none of the above		
		Α	True		
12	Electric quesentiblity is a dimensionless questity. True (False	В	False		
12	Electric susceptiblity is a dimensionless quantity. True/False.	С		A	
				1	

		-			
		А	Χe		
13	Permitivity of free space serves as	В	μ ₀	С	
15		С	$\boldsymbol{\epsilon}_{0}$	C C	
		D	none of the above		
		А	χ _e		
14	Dielectric constant correct co	В	ε _r	В	
14	Dielectric constant serves as	С	ε ₀	В	
		D	none of the above	1	
		А	98		
15	The value of electric susceptiblity of ICE	В	0	А	
15	The value of electric susceptibility of ICE	С	70	Л	
		D	none of the above		
	→ The induced electric dipole moment P =	А	$\alpha \vec{E}$		
16		В	βĒ	А	
10		С	α/\vec{E}	Л	
		D	none of the above	1	
		Α	1		
17	The value of relative permitivity of vaccum is	В	0	А	
17	The value of relative permittivity of vaccum is	С	4.9	А	
		D	none of the above		
18	The bound charges are not just a mathematical analogy, but	Α	True	А	
10	are real charges. True/False .	В	False	А	
		Α	0]	
19	If the problem exhibits spherical symmetry for which $\vec{v} \times \vec{P} = \underline{\qquad}$	В	1	А	
1)	₽ ×₽=	С	2	11	
		D	None of the above		
20	Atomic polarizibility depends on properties of atom.	Α	True	А	
20	True/False.	В	False	Л	

	ANSWER THE FOLLOWING QUESTIONS : 2 MARKS
1	Explain : dielectrics.
2	What do you understand by induced dipoles? Explain in brief.
3	What is the physical significance of the bound charge ?
4	What do you mean by induced dipoles?
5	Explain polarizibility of a dielectric material.
6	Write the boundry condition in terms of D. \rightarrow
	ANSWER THE FOLLOWING QUESTIONS : 3 MARKS
1	Derive the equation for force acting on a electric dipole.
2	Explain the polarisation of matter.
3	Explain the electric displacement.
4	Derive the equation for Guass's law in presence of dielectris.
5	Discuss the parallels between E and D.
6	Explain the linear dielectrics.
7	What is the boundry condition on D and E in the presence od dielectrics.
	ANSWER THE FOLLOWING QUESTIONS : 5 MARKS
1	Give the physical interpretation of bound charges.
2	Explain the electric field inside a dieelectric. Derive the equation for a small sphere of radius r.
3	Explain the dieelectric displacement and derive the equation for Gauss's law in differential as well as integral form.
4	Explain linear dielectrics and derive relationship involving electric displacement

	SEM 3, Unit 3, Magnetostatics			
		Α	Lorentz	
1	Who discovered a compass needle?	В	Ferade	С
1		С	Orested	
		D	Coulomb	1
		А	$qvB = mv^2/r$	
2		В	Mv = qBr	
2	Which relation is known as cyclotron formula?	С	$qB = mv^2r$	A
		D	None of the above]
		А	Partical unaffected by the electrical field	
2		В	affected by the magnetic field	
3	Cyclotron motion convert into helical motion because	С	affected by the electrical field	D
		D	Partical unaffected by the magnetic field	
	Lorentz force law relation is	А	$\overrightarrow{F} = q(\overrightarrow{v} \times \overrightarrow{B})$	
4		В	$\overrightarrow{F} = qE + q(\overrightarrow{v} \times \overrightarrow{B})$	
4		С	Both a & b	С
		D	None of the above	
		Α	Steady current	
_		В	Point charge	
5	Biot-savart law applies to only	С	Voltage	A
		D	Both a & b	
		Α	Inversely	
(Magnetic field of any straight segment of wire is to the distance from	В	Directly	
6	wire.	С	Very from point to point	A
		D	Not say any thing	
		Α	One	
7	Divergence of the magnetic field Die	В	Always zero	П
7	Divergence of the magnetic field B is	С	Change due to magnetic field	В
		D	None of the above	
		Α	vV	
0	In algorization algorization field interveiter Fide die differently	В	$-\nabla V$	р
8	In electrostatic, electrostatic field intensity E derived from the	С	$\mathbf{v} \times \vec{\mathbf{V}}$	В
		D	$-\mathbf{\nabla} \times \vec{\mathbf{V}}$	

		А	μ₀Ϳ	
	\rightarrow \rightarrow	В	µ₀Jda	
9	In electrostatic, $\overrightarrow{\mathbf{v}} \times \overrightarrow{B} = $	С	εµ₀J	A
			0	
		А	$\oint \overrightarrow{B}$. \overrightarrow{dl} = μ_0 I _{enclosed}	
10	Ampere's law in intergral form is	В	$\int \vec{B} \times \vec{dl} = \mu_0 \mathbf{I}$	
10		С	$\int \vec{B} \times \vec{dl} = \int \mu o J da$	A
		D	None of the above	
		Α	1	
4.4	What is the magnetic field inside and outside the toroid coil?	В	0	
11		С	< 1	B
		D	> 1	
	What is the magnetic field within the core the toroidal coil?	Α	0	
10		В	μ₀I / 2Nπr	
12		А	2μ₀NI / πr	— D
		D	μ ₀ NI / 2πr	
	The magnetic field line curls around a	А	current	
10		В	Wire	
13		С	Point charge	A
		D	None of the above	
		Α	2.260 × 10 ⁻⁵ tesla	
1.4	A wire of square shape of each side 10cm long is carrying a current of 2amp in	В	2.260×10^5 tesla /cm	
14	the anti-clockwise direction. Calculate the magnetic field at it's center.	С	$2.260 imes 10^{-10}$ tesla	A
		D	2.260×10^{-5} Amp/ cm	
		Α	Newton / ampere-meter	
1 -	The write of we are stic field in	В	Tesla	
15	The unit of magnetic field is	С	Ampere-meter / newton	D
		D	Both a & b	
		А	Coulomb's , Biot-savart	
16	Maxwell's eq. for electrostatic contain the same information as	В	Biot-savart, Coulomb's	
16	law, in same way magnetostatic are equivalent to the law.	С	Coulomb's, Coulomb's	A
		D	Biot-savart, Biot-savart	

	ANSWER THE FOLLOWING QUESTIONS : 2 MARKS
1	Derive the work done by a charge moving in a steady magnetic field.
2	Explain cyclotron motion.
3	What is the basic equation for steady currents ?
4	What is the divergence of magnetic field ?
5	State integral & differential form of Ampere's law.
6	What is bio savart's law?
	ANSWER THE FOLLOWING QUESTIONS : 3 MARKS
1	Explain lorentz force law.
2	Describe cycloid motion.
3	Derive vector potential.
4	Explain divergence of a magnetic field B.
5	Expalin curl of magnetic field B.
6	Derive equation of continuity.
7	Derive basic equation for steady curent.
	ANSWER THE FOLLOWING QUESTIONS : 5 MARKS
1	Discuss the bio savart's law.
2	Explain magnetic field of a steady current.
3	Define : magnetic field above a straight wire.
4	Explain straight line currents.
5	Describe magnetic field on the axis of a current carrying circular loop.
6	Explain : current with refrence to charge flows over a surface.

	SEM 3, Unit 2, Electrostatics			
		А	8.85 x 10 ⁻¹⁰	
		В	8.85 x 10 ¹²	
1	The value of permittivity is	С	8.85 x 10 ⁻¹²	C
		D	8.85 x 10 ⁻¹⁵	
		А	C/m ²	
2		В	C/m	
2	The unit of surface charge density σ is	С	C/m ³	Α
		D	C/m	
	Which are/is true the properties of electric field line?	А	There are repulsion	
		В	Field line can never cross each other	
3		С	Field line are parallel to each other	D
		D	All of the above	
		А	E.da	
		В	-E.da	_
4	Electric flux is define as	С	E x da	Α
		D	None of the above	
		А	Scalar	
_		В	Vectar	_
5	Flux is quantity.	С	Only number	Α
		D	None of the above	
		А	Nm ² /c	
		В	Vm	
6	The unit of flux is	С	Both a & b	А
		D	None of the above	

		Α	>90	
	Flux is positive if $\theta =$	B	<90	
7		C	= 90	B
		D	0	
		A	<90	
		В	>90	
8	Flux is negative if $\theta = $	С	= 90	B
		D	0	
		Α	90	
		В	0	
9	Flux is zero if $\theta = $	С	270	A
		D	None of the above	
	The value of flux is positive if lines of force are	Α	Diverging	
10		В	Converging	A
10		С	Strigh	
		D	Both a & b	
	In coulomb's law force is inversely proportional to	Α	r	
11		В	r ²	П
11		С	q	B
		D	εr ²	
		Α	1/r ²	
10	The total flux of the electric field over a closed surface is times the total	В	1/q	
12	charge enclosed by the surface.	Α	E	D
		D	1/ε₀	
		Α	$\nabla E = g / \varepsilon_0$	
10		В	∇ .E =1/ ε_{o}	
13	Differential equation of gauss's law is	С	$\mathbf{\nabla} \mathbf{x} \mathbf{E} = \mathbf{g} / \mathbf{\varepsilon}_{o}$	A
		D	$\nabla \mathbf{x} \mathbf{E} = \mathbf{g} \cdot \mathbf{\varepsilon}_{o}$	
		Α	Zero	
		В	Maximum	
14	According to gauss's law net charge (Qenc) inside the surface is	С	Minimum	A
		D	Not equal	

		Α	Minimum	
4 -		В	Not equal	
15	The electric field in the spherical cell is	С	Zero	C
		D	Maximum	
			zero	
1.0	=		1	
16	$\nabla \mathbf{x} \vec{E} = $		<u></u> 9/ε ₀	A
			g ε _o	
			Possion's equation	
1 7	-2 /	Laplace's equation	Laplace's equation	
17	$\nabla^2 \mathbf{x} \mathbf{v} = -g/\varepsilon_0$		Gauss law	A
			None of the above	

	ANSWER THE FOLLOWING QUESTIONS : 2 MARKS					
1	Explain electric field.					
2	Define : linear charge distribution.					
3	Explain : gauss theorem in integral form.					
4	Discuss divergence of $E $					
5	Discuss electric field around charges solid sphere.					
6	find the $\vec{E} = -\nabla V$					
	ANSWER THE FOLLOWING QUESTIONS : 3 MARKS					
1	Explain electric field.					
2	Discuss the properties of field lines.					
3	Discuss curl of E.					
4	Derive the poison's equation and laplace equation.					
5	Explain continous charge distribution of various type.					
6	Derive the equation of electric field of plane charged sheet.					
	ANSWER THE FOLLOWING QUESTIONS : 5 MARKS					
1	Explain potential.					
2	Derive the Gauss theorem in integral form.					
3	Derive the equation of potential due to localizes charge.					
4	Find the electric field around charges spherical shell. Also discuss in side the shell.					
5	Explain work done to move charges.					
6	Explain the energy of a point charge distribution.					

	SEM 3, Unit 1, Vector An	alysis			
		А	A directed line segment		
1		В	direction as well as magnitude	C	
1	Vector means	С	both a & b	C	
		D	none of the above		
		А	0		
2	in water alashra i wi -	В	1	٨	
2	in vector algebra i x i =	С	-1	A	
		D	none of the above		
	vector product of two vectors b and c is a vector quantity this	А	two triple products		
3	product (bxc)may by multiplied scalary or vectorially with a third	В	triple products	A	
5		С	scalar triple products	A	
	vector a to give	D	vector triple products		
	scalar triple product of three vector a,b,c represents the of a parallelelopiped.	А	volume		
4		В	area	А	
4		С	both a & b		
		D	none of the above		
	In vector algebra I x j =	А	k		
5		В	mines k	А	
5		С	1	Л	
		D	0		
		А	mines i		
6	In vector algebra k x j =	В	1	A	
0		С	0	Л	
		D	i		
		А	gradient		
7	theorem gives the relationship between a surface integral to	В	divergence	С	
/	line integral.	С	curl		
		D	fundamental		
	The line integral or path integral along some selected curve of the	А	theorem for gradients	_	
8	gradient is given by difference of the calue of the function at the	В	theorem for divergences	A	
0	bondaries is	С	theorem for curl		
	bondaries is		fundamental theorem		

		А	greens theorem	
9	theorem gives the relationship volume integral to surface integral.	B	divergences theorem	C
		С	both a & b	
		D	stocke's theorem	
10	curl theorem is also called	А	stocke's theorem	A
		В	greens theorem	
		С	divergences theorem	
		D	both a & b	
	the divergence of a vector function v is itself a	А	scalar	A
		В	vector	
11		С	neither vector not scalar	
		D	none of the above	
	$\Delta(A.B) = A X (\Delta X B) + B X (\Delta X A) ++.$	А	$(A X V)X B + (\Delta B)XA$	В
12		В	$(A.\Delta)B + (B.\Delta)A$	
		С	$(A.\Delta)X B + (\Delta XB).A$	
		D	none of the above	
	$\Delta(A X B) = B.(\Delta X A) _ A.(\Delta X B)$	А	-	A
13		В	+	
15		С	±	
		D	Х	
	there is a specific geometrical transformation law for converting vector components from one frams to other is knowm as	А	vectors transform	A
14		В	scalar transform	
14		С	tensor	
		D	none of the above	
15	the operator ø turns vector A into vector A' is know as	A	tensor	A
		В	vectors transform	
		С	curl	
		D	none of the above	

ANSWER THE FOLLOWING QUESTIONS : 2 MARKS					
1	Define : divergence.				
2	What is called scalar triple product?				
3	What is called vector triple product?				
4	What is called vectors transform?				
5	Write the product rules for gradients.				
6	State the fundamental theorem for divergence.				
7	What are the product rule for curls.				
ANSWER THE FOLLOWING QUESTIONS : 3 MARKS					
1	Describe gradient of a scalar.				
2	Find the angle between the body diagonal of cube.				
3	Explain vector transform for two dimensional case.				
4	Describe divergence of a vector.				
5	Explain product of four vectors.				
6	Explain fundamental theorem of calculus.				
ANSWER THE FOLLOWING QUESTIONS : 5 MARKS					
1	Explain triple product.				
2	Describe gradient and operator.				
3	State and prove the product rules for gradients.				
4	Describe fundamental theorems of divergence and gradients.				
5	Discuss the divergence of a vector point function.				