

Shree H.N. Shukla College of Science M. Sc (Mathematics) (Sem-4) Preliminary Exam MATH.EMT-4001: Linear Algebra

[Time: 2.5 Hours]

[Total Marks: 70]

Instructions : (1) All questions are compulsory.

- (2) There are 5 questions.
- (3) Figures on right side indicate full marks .

1. <u>Attempt any seven</u> :

- (1) Let $T,S \in A_F(V)$. Im standard notation verify that $r(ST) \le r(T)$.
- (2) Let $A,B \in F_n$. In standard notation verify that tr(A+B) = tr(A)+tr(B), where $tr : F_n \rightarrow F$ and it is a trace of a matrix.
- (3)Define an algebra over a field F.Also give an example of an algebra over the field F.
- (4)Define similar linear transformations and similar matrices for a finite dimensional vector space V over F .
- (5)Let $n \ge 1$ and $A \in F_n$. Define tr(A) .Verify that the map tr:Fn \rightarrow Fis linear .
- (6)Let (V, <>) be an inner product space over C.If a linear transformation T : V \rightarrow V is unitary , then prove that T*T =Id_V .
- (7)Let $T \in A_F(V)$. When is a subspace W of V is said to be invariant under T? Verify that $T^2(V)$ is a subspace of V and is invariant under T.
- (8)Let V be a vector space over R.Let f : VxV→ R be bilinear .When is f said to be skew-symmetric ? If f is skew-symmetric, then show that f(v,v) =0 for any v∈ V .

7X2=14

- (9) When is an element $\lambda \in F$ said to be characteristic root of $T \in A_F(V)$? Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be given by T(1,0) = (1,1) and T(0,1) = (1,-1). Determine the characteristic root of T.
- (10) Let $n \ge 1$ and $A \in F_n$. Define the secular equation of A.Let $A \in F_3$ be any diagonal matrix .Determine the secular equation of A.

2 Answer any two

- (1) If n_1 is the index of nilpotence of a nilpotent $T \in A_F(V)$ and if $v \in V$ is such that $T^{n_1-1}(v) \neq 0$, then prove that $\{v, T(v), ..., T^{n_1-1}(v)\}$ is linearly independent over F.
- (2) Let V is a n- dimentional vector space over a field F , then prove that $A_F(V)$ and F_n are isomorphic as algebras over F.
- (3) Prove that any $T \in A_F(V)$ satisfies its characteristic polynomial.
- (4) Let $T_1, T_2 \in A_F(V)$ and they both have same invariants. Prove that they are similar .

3 Attempt the following :

(1) Let $tr(T^k) = 0$, $\forall k \in \mathbb{N}$. Prove that T is nilpotent.

(2) Let $A,B \in F_n$. Prove that det (AB) = det(A) det(B).

(3) Let $T_1, T_2 \in A_F(V)$ and they both have same invariants. Prove that they are similar .

(4) Let $A \in F_n$ and suppose that K is the splitting field of minimal polynomial of A over F.Show that there is an invertible matrix $C \in K_n$ such that CAC^{-1} is in Jordan form.

4 Attempt the following :

(1) Let $T \in A_F(V)$. If V is cyclic relative to T, then prove that there exist a basis B of V over F such that the matrix of T in B is C(p(x)), where p(x) is the minimal polynomial of T over F.

1X14 =14

2X7 = 14

2X7=14

- (2) Let $A \in \mathbb{C}_n$ be Hermitian .Show that any characteristic root of A is real.
- (3) Let $A \in F_n$. Prove that the interchanging two rows of A change the sign of its determinant.
- (4) Let $A, B \in F_n$. Prove that tr(AB)=tr(BA).

5 <u>Attempt the following</u> :

2X7 =14

- (1)Let (V, <>) be a finite dimensional inner product space over \mathbb{C} .Let $T \in A_F(V)$.Then given $v \in V$, prove that there exist an element $w \in V$, depending on v and T such that < T(u), v > = < u, w >, for all $v \in V$.
- (2)Let F be a field of characteristic 0.If T,S $\in A_F(V)$ are such that ST-TS commutes with S, then prove that ST-TS is nilpotent.
- (3)Let f: V x V \rightarrow F be a bilinear form on an n-dimentional vector space V over F .If B, B' are any two basis of V over F ,then prove that there exist an invertible matrix C \in F_n such that [f]_{B'} = C [f]_BC'.
- (4)Let (V, <>) be a finite dimensional inner product space over \mathbb{C} . If $N \in A_C$ is normal ,then prove that there exist an orthonormal basis of V consisting of characteristic vectors of N, in which the matrix of N is diagonal

Best Of Luck