

Murder 2025. Mughts. Murder 2025. Mughts. Seat No.

MASTER OF SCIENCE MATHEMATICS Examination

MSC MATHS Semester - 4 MARCH 2025 (Regular) MARCH - 2025 NUMBER THEORY 2 Faculty Sode: 003 Total Marks: 70 Subject Code: 16SIPMSMA-CO-04-00003 Time: 230 Hours All questions are compulsary Answer Briefly any seven of the following (Out of ten) 14 Q.1 Define Pythagorean triplet with an example. Find an integer n>1, such that $n^2+(n+n)^2$ is a perfect square. Find the value of $\langle 2, 2, \dots, 2, \dots \rangle$. Define Pell's equations with an example. Find continued fraction expansion for 253/51. Write any two Primitive Pythagorean riplets (x,y,z), where z>100. If n is a smallest positive integer such that 2/27 appears in the nth-row of Far fraction then $n = _{__}$. Define Periodic Continued Fraction Find the general solution of the Diophantine equation 3x+15y = 8. (if exist). Define Quadratic irrational. 10 14 Q.2 Answer the following (Any Two) Prove that, there is a polynomial $f_n(x)$ of degrees with leading coefficient 1 such that $f_n(2\cos\theta) = 2\cos n\theta \quad \forall n \in \mathbb{N}$ Let $< a_0, a_1, \ldots, a_n, \ldots >$ be the infinite shaple continued fraction. Let h_n, k_n to be define in standard notation and $\theta > 1$ be any real number. Prove that, $\langle a_0, a_1, ..., a_{n-1}, \theta \rangle = \frac{a_{n-1} + k_n}{g_{k_{n-1}} + k_n}$ Prove that, π is irrational number. Q.3 Answer the following Let x be a real number and x > 1. If $x + x^{-1} < \sqrt{5}$, then prove that, $x < \frac{\sqrt{5}+1}{2}$

Let ρ and σ are two positive real numbers. Suppose $\sigma < \sqrt{\rho}$ and (s,t) is a positive solution of

$$x^2 - \rho y^2 = \sigma_{\text{with}}$$
 (s,t) = 1. Prove that, $s = h_m$ and $t = k_m$, for some n .

OR

1

2

- Answer the following questions (Any Two) wer the following question $x^2 - 18y^2 = 1$ as well as $x^2 - 18y^2 = -1$, if exist. Q.4
 - Let r and s be two positive integers such that $r > s \ge 1$. (ii) $r \ge s \ge 1$. (iii) $r \ge s \ge 1$. 2

Let r and s be two positive—

OR r is even, s is odd then for $x = r^2 - s^2$, $z = z^2 + s^2$. Prove that, (x, y, z) is primitive

Let

OR r is even, s is odd then.

Pythagorean triplet.

Q.5 Answer the following (Any Two)

Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots$ Se s is a rational number wOR r is even, s is odd then for r.

Pythagorean triplet.

wer the following (Any Two)

Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ be a polynomial with integer coefficients of degree

Suppose $\frac{a}{b}$ is a rational number with b > 0 and (a,b) = 1 such that $f(\frac{a}{b}) = 0$. Prove that, b divides

RAJ010727745 a as well as a divides a.

Let θ be an irrational and $\frac{\pi}{b}$ is a rational number with b > 0, (a, b) = 1 and $\left| \theta - \frac{\pi}{b} \right| < \frac{1}{2b^2}$. Prove that $\frac{\pi}{b} = \frac{h\pi}{h\pi}$, for some $\pi \in \mathbb{N}$.

Find the values of $<7,4,8,4,8,\ldots>$ and $<3,3,3,\ldots>$.

Define, Diophantine equation. Find the general solution of Diophantine equation = 147x + 258y = 369.