```
Sent No.
   0
                F2X-003-3031001
            B. C. Al (Sem. I) (CBCS)
           (W.E.F. 2022) Examination
                  December - 2022
      CS-01: Mathematical & Statistical
       Foundation of Computer Science
                                                     11
                  (New Course)
                 Faculty Code: 003
                 Subject Code: 3031001
       2\frac{1}{2} Hours / Total Marks : 70
Time:
    0
   (a)
1
        Answer the following questions in short :
             How many elements in 3×33 determinants?
        (2)
             Find the value of
            Define: Determinant.
        (3)
            Determinants must be
             (Square / Rectangle)
        Attempt any one:
                                                          2
   0
            The value of
                                                   [ Contd...
F2X-003-3031001 ]
```

- Attempt any one : (c)

- Find the value of x, if $\begin{vmatrix} 4 & 5 & -7 \\ -2 & x & 6 \\ 1 & x & 1 \end{vmatrix} = 43$.
 - - Prove that $\begin{vmatrix} 1 & a & a^2 + d \\ 1 & b & b^2 + d \\ 1 & c & c^2 + d \end{vmatrix} = (a-b)(b-c)(c-a).$
- (d) Attempt any one:

- 5
- Solve for x, y and z by using Crammer's method:
- 2x + 3y + z = 9, x + 2y + 3z = 8, 3x + y + 2z = 7
- Write the rules of determinants. (2)
- (a) Answer the following questions in short:

4

- Define: Null matrix. (1)
- (2)
- Define: Square matrix
- - (3) Define: Singular matrix
- Define: Lower triangular matrix. (4)
- (b) Attempt any one:

2

- (1) If $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix}$ then find AB.
- Define: Addition of matrix with example.
- F2X-003-3031001]

- 2

- Attempt any one :
- 3

- (1) If $A = \begin{bmatrix} -1 & 2 & -3 \\ 4 & 3 & -1 \end{bmatrix}$, $B = \begin{bmatrix} 2 & \frac{3}{2} & 4 \\ 2 & -1 & 3 \end{bmatrix}$, find $(A + B)^T$.
- - Find the inverse of matrix $A = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$
- 0

- (d) Attempt any one:

5

- For the matrix $A = \begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 5 & 6 \\ -3 & 2 \end{bmatrix}$
- that $(AB)^{-1} = B^{-1}A^{-1}$.
- - - (2) If $A = \begin{bmatrix} 1 & 0.2 & 2 \\ 2 & 7.1 & 2 \\ 2 & 2.2 & 1 \end{bmatrix}$ then prove that $A^2 4A 5I = 0$.
- - Hence find A^{-1} .

- 0
- Answer the following questions in short: 3 (a)
- Write the distance formula for two points. (1)
- Define: Area of triangle. (2)
- (3)Define: Intersection of two sets.
- - Write two properties of union of sets. (4)
- F2X-003-3031001]

3

F2X-003-3031001 1

()

(1) Find the median of the following data: 35, 10, 28, 8, 24, 5, 20, 19, 12, 30, 39

(2) Find mode of the following data: 3, 5, 23, 14, 11, 22, 33, 23, 25, 23, 15, 16

(c) Attempt any one:

0

3

(1) Find the mode from the following frequency distribution:

Class	10-	15-	20-	25 -	30-	35 -	40 -	45-
	15				1		1	1
Frequency	25	29	32	-39	27	18	-6	2

(2) Find the range and coefficient of range for the following data:

						100			
<i>x</i> :	15	20	25	30	(35	40	45		
f:	12	16	18	20	722	23	25		

(d) Attempt any one:

5

(1) Calculate the quartile deviation and coefficient of quartile deviation for the following data:

35, 10, 28, 8, 24, 5, 20, 19, 12, 30

(2) Calculate the mean and standard deviation for the following data:

				200				
Class	0-5	5-	10-	15-	20 -	25 -	30-	35-
		10	15	20	25	30	35	40
Frequency	7	11	12	19	16	7	-5	2

F2X-003-3031001 J

5

()

- The Arithmetic Mean and Geometric Mean of two (1)real numbers are 6.5 and 6 respectively. Find the two numbers.
- For any two real quantities prove that (2)
- $AM \times HM = (GM)^2$ (i)