Shree H.N.Shukla College of Science Rajkot MATHEMATICS
T.Y.B.Sc. (Sem.VI) (CBCS)

PRELIMS EXAM
PAPER- 601
Graph Theory \& Complex Analysis-II

Time: 2.5 hour]
[Total Marks: 70
Instruction: (i) All questions are compulsory.
(ii) Figures to the right indicate full marks of the question.

1. (A) Answer the following:

1) Write a degree of a pendent vertex.
2) Define: Simple Graph
3) Find the Nullity of connected graph with 4 vertices and 8 edges.
4) Write the number of internal vertices in a binary tree with 13 vertices.
(B) Attempt any one:
5) Prove that the number of vertices n in a binary tree is always odd.
6) Define: (i) Circuit (ii) Minimally connected graph
(C) Attempt any one:
7) Prove that a graph is a tree iff it is minimally connected.
8) State and prove first theorem of Graph theory.
(D) Attempt any one:
9) Prove that a Simple graph with n-vertices and k-components can have atmost $\frac{(n-k)(n-k+1)}{2}$ edges.
10) Explain Konigsberg Bridge Problem.

2. (A) Answer the following:

1) Define: Acyclic Digraph
2) Define: Self dual graph
3) What is the chromatic number of a complete graph with 5 vertices?
4) Regions of a connected planar graph with 4 vertices and 6 edges are \qquad .
(B) Attempt any one:
[02]
5) Define: Path Matrix
6) Define Cut-set vector with example.
(C) Attempt any one:
[03]
7) A connected simple planner graph G with n-vertices, e-edges and f-region then prove that (i) $e \geq \frac{3}{2} f$

$$
\text { (ii) } e \leq 3 n-6
$$

2) Prove that Complete graph K_{4} is Self dual graph.
(D) Attempt any one:
[05]
3) Prove that the complete graph of 5-vertices is non-planner graph.
4) Define: Incidence Matrix and its properties
3. (A) Answer the following:
1) Define: Power series
2) Define: Complex Series
3) State Maclaurin series of an analytic function $f(z)$.
4) Find radius of convergence of series $\sum \frac{z^{n}}{2^{n-1}}$.
(B) Attempt any one:
5) Expand $\frac{1}{1+z}$ in Maclaurin's series.
6) Discuss about the convergence of series
$\sum_{n=1}^{\infty} \frac{(z+2)^{n-1}}{4^{n}(n+1)^{3}}$.

(C) Attempt any one:

1) Expand $\frac{1}{z\left(z^{2}-3 z+2\right)}$ in Laurent's series for (i) $1<|z|<2$ (ii) $0<|z|<1$
2) Expand e^{z} in term of ($z-1$).

(D) Attempt any one:

[05]

1) State and prove Taylor's infinite series of an analytic function $f(z)$.
2) Prove that

$$
\cosh \left(\mathrm{z}+\mathrm{z}^{-1}\right)=\mathrm{a}_{0}+\sum_{\mathrm{n}=1}^{\infty} \mathrm{a}_{\mathrm{n}}\left(\mathrm{z}^{\mathrm{n}}+\mathrm{z}^{-\mathrm{n}}\right)
$$

Where,

$$
a_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \cosh (2 \cos \theta) \cos n \theta d \theta
$$

4. (A) Answer the following:

1) Define: Residue of $f(z)$ at pole Z_{0}.
2) Find $\operatorname{Res}\left(\frac{\cos z}{z}, 0\right)$
3) Write an isolated singular point for $f(z)=\frac{1}{z-2}$.
4) Define: Singular point
(B) Attempt any one:
5) Find the residue of $f(z)=\frac{z+2}{(z-1)(z-2)}$ at Simple pole.
6) Find $\operatorname{Res}(f(z), 1)$, where

$$
f(z)=\frac{e^{2 z}}{(z-1)^{2}}
$$

(C) Attempt any one:

1) Obtain the formula for finding the residue of $f(z)$ at $m^{\text {th }}$ order pole.
2) Find the value of integral $\int_{C} \frac{d z}{Z^{3}(Z+4)}$ where $C:|Z|=2$
(D) Attempt any one:
3) Prove that

$$
\int_{0}^{\infty} \frac{d x}{\left(x^{2}+a^{2}\right)^{n+1}}=\frac{\pi(2 n)!}{(n!)^{2}(2 a)^{2 n+1}}, \text { where } a>0 .
$$

2) State and prove Cauchy residue theorem.

5. (A) Answer the following:

1) Define: Linear mapping
2) Find fixed point of the bilinear transformation $w=\frac{3 z-4}{z-1}$.
3) Define: Mobius mapping
4) Find the critical point of $w=\frac{1}{z-1}$.
(B) Attempt any one:
5) Show that $x+y=2$ transform into the parabola $u^{2}=-8(v-2)$ under the transformation $\mathrm{W}=\mathrm{Z}^{2}$.
6) Find critical point of $w=\frac{z-1}{z+1}$.
(C) Attempt any one:
7) Prove that the transformation $w=2 z+z^{2}$ maps the unit circle $|z|=1$ of $z-$ plane into cardiod to w-plane.
8) Show that the composition of bilinear maps is again a bilinear.
(D) Attempt any one:
9) Discuss the bilinear mapping $W=Z^{2}$.
10) Discuss the mapping of $W=e^{z}$ in Cartesian system.
