
SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

1

Shree H.N.Shukla college 2

vaishali nagar

Near Amrapali Under Bridge,

Raiya road

Rajkot

Ph No:-0281 2440478

Shree H.N.Shukla college 3

vaishali nagar

Near Amrapali Under Bridge,

Raiya road

Rajkot

Ph No:-0281 2440478

MSCIT SEM-3 ANGULARJS

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

2

Unit : 2

DATA BINDING IN ANGULAR

Data Binding?
 Data-binding in AngularJS apps is the automatic synchronization of data

between the model and view components.
 The way that AngularJS implements data-binding lets you treat the model as

the single-source-of-truth in your application.
 The view is a projection of the model at all times.
 When the model changes, the view reflects the change, and vice versa.

 AngularJS provides two types of Data Binding:

 One-way data binding.
 Two-way data binding.

 Data Binding in Classical Template Systems

Most templating systems bind data in only one direction: they merge template and
model components together into a view. After the merge occurs, changes to the
model or related sections of the view are NOT automatically reflected in the view.

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

3

Worse, any changes that the user makes to the view are not reflected in the model.
This means that the developer has to write code that constantly syncs the view
with the model and the model with the view.

 Data Binding in AngularJS Templates

AngularJS templates work differently. First the template (which is the uncompiled
HTML along with any additional markup or directives) is compiled on the browser.
The compilation step produces a live view. Any changes to the view are
immediately reflected in the model, and any changes in the model are propagated
to the view. The model is the single-source-of-truth for the application state,
greatly simplifying the programming model for the developer. You can think of the
view as simply an instant projection of your model.

Because the view is just a projection of the model, the controller is completely
separated from the view and unaware of it. This makes testing a snap because it is
easy to test your controller in isolation without the view and the related

DOM/browser dependency.

reflected in the view. Worse, any changes that the user makes to the view are not
reflected in the model.

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

4

Property binding

Property binding in Angular helps you set values for properties of HTML elements or
directives. Use property binding to do things such as toggle button features, set
paths programmatically, and share values between components.

 Understanding the flow of data

Property binding moves a value in one direction, from a component's property into a
target element property.
For more information on listening for events, see Event binding.
To read a target element property or call one of its methods, see the API reference
for ViewChild and ContentChild.
Binding to a property
To bind to an element's property, enclose it in square brackets, [], which identifies
the property as a target property.
A target property is the DOM property to which you want to assign a value.

 To assign a value to a target property for the image element's src property,
type the following code:

src/app/app.component.html
content_copy

In most cases, the target name is the name of a property, even when it appears to be
the name of an attribute.

In this example, src is the name of the element property.

The brackets, [], cause Angular to evaluate the right-hand side of the assignment as a
dynamic expression.

Without the brackets, Angular treats the right-hand side as a string literal and sets
the property to that static value.

 To assign a string to a property, type the following code:

https://angular.io/guide/event-binding
https://angular.io/api/core/ViewChild
https://angular.io/api/core/ContentChild
https://angular.io/api/common/NgOptimizedImage
https://angular.io/api/common/NgOptimizedImage

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

5

src/app.component.html

content_copy<app-item-detail childItem="parentItem"></app-item-detail>

Omitting the brackets renders the string parentItem, not the value of parentItem.

Setting an element property to a component property value

To bind the src property of an element to a component's property, place src in

square brackets followed by an equal sign and then the property.

 Using the property itemImageUrl, type the following code:



src/app/app.component.html
 content_copy

 Declare the itemImageUrl property in the class, in this case AppComponent.

src/app/app.component.ts
content_copyitemImageUrl = '../assets/phone.svg';

colspan and colSpan
A common point of confusion is between the attribute, colspan, and the
property, colSpan. Notice that these two names differ by only a single letter.

 To use property binding using colSpan, type the following:

src/app/app.component.html
<tr><td [colSpan]="1 + 1">Three-Four</td></tr>

 To disable a button while the component's isUnchanged property is true, type the
following:

src/app/app.component.html
<button type="button" [disabled]="isUnchanged">Disabled Button</button>

https://angular.io/api/common/NgOptimizedImage
https://angular.io/api/common/NgOptimizedImage

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

6

 To set a property of a directive, type the following:

src/app/app.component.html
content_copy<p [ngClass]="classes">[ngClass] binding to the classes property
making this blue</p>

 To set the model property of a custom component for parent and child
components to communicate with each other, type the following:

src/app/app.component.html
content_copy<app-item-detail [childItem]="parentItem"></app-item-detail>
Toggling button features
 To use a Boolean value to disable a button's features, bind the disabled DOM
attribute to a Boolean property in the class.
src/app/app.component.html
content_copy<!-- Bind button disabled state to `isUnchanged` property -->

<button type="button" [disabled]="isUnchanged">Disabled Button</button>

Because the value of the property isUnchanged is true in the AppComponent,
Angular disables the button.

src/app/app.component.ts
content_copyisUnchanged = true;

https://angular.io/api/common/NgClass
https://angular.io/api/common/NgClass

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

7

 Difference between String interpolation and Property Binding

 String Interpolation Property Binding

Syntax `${variable}` `[]`

Usage Used to insert variables into
strings, such as in template
literals or in JSX in React.

Used to bind variables or
properties to HTML attributes
or DOM properties.

Variable/Property
Evaluation

is Evaluated at runtime,
meaning any changes to the
variables will be reflected in
the interpolated string.

Evaluated when the property
is bound and does not update
automatically if the value
changes later.

Applicable to Strings and templates. HTML elements and DOM
properties.

Dynamic Updating Automatically update the
string when the variable
changes.

Require manual re-binding if
the variable changes.

Data Types Work with strings, numbers,
and boolean values.

Can bind to any data type,
including arrays, objects, and
functions.

Compatibility Works with most modern
browsers.

Works with Angular, React,
and other front-end
frameworks.

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

8

 Event binding
 Event binding lets you listen for and respond to user actions such as

keystrokes, mouse movements, clicks, and touches.

 Binding to events

 To bind to an event you use the Angular event binding syntax. This syntax

consists of a target event name within parentheses to the left of an equal sign,

and a quoted template statement to the right.

 Create the following example; the target event name is click and the template

statement is onSave().

 Event binding syntax

 content_copy<button
(click)="onSave()">Save</button>

 The event binding listens for the button's click events and calls the

component's onSave() method whenever a click occurs.

 Determining an event target

 To determine an event target, Angular checks if the name of the target event
matches an event property of a known directive.

 Create the following example: (Angular checks to see if myClick is an event
on the custom ClickDirective)

 src/app/app.component.html

 content_copy<h4>myClick is an event on the custom ClickDirective:</h4>

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

9

 <button type="button" (myClick)="clickMessage=$event" clickable>click
with myClick</button>

 {{clickMessage}}

 If the target event name, myClick fails to match an output property
of ClickDirective, Angular will instead bind to the myClick event on the
underlying DOM element.

 Binding to passive events

 This is an advanced technique that is not necessary for most applications.
You may find this useful if you want to optimize frequently occurring events
that are causing performance problems.

 Angular also supports passive event listeners. For example, use the following
steps to make a scroll event passive.

 Create a file zone-flags.ts under src directory.

 Add the following line into this file.

 content_copy(window as any)['__zone_symbol__PASSIVE_EVENTS'] =
['scroll'];

 In the src/polyfills.ts file, before importing zone.js, import the newly
created zone-flags.

 content_copy

 import './zone-flags';

 import 'zone.js'; // Included with Angular CLI.

 After those steps, if you add event listeners for the scroll event, the listeners
will be passive.

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

10

 Binding to keyboard events

 You can bind to keyboard events using Angular's binding syntax. You can
specify the key or code that you would like to bind to keyboard events.
They key and code fields are a native part of the browser keyboard event
object. By default, event binding assumes you want to use the key field on
the keyboard event. You can also use the code field.

 Combinations of keys can be separated by a . (period). For
example, keydown.enter will allow you to bind events to the enter key. You
can also use modifier keys, such as shift, alt, control, and the command keys
from Mac. The following example shows how to bind a keyboard event
to keydown.shift.t.

 content_copy<input (keydown.shift.t)="onKeydown($event)" />

 Depending on the operating system, some key combinations might create
special characters instead of the key combination that you expect. MacOS,
for example, creates special characters when you use the option and shift
keys together. If you bind to keydown.shift.alt.t, on macOS, that combination
produces a ˇ character instead of a t, which doesn't match the binding and
won't trigger your event handler. To bind to keydown.shift.alt.t on macOS,
use the code keyboard event field to get the correct behavior, such
as keydown.code.shiftleft.altleft.keyt shown in this example.

 content_copy<input
(keydown.code.shiftleft.altleft.keyt)="onKeydown($event)" />

 The code field is more specific than the key field. The key field always
reports shift, whereas the code field will specify leftshift or rightshift. When
using the code field, you might need to add separate bindings to catch all the
behaviors you want. Using the code field avoids the need to handle OS
specific behaviors such as the shift + option behavior on macOS.

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

11

 Angular 7 Components

Components are the key features of Angular. The whole application is built by using
different components.
The core idea behind Angular is to build components. They make your complex
application into reusable parts which you can reuse very easily.

 How to create a new component?
Open WebStorm>> Go to your project source folder>> Expand the app directory
and create a new directory named "server".
Now, create the component within server directory. Right click on the server
directory and create a new file named as "server.component.ts". It is the newly
created component.
Components are used to build webpages in Angular but they require modules to
bundle them together. Now, you have to register our new components in module.
Creating component with CLI
Syntax

ng generate component component_name

Or

ng g c component_name
Let's see how to create a new component by using command line.
Open Command prompt and stop ng serve command if it is running on the
browser.
Type ng generate component server2 to create a new component named server2.
You can also use a shortcut ng g c server2 to do the same task.

In the above image, you can see that a new component named "server2" is created.
It contains the same other components which you have seen when we create a first
app..

1. server2.component.css

2. server2.component.html

3. server2.component.spec.ts

4. server2.component.ts

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

12

Here, server2.component.spec.ts component is used for testing purpose. You can
delete it by right click on that.

What is async in Angular?
In Angular, the async pipe is a pipe that essentially does these three tasks: It
subscribes to an observable or a promise and returns the last emitted value.
Whenever a new value is emitted, it marks the component to be checked. That
means Angular will run Change Detector for that component in the next cycle.

Async functions with AngularJS
April 5, 2015Vijay Thirugnanam
AngularJS allows to define async functions. An example is the $http service. HTTP
service calls an API and returns a response as a promise.
$http.get(url)
 .then(function(res){
 // handle the response
 }, function(res){
 // handle the error
 });
Retrieve the result from the Promise object using then function. The function has
two arguments: onSuccess callback and onFailure callback.
The $q service in AngularJS creates a promise using the defer function.
$scope.callDb = function () {
 var deferred = $q.defer();
 promise.then(function(res){
 var someObj = {};
 deferred.resolve(someObj);
 }, function(err){
 var errObj = {};
 deferred.reject(errObj);
 });
 return deferred.promise;
};
Pass the result using the resolve function. If there is an error, pass the error
using reject function.

https://vijayt.com/post/async-functions-with-angularjs/
https://vijayt.com/post/async-functions-with-angularjs/
https://docs.angularjs.org/api/ng/service/$http
https://docs.angularjs.org/api/ng/service/$q

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

13

I want to give a concrete example. Cordova has a SQLite plugin (ngCordova). Create
a DbService that returns a list of employees.
app.service('DbService',
 function ($q, $cordovaSQLite) {
 this.get = function() {
 var q = $q.defer();
 var query = "SELECT idemployee, name from employee";
 var db = $cordovaSQLite.openDB("employee.sqlite", 0);
 $cordovaSQLite.execute(db, query, []).then(function (res) {
 var employees = [];
 for (index = 0; index < res.rows.length; index++) {
 employees.push(res.rows.item(index));
 }
 q.resolve(employees);
 }, function (err) {
 q.reject(null);
 });
 return q.promise;
 };
 });
In the above example, DbService is an Angular service. We have a SQL that retrieves
a list of employees. SQLite plugin has an execute function which queries the
database using the SQL. The plugin returns a promise. Retrieve a list of employees
from the promise. And return a new promise using Angular’s $q service.

Call the DbService to get the employee list. The get method returns a promise.
From the then function of the promise, we set the employees to the scope object.
function get() {
 DbService.get()
 .then(function(employees){
 $scope.employees = employees;
 });}
Bind the Angular’s scope object to a table using ng-repeat directive.

http://ngcordova.com/
https://docs.angularjs.org/api/ng/directive/ngRepeat

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

14

Template Interpolation in Angular
In AngularJS, Interpolation is a way to transfer the data from a TypeScript code to
an HTML template (view), i.e. it is a method by which we can put an expression in
between some text and get the value of that expression. Interpolation basically
binds the text with the expression value.

 Interpolation and template expressions
Interpolation allows you to incorporate calculated strings into the text between
HTML element tags and within attribute assignments. Template expressions are
what you use to calculate those strings.

 syntax and code snippets in this guide.

 Interpolation {{...}}
Interpolation refers to embedding expressions into marked up text. By default,
interpolation uses as its delimiter the double curly braces, {{ and }}.
 In the following snippet, {{ currentCustomer }} is an example of interpolation.

 src/app/app.component.html
content_copy<h3>Current customer: {{ currentCustomer }}</h3>

The text between the braces is often the name of a component property. Angular
replaces that name with the string value of the corresponding component property.
 src/app/app.component.html

content_copy<p>{{title}}</p>

<div></div>

In the example above, Angular evaluates the title and itemImageUrl properties and
fills in the blanks, first displaying some title text and then an image.
More generally, the text between the braces is a template expression that Angular
first evaluates and then converts to a string. The following interpolation illustrates
the point by adding two numbers:
src/app/app.component.html

content_copy<!-- "The sum of 1 + 1 is 2" -->

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

15

<p>The sum of 1 + 1 is {{1 + 1}}.</p>

The expression can invoke methods of the host component such as getVal() in the
following example:
src/app/app.component.html

content_copy<!-- "The sum of 1 + 1 is not 4" -->

<p>The sum of 1 + 1 is not {{1 + 1 + getVal()}}.</p>

Angular evaluates all expressions in double curly braces, converts the expression
results to strings, and links them with neighboring literal strings. Finally, it assigns
this composite interpolated result to an element or directive property.
You appear to be inserting the result between element tags and assigning it to
attributes. However, interpolation is a special syntax that Angular converts into
a property binding.

If you'd like to use something other than {{ and }}, you can configure the
interpolation delimiter via the interpolation option in
the Component metadata.

Template expressions
A template expression produces a value and appears within the double curly
braces, {{ }}. Angular executes the expression and assigns it to a property of a
binding target; the target could be an HTML element, a component, or a directive.
The interpolation braces in {{1 + 1}} surround the template expression 1 + 1. In the
property binding, a template expression appears in quotes to the right of
the = symbol as in [property]="expression".
In terms of syntax, template expressions are similar to JavaScript. Many JavaScript
expressions are legal template expressions, with a few exceptions.
You can't use JavaScript expressions that have or promote side effects, including:

 Assignments (=, +=, -=, ...)
 Operators such as new, typeof, instanceof, etc.
 Chaining expressions with ; or ,
 The increment and decrement operators ++ and --
 Some of the ES2015+ operators

Other notable differences from JavaScript syntax include:

https://docs.angular.lat/api/core/Component#interpolation
https://docs.angular.lat/api/core/Component

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

16

 No support for the bitwise operators such as | and &

 New template expression operators, such as |, ?. and !

Expression context
The expression context is typically the component instance. In the following
snippets, the recommended within double curly braces and the itemImageUrl2 in
quotes refer to properties of the AppComponent.
src/app/app.component.html

content_copy<h4>{{recommended}}</h4>

An expression may also refer to properties of the template's context such as a
template input variable,
let customer, or a template reference variable, #customerInput.
src/app/app.component.html (template input variable)

content_copy
 <li *ngFor="let customer of customers">{{customer.name}}

src/app/app.component.html (template reference variable)
content_copy<label>Type something:
 <input #customerInput>{{customerInput.value}}
</label>

The context for terms in an expression is a blend of the template variables, the
directive's context object (if it has one), and the component's members. If you
reference a name that belongs to more than one of these namespaces, the
template variable name takes precedence, followed by a name in the
directive's context, and, lastly, the component's member names.
The previous example presents such a name collision. The component has
a customer property and the *ngFor defines a customer template variable.

The customer in {{customer.name}} refers to the template input variable, not
the component's property.

Template expressions cannot refer to anything in the global namespace,
except undefined. They can't refer to window or document. Additionally, they

https://docs.angular.lat/guide/template-expression-operators
https://docs.angular.lat/api/common/NgForOf
https://docs.angular.lat/api/core/Type
https://docs.angular.lat/api/common/NgForOf

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

17

can't call console.log() or Math.max() and they are restricted to referencing
members of the expression context.

Expression guidelines
When using template expressions follow these guidelines:

 Simplicity
 Quick execution

 No visible side effects

 Simplicity
Although it's possible to write complex template expressions, it's a better practice
to avoid them.
A property name or method call should be the norm, but an occasional Boolean
negation, !, is OK. Otherwise, confine application and business logic to the
component, where it is easier to develop and test.
 Quick execution

Angular executes template expressions after every change detection cycle. Change
detection cycles are triggered by many asynchronous activities such as promise
resolutions, HTTP results, timer events, key presses and mouse moves.
Expressions should finish quickly or the user experience may drag, especially on
slower devices. Consider caching values when their computation is expensive.
 No visible side effects

A template expression should not change any application state other than the value
of the target property.
This rule is essential to Angular's "unidirectional data flow" policy. You should never
worry that reading a component value might change some other displayed value.
The view should be stable throughout a single rendering pass.
An idempotent expression is ideal because it is free of side effects and improves
Angular's change detection performance. In Angular terms, an idempotent
expression always returns exactly the same thing until one of its dependent values
changes.
Dependent values should not change during a single turn of the event loop. If an
idempotent expression returns a string or a number, it returns the same string or
number when called twice in a row. If the expression returns an object, including
an array, it returns the same object reference when called twice in a row.

https://docs.angular.lat/guide/interpolation#simplicity
https://docs.angular.lat/guide/interpolation#quick-execution
https://docs.angular.lat/guide/interpolation#no-visible-side-effects
https://en.wikipedia.org/wiki/Idempotence

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

18

There is one exception to this behavior that applies
to *ngFor. *ngFor has trackBy functionality that can deal with referential
inequality of objects when iterating over them. See *ngFor with trackBy for
details.

Two-way Data Binding in AngularJS

 

In this article, we will see the Data Binding, along with understanding how the flow
of code is from a Typescript file to an HTML file & vice-versa through their
implementation.

Two-way data binding enables the communication between the form and the

class. It allows for changes in the fields of the model to automagically appear in the

form controller, and for the data entered by the user to immediately update the

model.

In AngularJS, Data Binding refers to the synchronization between the model and
view. In Two-way data binding, the flow of data is bidirectional i.e. when the data
in the model changes, the changes are reflected in the view and when the data in
the view changes it is reflected in the model. Two-way data binding is achieved by
using the ng-model directive. The ng-model directive transfers data from the view
to the model and from the model to the view.

Approach: The following approach will be implemented to achieve the Two-way
Binding:
 Create a module
var app=angular.module('myApp',[])

 Add a controller to the module. Here you can write the logic for updating the
model as the view changes.

app.controller('myCtrl',function($scope){})

 Specify the ng-model directive in the element
<input ng-model="name"/>

https://docs.angular.lat/api/common/NgForOf
https://docs.angular.lat/api/common/NgForOf
https://docs.angular.lat/guide/built-in-directives#ngfor-with-trackby
https://www.geeksforgeeks.org/angularjs-ng-model-directive/

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

19

ngular form, NgForm and two-way data binding

Published August 15, 2018

One of the most important components of any website is the HTML form because it

allows users to interact with the app. In this tutorial, we will explore the Angular

way to produce smart and highly interactive forms.

The example in the tutorial is of a form into which users enter the details of a car

model, such as the name and price of the model, and whether it is a convertible.

The two-way binding syntax is:

[(ngModel)]="fieldName"

where fieldName stands for the name of the field in the model.

The field name must be unique because it identifies the field.

Add the two-way data binding to the HTML form by attaching

a name and ngModel to each controller. For example:

<input type="text" name="name" [(ngModel)]="model.name">

app.component.html

<form>

 <label>Name</label>

 <input name="name" [(ngModel)]="carModel.name" required>

 <select name="motor" [(ngModel)]="carModel.motor" required>

 <option *ngFor="let motor of motors" [value]="motor">{{motor}}</option>

 </select>

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

20

 <label><input type="radio" name="hasSunroof"

[(ngModel)]="carModel.hasSunroof" [value]="true">Has sunroof</label>

 <label><input type="radio" name="hasSunroof"

[(ngModel)]="carModel.hasSunroof" [value]="false">No sunroof</label>

 <input type="submit" value="Save">

</form>

Attribute
directives

Change the appearance or behavior of an
element, component, or another directive.

Structural
directives

Change the DOM layout by adding and
removing DOM elements.

This guide covers built-in attribute directives and structural directives.

Built-in attribute directives

Attribute directives listen to and modify the behavior of other HTML elements,
attributes, properties, and components.

Many NgModules such as the RouterModule and the FormsModule define their
own attribute directives. The most common attribute directives are as follows:

COMMON DIRECTIVES DETAILS

NgClass Adds and removes a set of CSS classes.

https://angular.io/guide/built-in-directives#built-in-attribute-directives
https://angular.io/guide/built-in-directives#built-in-attribute-directives
https://angular.io/guide/built-in-directives#built-in-structural-directives
https://angular.io/guide/built-in-directives#built-in-structural-directives
https://angular.io/guide/built-in-directives#built-in-attribute-directives
https://angular.io/guide/built-in-directives#built-in-structural-directives
https://angular.io/guide/router
https://angular.io/guide/forms
https://angular.io/guide/built-in-directives#ngClass

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

21

COMMON DIRECTIVES DETAILS

NgStyle Adds and removes a set of HTML styles.

NgModel Adds two-way data binding to an HTML form element.

Built-in directives use only public APIs. They do not have special access to any
private APIs that other directives can't access.

Adding and removing classes with NgClass

Add or remove multiple CSS classes simultaneously with ngClass.

To add or remove a single class, use class binding rather than NgClass.

Using NgClass with an expression

On the element you'd like to style, add [ngClass] and set it equal to an expression.
In this case, isSpecial is a boolean set to true in app.component.ts.
Because isSpecial is true, ngClass applies the class of special to the <div>.

src/app/app.component.html

content_copy<!-- toggle the "special" class on/off with a property -->

<div [ngClass]="isSpecial ? 'special' : ''">This div is special</div>

Using NgClass with a method
1. To use NgClass with a method, add the method to the component class. In

the following example, setCurrentClasses() sets the
property currentClasses with an object that adds or removes three classes
based on the true or false state of three other component properties.
Each key of the object is a CSS class name. If a key is true, ngClass adds the
class. If a key is false, ngClass removes the class.
src/app/app.component.ts

https://angular.io/guide/built-in-directives#ngstyle
https://angular.io/guide/built-in-directives#ngModel
https://angular.io/api/common/NgClass
https://angular.io/api/common/NgClass
https://angular.io/guide/class-binding
https://angular.io/api/common/NgClass
https://angular.io/api/common/NgClass
https://angular.io/api/common/NgClass
https://angular.io/api/common/NgClass
https://angular.io/api/common/NgClass
https://angular.io/api/common/NgClass
https://angular.io/api/common/NgClass
https://angular.io/api/common/NgClass
https://angular.io/api/common/NgClass

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

22

content_copycurrentClasses: Record<string, boolean> = {};

/* . . . */

setCurrentClasses() {

 // CSS classes: added/removed per current state of component
properties

 this.currentClasses = {

 saveable: this.canSave,

 modified: !this.isUnchanged,

 special: this.isSpecial

 };

}

2. In the template, add the ngClass property binding to currentClasses to set
the element's classes:
src/app/app.component.html

content_copy<div [ngClass]="currentClasses">This div is initially
saveable, unchanged, and special.</div>

For this use case, Angular applies the classes on initialization and in case of
changes. The full example calls setCurrentClasses() initially with ngOnInit() and
when the dependent properties change through a button click. These steps are not
necessary to implement ngClass.

https://angular.io/api/common/NgClass
https://angular.io/api/common/NgClass
https://angular.io/api/common/NgClass

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

23

Setting inline styles with NgStyle

Use NgStyle to set multiple inline styles simultaneously, based on the state of the
component.

1. To use NgStyle, add a method to the component class.
In the following example, setCurrentStyles() sets the
property currentStyles with an object that defines three styles, based on the
state of three other component properties.
src/app/app.component.ts

content_copycurrentStyles: Record<string, string> = {};

/* . . . */

setCurrentStyles() {

 // CSS styles: set per current state of component properties

 this.currentStyles = {

 'font-style': this.canSave ? 'italic' : 'normal',

 'font-weight': !this.isUnchanged ? 'bold' : 'normal',

 'font-size': this.isSpecial ? '24px' : '12px'

 };

}

2. To set the element's styles, add an ngStyle property binding to currentStyles.
src/app/app.component.html

content_copy<div [ngStyle]="currentStyles">

https://angular.io/api/common/NgStyle
https://angular.io/api/common/NgStyle
https://angular.io/api/common/NgStyle
https://angular.io/api/common/NgStyle
https://angular.io/api/common/NgStyle

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

24

 This div is initially italic, normal weight, and extra large (24px).

</div>

For this use case, Angular applies the styles upon initialization and in case of
changes. To do this, the full example calls setCurrentStyles() initially
with ngOnInit() and when the dependent properties change through a button click.
However, these steps are not necessary to implement ngStyle on its own.

Displaying and updating properties with ngModel

Use the NgModel directive to display a data property and update that property
when the user makes changes.

1. Import FormsModule and add it to the NgModule's imports list.
src/app/app.module.ts (FormsModule import)

content_copyimport { FormsModule } from '@angular/forms'; // <--
- JavaScript import from Angular

/* . . . */

@NgModule({

 /* . . . */

 imports: [

 BrowserModule,

 FormsModule // <--- import into the NgModule

],

https://angular.io/api/common/NgStyle
https://angular.io/api/forms/NgModel
https://angular.io/api/forms/NgModel
https://angular.io/api/forms/FormsModule
https://angular.io/api/forms/FormsModule
https://angular.io/api/core/NgModule
https://angular.io/api/platform-browser/BrowserModule
https://angular.io/api/forms/FormsModule
https://angular.io/api/core/NgModule

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

25

 /* . . . */

})

export class AppModule { }

2. Add an [(ngModel)] binding on an HTML <form> element and set it equal to
the property, here name.
src/app/app.component.html (NgModel example)

content_copy<label for="example-ngModel">[(ngModel)]:</label>

<input [(ngModel)]="currentItem.name" id="example-ngModel">

This [(ngModel)] syntax can only set a data-bound property.

To customize your configuration, write the expanded form, which separates the
property and event binding. Use property binding to set the property and event
binding to respond to changes. The following example changes the <input> value to
uppercase:

src/app/app.component.html

content_copy<input[ngModel]="currentItem.name"

(ngModelChange)="setUppercaseName($event)"id="exampleuppercase">

Here are all variations in action, including the uppercase version:

https://angular.io/api/forms/NgModel
https://angular.io/api/forms/NgModel
https://angular.io/api/forms/NgModel
https://angular.io/api/forms/NgModel
https://angular.io/guide/property-binding
https://angular.io/guide/event-binding
https://angular.io/guide/event-binding
https://angular.io/api/forms/NgModel

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

26

NgModel and value accessors

The NgModel directive works for an element supported by a ControlValueAccessor.
Angular provides value accessors for all of the basic HTML form elements. For more
information, see Forms.

To apply [(ngModel)] to a non-form built-in element or a third-party custom
component, you have to write a value accessor. For more information, see the API
documentation on DefaultValueAccessor.

When you write an Angular component, you don't need a value accessor
or NgModel if you name the value and event properties according to
Angular's two-way binding syntax.

Structural directives are responsible for HTML layout. They shape or reshape the
DOM's structure, typically by adding, removing, and manipulating the host
elements to which they are attached.

https://angular.io/api/forms/NgModel
https://angular.io/api/forms/NgModel
https://angular.io/api/forms/ControlValueAccessor
https://angular.io/guide/forms
https://angular.io/api/forms/NgModel
https://angular.io/api/forms/DefaultValueAccessor
https://angular.io/api/forms/NgModel
https://angular.io/guide/two-way-binding#how-two-way-binding-works

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

27

This section introduces the most common built-in structural directives:

COMMON BUILT-IN
STRUCTURAL DIRECTIVES

DETAILS

NgIf

Conditionally creates or disposes of
subviews from the template.

NgFor Repeat a node for each item in a list.

NgSwitch

A set of directives that switch among
alternative views.

For more information, see Structural Directives.

Adding or removing an element with NgIf

Add or remove an element by applying an NgIf directive to a host element.

When NgIf is false, Angular removes an element and its descendants from the
DOM. Angular then disposes of their components, which frees up memory and
resources.

To add or remove an element, bind *ngIf to a condition expression such
as isActive in the following example.

src/app/app.component.html

content_copy<app-item-detail *ngIf="isActive" [item]="item"></app-item-
detail>

When the isActive expression returns a truthy value, NgIf adds
the ItemDetailComponent to the DOM. When the expression is falsy, NgIf removes

https://angular.io/guide/built-in-directives#ngIf
https://angular.io/guide/built-in-directives#ngFor
https://angular.io/guide/built-in-directives#ngSwitch
https://angular.io/guide/structural-directives
https://angular.io/api/common/NgIf
https://angular.io/api/common/NgIf
https://angular.io/api/common/NgIf
https://angular.io/api/common/NgIf
https://angular.io/api/common/NgIf
https://angular.io/api/common/NgIf
https://angular.io/api/common/NgIf

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

28

the ItemDetailComponent from the DOM and disposes of the component and all of
its subcomponents.

For more information on NgIf and NgIfElse, see the NgIf API documentation.

Guarding against null

By default, NgIf prevents display of an element bound to a null value.

To use NgIf to guard a <div>, add *ngIf="yourProperty" to the <div>. In the
following example, the currentCustomer name appears because there is
a currentCustomer.

src/app/app.component.html

content_copy<div*ngIf="currentCustomer">Hello,
{{currentCustomer.name}}</div>

However, if the property is null, Angular does not display the <div>. In this example,
Angular does not display the nullCustomer because it is null.

src/app/app.component.html

content_copy<div*ngIf="nullCustomer">Hello,
{{nullCustomer}}</div>

Listing items with NgFor

Use the NgFor directive to present a list of items.

1. Define a block of HTML that determines how Angular renders a single item.

2. To list your items, assign the shorthand let item of items to *ngFor.

src/app/app.component.html

content_copy<div *ngFor="let item of items">{{item.name}}</div>

https://angular.io/api/common/NgIf
https://angular.io/api/common/NgIf
https://angular.io/api/common/NgIf
https://angular.io/api/common/NgIf
https://angular.io/api/common/NgIf
https://angular.io/api/common/NgIf
https://angular.io/api/common/NgIf
https://angular.io/api/common/NgFor
https://angular.io/api/common/NgFor
https://angular.io/api/common/NgFor
https://angular.io/api/common/NgFor

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

29

The string "let item of items" instructs Angular to do the following:

 Store each item in the items array in the local item looping variable
 Make each item available to the templated HTML for each iteration
 Translate "let item of items" into an <ng-template> around the host element

 Repeat the <ng-template> for each item in the list

For more information see the Structural directive shorthand section of Structural
directives.

Repeating a component view

To repeat a component element, apply *ngFor to the selector. In the following
example, the selector is <app-item-detail>.

src/app/app.component.html

content_copy<app-item-detail *ngFor="let item of items"
[item]="item"></app-item-detail>

Reference a template input variable, such as item, in the following locations:

 Within the ngFor host element
 Within the host element descendants to access the item's properties

The following example references item first in an interpolation and then passes in a
binding to the item property of the <app-item-detail> component.

src/app/app.component.html

content_copy<div *ngFor="let item of items">{{item.name}}</div>

<!-- . . . -->

<app-item-detail *ngFor="let item of items" [item]="item"></app-item-
detail>

https://angular.io/api/core/ng-template
https://angular.io/api/core/ng-template
https://angular.io/guide/structural-directives#shorthand
https://angular.io/guide/structural-directives
https://angular.io/guide/structural-directives
https://angular.io/api/common/NgFor
https://angular.io/api/common/NgFor
https://angular.io/api/common/NgFor
https://angular.io/api/common/NgFor
https://angular.io/api/common/NgFor

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

30

For more information about template input variables, see Structural directive
shorthand.

Getting the index of *ngFor

Get the index of *ngFor in a template input variable and use it in the template.

In the *ngFor, add a semicolon and let i=index to the shorthand. The following
example gets the index in a variable named i and displays it with the item name.

src/app/app.component.html

content_copy<div *ngFor="let item of items; let i=index">{{i + 1}} -
{{item.name}}</div>

The index property of the NgFor directive context returns the zero-based index of
the item in each iteration.

Angular translates this instruction into an <ng-template> around the host element,
then uses this template repeatedly to create a new set of elements and bindings for
each item in the list. For more information about shorthand, see the Structural
Directives guide.

Repeating elements when a condition is true

To repeat a block of HTML when a particular condition is true, put the *ngIf on a
container element that wraps an *ngFor element.

For more information see one structural directive per element.

Tracking items with *ngFor trackBy

Reduce the number of calls your application makes to the server by tracking
changes to an item list. With the *ngFor trackBy property, Angular can change and
re-render only those items that have changed, rather than reloading the entire list
of items.

https://angular.io/guide/structural-directives#shorthand
https://angular.io/guide/structural-directives#shorthand
https://angular.io/api/common/NgFor
https://angular.io/api/common/NgFor
https://angular.io/api/common/NgFor
https://angular.io/api/common/NgFor
https://angular.io/api/common/NgFor
https://angular.io/api/core/ng-template
https://angular.io/guide/structural-directives#shorthand
https://angular.io/guide/structural-directives#shorthand
https://angular.io/api/common/NgIf
https://angular.io/api/common/NgFor
https://angular.io/guide/structural-directives#one-per-element
https://angular.io/api/common/NgFor
https://angular.io/api/common/NgFor

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

31

1. Add a method to the component that returns the value NgFor should track.
In this example, the value to track is the item's id. If the browser has already
rendered id, Angular keeps track of it and doesn't re-query the server for the
same id.
src/app/app.component.ts

content_copytrackByItems(index: number, item: Item): number {
return item.id; }

2. In the shorthand expression, set trackBy to the trackByItems() method.
src/app/app.component.html

content_copy<div *ngFor="let item of items; trackBy:
trackByItems">

 ({{item.id}}) {{item.name}}

</div>

Change ids creates new items with new item.ids. In the following illustration of
the trackBy effect, Reset items creates new items with the same item.ids.

 With no trackBy, both buttons trigger complete DOM element replacement.
 With trackBy, only changing the id triggers element replacement.

https://angular.io/api/common/NgFor
https://angular.io/api/common/NgFor

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

32

Hosting a directive without a DOM element

The Angular <ng-container> is a grouping element that doesn't interfere with styles
or layout because Angular doesn't put it in the DOM.

Use <ng-container> when there's no single element to host the directive.

Here's a conditional paragraph using <ng-container>.

src/app/app.component.html (ngif-ngcontainer)

content_copy<p>

 I turned the corner

 <ng-container *ngIf="hero">

https://angular.io/api/core/ng-container
https://angular.io/api/core/ng-container
https://angular.io/api/core/ng-container
https://angular.io/api/common/NgIf

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

33

 and saw {{hero.name}}. I waved

 </ng-container>

 and continued on my way.

</p>

1. Import the ngModel directive from FormsModule.
2. Add FormsModule to the imports section of the relevant Angular module.
3. To conditionally exclude an <option>, wrap the <option>

in an <ng-container>.
src/app/app.component.html (select-ngcontainer)

content_copy<div>

 Pick your favorite hero

 (<label for="showSad"><input id="showSad" type="checkbox"
checked (change)="showSad = !showSad">show sad</label>)

</div>

<select [(ngModel)]="hero">

 <ng-container *ngFor="let h of heroes">

 <ng-container *ngIf="showSad || h.emotion !== 'sad'">

 <option [ngValue]="h">{{h.name}} ({{h.emotion}})</option>

 </ng-container>

 </ng-container>

https://angular.io/api/forms/NgModel
https://angular.io/api/forms/FormsModule
https://angular.io/api/forms/FormsModule
https://angular.io/api/core/ng-container
https://angular.io/api/forms/NgModel
https://angular.io/api/common/NgFor
https://angular.io/api/common/NgIf

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

34

</select>

Switching cases with NgSwitch

Like the JavaScript switch statement, NgSwitch displays one element from among
several possible elements, based on a switch condition. Angular puts only the
selected element into the DOM.

NgSwitch is a set of three directives:

NGSWITCH DIRECTIVES DETAILS

NgSwitch

An attribute directive that changes the behavior of its
companion directives.

NgSwitchCase

Structural directive that adds its element to the DOM
when its bound value equals the switch value and
removes its bound value when it doesn't equal the
switch value.

NgSwitchDefault

Structural directive that adds its element to the DOM
when there is no selected NgSwitchCase.

1. On an element, such as a <div>, add [ngSwitch] bound to an expression that
returns the switch value, such as feature. Though the feature value in this
example is a string, the switch value can be of any type.

2. Bind to *ngSwitchCase and *ngSwitchDefault on the elements for the cases.
src/app/app.component.html

https://angular.io/api/common/NgSwitch
https://angular.io/api/common/NgSwitch
https://angular.io/api/common/NgSwitch
https://angular.io/api/common/NgSwitch
https://angular.io/api/common/NgSwitch
https://angular.io/api/common/NgSwitchCase
https://angular.io/api/common/NgSwitchDefault
https://angular.io/api/common/NgSwitchCase
https://angular.io/api/common/NgSwitch
https://angular.io/api/common/NgSwitchCase
https://angular.io/api/common/NgSwitchDefault

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

35

content_copy<div [ngSwitch]="currentItem.feature">

 <app-stout-item *ngSwitchCase="'stout'"
[item]="currentItem"></app-stout-item>

 <app-device-item *ngSwitchCase="'slim'"
[item]="currentItem"></app-device-item>

 <app-lost-item *ngSwitchCase="'vintage'"
[item]="currentItem"></app-lost-item>

 <app-best-item *ngSwitchCase="'bright'"
[item]="currentItem"></app-best-item>

<!-- . . . -->

 <app-unknown-item *ngSwitchDefault
[item]="currentItem"></app-unknown-item>

</div>

3. In the parent component, define currentItem, to use it in
the [ngSwitch] expression.
src/app/app.component.ts

content_copycurrentItem!: Item;

4. In each child component, add an item input property which is bound to
the currentItem of the parent component. The following two snippets show
the parent component and one of the child components. The other child
components are identical to StoutItemComponent.
In each child component, here StoutItemComponent

content_copyexport class StoutItemComponent {

https://angular.io/api/common/NgSwitch
https://angular.io/api/common/NgSwitchCase
https://angular.io/api/common/NgSwitchCase
https://angular.io/api/common/NgSwitchCase
https://angular.io/api/common/NgSwitchCase
https://angular.io/api/common/NgSwitchDefault
https://angular.io/api/common/NgSwitch
https://angular.io/guide/inputs-outputs#input

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

36

 @Input() item!: Item;

}

Switch directives also work with built-in HTML elements and web components. For
example, you could replace the <app-best-item> switch case with a <div> as
follows.

src/app/app.component.html

content_copy<div *ngSwitchCase="'bright'"> Are you as bright as
{{currentItem.name}}?</div>

ng-for loop

The ng-for loop is a structural directive. We will see how to change the structure of
the dom.

Point is to repeat given HTML ones for each value in an array[]. Context is each time
passing the array value for string interpolation or binding.

The syntax is *for =” let <value> of collection.”

https://angular.io/api/core/Input
https://angular.io/api/common/NgSwitchCase

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

37

<value> is a variable name, <collection.> is a property on your component which
holds a collection, usually an array but anything that can be iterated.

Ng-For - local variable
 Index - used to provide the index for the current element while iteration.
 First - return true if the current element is the last in the iteration otherwise it

is false.
 Even - return true if current elements are even elements based on the index in

the iteration otherwise false.
It is used to execute the block of code to a specific item number. A for loop is
contains the initialization, condition, and increment/ decrement in a single line,
which provides easy debug, and structure of looping.
 The for loop is used to control the repeated statements.
 A for loop is worked till the condition is (found)/matches successfully.
 A for-loop id is used to repeat a portion of part of the HTML template once per

item from an iterable list.

Example

First, you have to create an application using the command " ng serve". Then open
this project and then create a component using the command " ng g component
loops". Go to the .ts file and take a variable array type. and then put the few values.
Then go to the HTML file and make a list. Take a list item and then put the *ng-for
loop. Then take put this variable name in the interpolation with the variable name
like - {{student.name}}.

Now save all the files.

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

38

for-loop.html
<h2><p>Understanding with Ng For loop</p></h2>
<h3><p>For loop in Angular</p></h3>

<li *ngFor='let student of students;'>
{{i+1}} - {{student.name}} - {{f}} - {{l}} -{{ev}} - {{od}}

foor-loop.ts
import {
Component,
OnInit
} from '@angular/core';
@Component({
selector: 'app-loops',
templateUrl: './loops.component.html',
styleUrls: ['./loops.component.css']
})
export class LoopsComponent {
students: any[] = [{
'name': 'Chaman Gautam'
}, {
'name': 'Ravi Gautam'
}, {
'name': 'Mohit sharma'
}, {
'name': 'Gaurav Sharma'
}, {
'name': 'Gaurav Kumar'
}, {
'name': 'Sandeep singh'
}, {
'name': 'Sumit Nimmi'
}, {

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

39

'name': 'Deepak'
}, {
'name': 'Vikas'
}];
}

module.ts
import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { AppRoutingModule } from './app-routing.module';
import {HttpClientModule } from '@angular/common/http'
import { AppComponent } from './app.component';
import { AddComponent } from './add/add.component';
import { RouterModule, Routes} from '@angular/router';
import{BookService } from './book.service';
import {InMemoryWebApiModule } from 'angular-in-memory-web-api';
import {TestData } from './testdata'

import { FormsModule, ReactiveFormsModule } from '@angular/forms';
import { ShowdataComponent } from './showdata/showdata.component';
import { CommonModule } from '@angular/common';
import { IfelseComponent } from './ifelse/ifelse.component';
import { SwitchComponent } from './switch/switch.component';
import { LoopsComponent } from './loops/loops.component';
const routes: Routes = [
 {path:'', component:AddComponent},
 { path:'add', component:AddComponent}
];

@NgModule({
 declarations: [
 AppComponent,
 AddComponent,
 ShowdataComponent,
 IfelseComponent,

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

40

 SwitchComponent,
 LoopsComponent
],
 imports: [
 BrowserModule,
 AppRoutingModule,RouterModule.forRoot(routes),ReactiveFormsModule, Forms
Module,
 HttpClientModule, CommonModule,
 InMemoryWebApiModule.forRoot(TestData)
],
 providers: [BookService],
 bootstrap: [LoopsComponent]
})
export class AppModule { }

mains.ts
import { enableProdMode } from '@angular/core';
import { platformBrowserDynamic } from '@angular/platform-browser-dynamic';
import { AppModule } from './app/app.module';
import { environment } from './environments/environment';
if (environment.production) {
 enableProdMode();
}
platformBrowserDynamic().bootstrapModule(AppModule)
 .catch(err => console.error(err));

index.html
<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Dhwani</title>
 <base href="/">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="icon" type="image/x-icon" href="favicon.ico">
</head>

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

41

<body>
 <app-loops></app-loops>
</body>
</html>
Now compile the project using the command " ng serve", after compiling this
project you have to open the web browser and hit " localhost:4200" after few
seconds you can see that your system shows the output like,

Now you can see that all data will be display.

Now use the indexing in the list.

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

42

index.html
<h2><p>Understanding with Ng For loop</p></h2>
<h3><p>For loop in Angular</p></h3>

 <li *ngFor='let student of students; let i=index;'>
 {{i+1}}

Now save all the data and refresh the browser, and after refresh, the browser the output will be shown
like,

Output

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

43

Now you can see that there is a hit numbering that will be shown the number with
each item.

Now use the true false and even odd for the last and first in the index like,
<h2><p>Understanding with Ng For loop</p></h2>
<h3><p>For loop in Angular</p></h3>

 <li *ngFor='let student of students; let i=index; let f=first;
let l=last; let ev=even;let od=odd'>
 {{i+1}} - {{student.name}} - {{f}} - {{l}}

Now save all the data and refresh the browser, and after the refresh, the browser
shows the output like below,

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

44

OUTPUT

Condition with ngif,

 Angular ngIf: Complete Guide

Learn all the features available in ngIf, learn the best way to use it to consume Observables, avoid

a common anti-pattern.



In this post, we are going to cover all the features that we have available for
using the Angular ngIf core directive.
Besides the most commonly used features, we are going to learn how to
avoid a potential ngIf anti-pattern that we might run into while developing
more complex UI screens that consume a lot of Observable data coming from
different sources (backend, Observable services, stores, etc.).

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

45

 Table Of Contents

In this post, we will cover the following topics:

 What is Angular ngIf?

 How does ngIf compare to hiding elements using CSS?

 What type of expressions can ngIf accept?

 The ngIf else syntax

 The ngIf if then else syntax

 Consuming observable data with ngIf and the async pipe

 A potential anti-pattern while consuming Observable data with ngIf

 The Single Data Observable pattern

 How does ngIf work under the hood?

 Summary

This post is part of our ongoing series on Angular Core features, you can find
all the articles available here.
So without further ado, let's get started learning everything that we need to
know about Angular ngIf!

https://blog.angular-university.io/tag/angular-core/

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

46

 Passing Data into a Component
There are two ways to pass data into a component, with 'property binding' and

'event binding'. In Angular, data and event change detection happens top-down

from parent to children. However for Angular events we can use the DOM event

mental model where events flow bottom-up from child to parent. So, Angular

events can be treated like regular HTML DOM based events when it comes to

cancellable event propagation.

The @Input() decorator defines a set of parameters that can be passed down from

the component's parent. For example, we can modify the HelloComponent

component so that name can be provided by the parent.
import { Component, Input } from "@angular/core";

@Component({
 selector: "rio-hello",
 template: "<p>Hello, {{name}}!</p>",
})
export class HelloComponent {
 @Input() name: string;
}

The point of making components is not only encapsulation, but also reusability.

Inputs allow us to configure a particular instance of a component.

We can now use our component like so:
<!-- To bind to a raw string -->
<rio-hello name="World"></rio-hello>
<!-- To bind to a variable in the parent scope -->
<rio-hello [name]="helloName"></rio-hello>

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

47

 Two-way Data Binding in Angular

Here you will learn how to do two-way data binding in Angular.

Two-way data binding refers to sharing data between a component class and its
template. If you change data in one place, it will automatically reflate at the
other end. For example, if you change the value of the input box, then it will also
update the value of the attached property in a component class.

Two-way data binding performs the following actions:

1. Sets a property of a component class
2. Listens for a DOM element change event

Angular v2+ supports two-way data binding using ngModel directive and also by
having getter and setter methods.

 ngModel Directive

The ngModel directive with [()] syntax (also known as banana box syntax) syncs values
from the UI to a property and vice-versa. So, whenever the user changes the value on
UI, the corresponding property value will get automatically updated.

[()] = [] + () where [] binds attribute, and () binds an event.

Example: Banana Box [()]
 Copy

import { Component, OnInit} from '@angular/core';

@Component({
 selector: 'app-greet',
 template: `
 User Name: <input type="text" [(ngModel)]="userName" >

 {{userName}}
 `
})
export class GreetComponent implements OnInit {

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

48

 constructor() { }

 userName: string = "jbond";

 ngOnInit(): void {
 }

}

The [(ngModel)] syntax is the recommended way of two-way data binding.

The ngModel directive with [] syntax is used for one-way data binding. [ngModel] binds a
value to a property to UI control.

 Getter and Setter Methods

For two-way data binding, declare a private property and access its value using get and
set methods in the component class. Then, assign that property to [(ngModel)].

For example, declare a private property with a get and set method, as shown below.

Example: Private Property
 Copy

private _userName: string = "bill gates";

 get userName(): string {
 return this._userName;
 }

 set userName(val: string) {
 //do some extra work here
 this._userName = val;
 }

Now, assign userName to [(ngModel)] in the template.

Example: [(ngModel)]
 Copy

<input type="text" [(ngModel)]="userName" >

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

49

The following is a full example of two-way data binding using get and set methods.

Example: Two-way Data Binding
 Copy

import { Component, OnInit } from '@angular/core';

@Component({
 selector: 'app-greet',
 template: `
 User Name: <input type="text" [(ngModel)]="userName" >

 {{userName}}`
})
export class GreetComponent implements OnInit {

 constructor() { }

 private _userName: string = "bill gates";

 get userName(): string {
 return this._userName;
 }
 set userName(val: string) {
 //do some extra work here
 this._userName = val;
 }
 ngOnInit(): void {
 }
}

 What is the use of ngOnInit?
ngOnInit: ngOnInit is a lifecycle hook in Angular that is called after the constructor is called and
after the component's inputs have been initialized. It is used to perform any additional
initialization that is required for the component. ngOnInit is commonly used to call services or to
set up subscriptions

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

50

 ngOnInit Example | Angular

home.component.ts
import { Component, OnInit } from '@angular/core';

@Component({
 selector: 'app-home',
 templateUrl: './home.component.html',
 styleUrls: ['./home.component.css']
})

export class HomeComponent implements OnInit {
 constructor() { }
 ngOnInit() {
 console.log("component has been initialized!")
 }
}

ngOnInit() executes once when a component is initialized.

ngOnInit() executes after data-bound properties are displayed and input

properties are set.

ngOnInit() executes once after the first ngOnChanges.

When you create a new Angular component via the Angular CLI, the ngOnInit() method
is included by default.
Notice how implements OnInit is added to the class definition. While not required, this
is considered best practice as it provides the type checking benefits of TypeScript.

ngOnInit() will still execute regardless of whether or not implements OnInit is included

in the class definition.
Component styles
Angular applications are styled with standard CSS. That means you can apply
everything you know about CSS stylesheets, selectors, rules, and media queries
directly to Angular applications.
Additionally, Angular can bundle component styles with components, enabling a
more modular design than regular stylesheets.

https://www.stackchief.com/blog/ngOnChanges%20Example%20%7C%20Angular
https://www.stackchief.com/tutorials/Angular%20CLI%20Install%20%7C%20Getting%20Started

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

51

This page describes how to load and apply these component styles.
Using component styles

For every Angular component you write, you can define not only an HTML
template, but also the CSS styles that go with that template, specifying any
selectors, rules, and media queries that you need.

One way to do this is to set the styles property in the component metadata.
The styles property takes an array of strings that contain CSS code. Usually
you give it one string, as in the following example:

src/app/hero-app.component.ts

content_copy@Component({
 selector: 'app-root',
 template: `
 <h1>Tour of Heroes</h1>
 <app-hero-main [hero]="hero"></app-hero-main>
 `,
 styles: ['h1 { font-weight: normal; }']
})
export class HeroAppComponent {
/* . . . */

https://angular.io/api/core/Component

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

52

}

 Component styling best practices

See View Encapsulation for information on how Angular scopes styles to specific
components.
You should consider the styles of a component to be private implementation details
for that component. When consuming a common component, you should not
override the component's styles any more than you should access the private
members of a TypeScript class. While Angular's default style encapsulation
prevents component styles from affecting other components, global styles affect all
components on the page. This includes ::ng-deep, which promotes a component
style to a global style.
Authoring a component to support customization
As component author, you can explicitly design a component to accept
customization in one of four different ways.
1. Use CSS Custom Properties (recommended)

You can define a supported customization API for your component by defining its
styles with CSS Custom Properties, alternatively known as CSS Variables. Anyone
using your component can consume this API by defining values for these
properties, customizing the final appearance of the component on the rendered
page.

While this requires defining a custom property for each customization point, it
creates a clear API contract that works in all style encapsulation modes.

2. Declare global CSS with @mixin

While Angular's emulated style encapsulation prevents styles from escaping a
component, it does not prevent global CSS from affecting the entire page. While
component consumers should avoid directly overwriting the CSS internals of a
component, you can offer a supported customization API via a CSS preprocessor
like Sass.

For example, a component may offer one or more supported mixins to customize
various aspects of the component's appearance. While this approach uses global

https://angular.io/guide/view-encapsulation

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

53

styles in its implementation, it allows the component author to keep the mixins up
to date with changes to the component's private DOM structure and CSS classes.

3. Customize with CSS ::part

If your component uses Shadow DOM, you can apply the part attribute to specify
elements in your component's template. This allows consumers of the component
to author arbitrary styles targeting those specific elements with the::partpseudo-
element.

While this lets you limit the elements within your template that consumers can
customize, it does not limit which CSS properties are customizable.

4. Provide a TypeScript API

You can define a TypeScript API for customizing styles, using template bindings to
update CSS classes and styles. This is not recommended because the additional
JavaScript cost of this style API incurs far more performance cost than CSS.

 Creating multiple modules

 'How to Use Multiple Modules on the Same Page.'
While you are working with AngularJS, you might find a situation where you are
having some scopes which are available in some controller, but those controllers
belong to different modules; in such a case you might have introduced new scope
in controller so that you can use it. This is because you can't declare multiple
modules in "ng-app", this is a limitation of ng-app, it restricts you to only one
module per page. To get rid of this problem you can choose "ng-module" which is
available in "angular.ng-modules". angular.ng-modules is a new directive which
needs to be provided where you had provided the AngularJS directive, you can
download it from my source code.

creating a sample application to show how you can use this feature.

Step 1: Firstly, download the "angular.ng-modules" using the above links.

After this provide where you had provided the "angularjs" directive.

https://developer.mozilla.org/docs/Web/Web_Components/Using_shadow_DOM
https://developer.mozilla.org/docs/Web/CSS/::part
https://developer.mozilla.org/docs/Web/CSS/::part

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

54

<head>
 <title></title>
 <script src="angular.js"></script>
 <script src="angular.ng-modules.js"></script>
 <script src="AngularController.js"></script>
</head>

Step 2: Now I am creating a new JavaScript file where we will declare our modules,
controller, and scopes.

var firstModule = angular.module('firstModule', []);

firstModule.controller('firstController', function ($scope) {
 $scope.UserName = 'Anubhav Chaudhary';
});

firstModule.controller('secondController', function ($scope) {
 $scope.MobileNumber = '00000000';
});

var secondModule = angular.module('secondModule', []);

secondModule.controller('thirdController', function ($scope) {
 $scope.EmailId = 'anu@test.com';
});

Here you can see that I declared two modules named "firstModule" and
"secondModule," inside the firstModule I created two controllers and in those
controllers I created some scope properties, inside secondModule only one
controller is created and in the controller one scope property is created. To all
these scopes some default value is also provided.

Step 3: Now it's time to work on the main section i.e. HTML section.
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

55

<head>
 <title></title>
 <script src="angular.js"></script>
 <script src="angular.ng-modules.js"></script>
 <script src="AngularController.js"></script>
</head>
<body>
 <form ng-modules="firstModule,secondModule">
 <fieldset>
 <legend>We are having both the modules</legend>
 <div ng-controller="firstController">
 Provide Your Name :
 <input type="text" ng-model="UserName" />
 </div>
 <div ng-controller="secondController">
 Provide Your Mobile Number :
 <input type="text" ng-model="MobileNumber" />
 </div>
 <div ng-controller="thirdController">
 Provide Your Email ID :
 <input type="text" ng-model="EmailId" />
 </div>
 </fieldset>
 </form>
 <form ng-module="secondModule">
 <fieldset>
 <legend>I am having only second module</legend>
 <div ng-controller="thirdController">
 Provide Your Email ID :
 <input type="text" ng-model="EmailId" />
 </div>
 </fieldset>
 </form>
</body>
</html>

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

56

Here you can see that I created two forms, let's firstly talk about the first form.

In the first form you can see that I had provided both the modules using "ng-
modules" directive. When you are using "ng-modules" then it allows you to use
multiple modules at same time, but if you don't wan't to use multiple modules then
you can use "ng-module" directive.

Inside the first form all three controllers are used in three different div's and their
scopes are bind to some input fields.

In the second form you can see that I have used "ng-module" because I need to use
only one module here. Inside the form div is bound to a corresponding controller
and an input element is bound to scope property.

Now our application is created and it's time to see the output.

Output: On running the application you will see an output like this,

All the input fields have their scope value and this means that our code has run
successfully and both the modules got bound at same time.

	 Data Binding?
	 Data Binding in Classical Template Systems
	 Data Binding in AngularJS Templates

	 Property binding
	colspan and colSpan

	 Event binding
	 Determining an event target
	 Binding to passive events
	 Binding to keyboard events

	 Angular 7 Components
	 How to create a new component?
	Creating component with CLI
	Syntax

	 Async functions with AngularJS
	 Interpolation and template expressions
	Interpolation {{...}}
	Template expressions
	Expression context
	Expression guidelines
	 Simplicity
	 Quick execution
	 No visible side effects

	 Two-way Data Binding in AngularJS
	ngular form, NgForm and two-way data binding
	Built-in attribute directives
	Adding and removing classes with NgClass
	Using NgClass with an expression
	Using NgClass with a method

	Setting inline styles with NgStyle
	Displaying and updating properties with ngModel
	NgModel and value accessors

	Adding or removing an element with NgIf
	Guarding against null

	Listing items with NgFor
	Repeating a component view
	Getting the index of *ngFor

	Repeating elements when a condition is true
	Tracking items with *ngFor trackBy

	Hosting a directive without a DOM element
	Switching cases with NgSwitch
	ng-for loop
	Ng-For - local variable

	 Angular ngIf: Complete Guide
	 Table Of Contents

	 Passing Data into a Component
	 Two-way Data Binding in Angular
	 ngModel Directive
	 Getter and Setter Methods

	 ngOnInit Example | Angular
	home.component.ts

	This page describes how to load and apply these component styles.
	Using component styles
	For every Angular component you write, you can define not only an HTML template, but also the CSS styles that go with that template, specifying any selectors, rules, and media queries that you need.
	One way to do this is to set the styles property in the component metadata. The styles property takes an array of strings that contain CSS code. Usually you give it one string, as in the following example:
	}
	 Component styling best practices
	See View Encapsulation for information on how Angular scopes styles to specific components.
	You should consider the styles of a component to be private implementation details for that component. When consuming a common component, you should not override the component's styles any more than you should access the private members of a TypeScrip...
	Authoring a component to support customization
	As component author, you can explicitly design a component to accept customization in one of four different ways.
	1. Use CSS Custom Properties (recommended)
	2. Declare global CSS with @mixin
	3. Customize with CSS ::part
	4. Provide a TypeScript API

