

Shree H.N.Shukla College of Science Rajkot MATHEMATICS T.Y.B.Sc. (Sem. VI) (CBCS) UNIT TEST **PAPER- 603** <u>Numerical Analysis - II</u>

Time: 1 hour]

[Total Marks: 30

Instruction: (i) All questions are compulsory.

(ii) Figures to the right indicate full marks of the

question.

1. (A) Answer the following:

- (1) Which formula mean of Gauss's forward & Gauss's backward interpolation formula?
- (2) What is the special case of Bessel's formula?
- (3) State Gauss's backward interpolation formula.
- (4) What is the fifth divided difference of the polynomial of degree four?
- (5) If $f(x)=x^3$ then find (1, 3, 5, 7)

(B) Attempt any one:

- (1) If $f(x)=x^3$ show that $f(a^3, b^3, c^3)=a+b+c$
- (2) Derive Inverse Interpolation.

(C) Attempt any one:

- (1) Given $y_1=22$, $y_2=30$, $y_4=82$, $y_7=106$ and $y_8=206$. Find y_6 using Lagrange's interpolation formula.
- (2) Find a polynomial satisfied by the following table.

X	-4	-1	0	2	5
F(x)	1245	33	5	9	1335
) Attemp	[05]				

(D) Attempt any one:

- (1) Derive Gauss's forward interpolation formula.
- (2) Use Sterling formula to find f(1.63) given

X	1.50	1.60	1.70	1.80	1.90
F(x)	17.609	20.412	23.045	25.527	27.875

[05]

[02]

[03]

2. (A) Answer the following: [05] (1) Which formula known as Newton-cote's formula? (2) What is Numerical Integration? (3) For what value of n in general quadrature formula, given Simpson's $\frac{3}{8}$ rule? (4) Write Trapezoidal rule. (5) Write Simpson's $\frac{1}{3}$ rule. [02] (B) Attempt any one: (1) Derive Trapezoidal rule. (2) Derive $D = \frac{1}{h} \left[\Delta - \frac{1}{2} \Delta^2 + \frac{1}{3} \Delta^3 - \frac{1}{4} \Delta^4 + \dots \dots \dots \right]$ (C) Attempt any one: [03] (1) Derive Picard's method. (2) Solve $y'=y+x^2$, y(0)=1 for y(0.02), y(0.04)(D) Attempt any one: [05] (1) Find the first, second and third derivatives of f(x) at x=1.5 is Х 1.5 2.0 2.5 3.0 3.5 4.0 F(x) 3.375 7.000 13.625 24.000 38.875 59.000

(2) Solve y'=1-y, y(0)=0 in the range 0≤x≤0.3 using (i) Euler's method (ii) Improved Euler's method (iii) Modified Euler's method by choosing h=0.1

****BEST OF LUCK****