

Shree H.N.Shukla College of Science Rajkot <u>MATHEMATICS</u> <u>T.Y.B.Sc. (Sem.VI) (CBCS)</u> <u>PRELIMS EXAM</u> <u>PAPER- 603</u> <u>Optimization & Numerical Analysis-II</u>

Time: 2.5 hour]

[Total Marks: 70

Instruction: (i) All questions are compulsory.

(ii) Figures to the right indicate full marks of the

question.

1. (A) Answer the following:	[04]
1) Define: Slack variables	
2) Define: Optimum solution of LPP	
3) What is Surplus variable with respect to the LPP?	
4) Define: Basic Feasible Solution of LPP	
(B) Attempt any one:	[02]
1) Write the Matrix form of Linear Programming Problem.	
2) State the Fundamental Theorem of Linear Programming.	
(C) Attempt any one:	[03]
1) Obtain the dual of following;	
Minimize: $Z = 5x_1 + x_2 - 6x_3$	
Subject to the constraints	
$-2x_1 + x_2 + 11x_3 \le -2$	
$-x_1 + 7x_2 + x_3 \ge 7$	
$3x_1 - x_2 + 4x_3 \le 5$ and $x_1, x_2, x_3 \ge 0$	
2) Write summary of the general relationship between Primal & Dual LPF	».

(D) Attempt any one:

- 1) Explain the steps of Graphical method to solve the LPP.
- 2) Find only BFS and construct only first table to solve the following LPP using SIMPLEX METHOD (complete solution is not required) Maximize: $Z = 3x_1 + 5x_2 + 4x_3$ Subject to the constraints $2x_1 + 3x_2 \le 8$ $2x_2 + 5x_3 \le 10$
 - $3x_1 + 2x_2 + 4x_3 \le 15$ and $x_1, x_2, x_3 \ge 0$

2. (A) Answer the following:

- Which three methods are used to obtain an initial solution of transportation problem?
- 2) What is the full form of NWCM?
- 3) What is the name of the method to find optimum solution of transportation problem?
- 4) What is the name of the method to solve Assignment problems?

(B) Attempt any one:

- 1) State the general mathematical form of assignment problem.
- 2) Write full form of LCM & VPM?

(C) Attempt any one:

 Obtain the initial solution of given transportation problem using LCM method;

		то				Supply
		D ₁	D ₂	D ₃	D ₄	- cappiy
FROM	P ₁	2	3	11	7	6
	P ₂	1	0	6	1	1
	P ₃	5	8	15	9	10
Demand		7	5	3	2	

[02]

[03]

[04]

2) Solve the following Assignment problem;

		Subordinates				
		I	II	- 111	IV	
Task	Α	8	26	17	11	
	В	13	28	4	26	
	С	38	19	18	15	
	D	19	26	24	10	

(D) Attempt any one:

- 1) Explain the steps of Hungarian method to solve the Assignment problem.
- Obtain the Optimum solution of given transportation problem using MODI method;

			Supply				
		D ₁	D ₂	D ₃	D ₄	Suppry	
FROM	S 1	5	3	6	4	30	
	S ₂	3	4	7	8	15	
	S ₃	9	6	5	8	15	
Demand		10	25	18	7	60	

3. (A) Answer the following:

[04]

- 1) Write formula for Gauss forward interpolation formula.
- 2) The first order divided difference $f(x_0, x_1)=$ _____
- 3) If $f(x) = x^3$ then what is the value of f(1, 3)?
- 4) Write Lagrange's formula for inverse interpolation.

[05]

(B) Attempt any one:

- 1) Derive relation between divided difference and forward difference.
- 2) Define inverse interpolation and write Lagrange's formula for inverse interpolation.

(C) Attempt any one:

- 1) Derive Stirling's formula.
- 2) Prove that divided difference is symmetrical in their arguments.

(D) Attempt any one:

1) Use Sterling's formula to find f(1.63) given

x	1.50	1.60	1.70	1.80	1.90
f(x)	17.609	20.412	23.045	25.527	27.875

2) Derive Gauss Backward interpolation formula.

4. (A) Answer the following:

- 1) To derive Simpson's $\frac{1}{3}$ rule we can take n=____ in general quadrature formula.
- 2) What is numerical integration?
- General Quadrature formula is also known as ______.
- 4) Write Trapezoidal rule.

(B) Attempt any one:

- 1) Derive Simpson's $\frac{1}{3}$ rule.
- 2) Write General Quadrature formula.

(C) Attempt any one:

- 1) Derive Trapezoidal rule.
- 2) Derive Simpson's $\frac{3}{8}$ rule.

[05]

[03]

[04]

[03]

[02]

(D) Attempt any one:

1) Evaluate $\int_0^{10} \frac{dx}{1+x^2}$ by using Simpson's $\frac{3}{8}$ rule.

2) Derive General Quadrature formula.

5. (A) Answer the following:

- 1) Write Taylor formula to solve Ordinary Differential Equation.
- 2) Write Picard's formula to solve Ordinary Differential Equation.
- 3) Write Range's formula to solve Ordinary Differential Equation.
- 4) Write Milne's Predictor formula to solve Ordinary Differential Equation.

(B) Attempt any one:

1) Using Picard's formula to find y(0.1) given that dv

$$\frac{xy}{dx} = x + y, y(0) = 1, h = 0.1$$

2) Find the value of y at x=0.2 by Euler's method $\frac{dy}{dx} = 2x + y, y(0) = 1$

(C) Attempt any one:

- 1) Explain Euler's method to solve Ordinary Differential Equation.
- 2) Use Range's method to find y(0.2) given that y' = x + y, y(0) = 1.

(D) Attempt any one:

- 1) Derive Milne's Predictor-Corrector formula.
- 2) Use Range-Kutta's method to find y(0.1), y(0.2) and y(0.3) given that $y' = xy + y^2$, y(0) = 1

****BEST OF LUCK****

[04]

[02]

[05]

[03]