(AFFILIATED TO SAURASHTRA UNIVERSITY & GTU) 2-vaishali nagar, Near Amrapali railway crossing, Raiya road, Rajkot-360001. Ph.No.-(0281)2440478, 2472590 3-vaishali nagar, Near Amrapali railway crossing, Raiya road, Rajkot-360001. Ph.No.-(0281)2471645 Behind marketing yard, Near Lalpari lake, Between Amargadh-Bhichri, Rajkot-360002. Ph.No.-90990 63150 M.Sc. SEMESTER-I C-105: PRACTICAL #### INORGANIC CHEMISTRY 1. Inorganic Qualitative Analysis Analysis of a mixture containing six radicals including one less common metal ion: W, Tl, Ti, Mo,Se, Zr, Th, Ce,V and Li. Minimum 15 mixtures containing inorganic salts like CuSO₄, KBr, TiO₂, Kl, Na₂CrO₄, CaCO₃, Zr(NO₃)₃, NaNO₃, ZnS, Na₂SO₄, SeO₂, NaCl, K₂SO₄, (NH₄) ₂SO₄, (NH₄) ₂MoO₄, BaCl₂, ZnCO₃, Al₂(SO₄)₃, V₂O₅, ZnS, Ni(NO₃)₂, KNO₂, Th(NO₃)₃, KCl, CdCO₃, CuCl₂, LiCO₃, K₂SO₄, AlPO₄, H₃BO₃, (NH₄) ₂SO₄, CeSO₄, CdCl₂, Th(NO₃)₃, NaNO₃, ZnCO₃, AlPO₄, LiCO₃, Pb(NO₃)₂, NaNO₂Zr(NO₃)₃, Na₂WO₄, MnSO₄, NaHSO₃, SeO₂, K₂CrO₄, FeSO₄, (NH₄) ₂SO₄, (NH₄) ₂MoO₄, Na₃AsO₃, Na₃AsO₄, (NH₄) ₂SO₄, K₂SO₄, CeSO₄, As₂O₃, NH₄Cl, NiSO₄, LiCO₃, MgCO₃, NaNO₂, Mg₃(PO₄)₂, V₂O₅, H₃BO₃, SrCO₃, Th(NO₃)₃, Na₃AsO₃, Na₃AsO₄, BaCO₃ and LiCO₃. 2. Inorganic Preparation Binuclear and Mono Nuclear Metal Complexes Preparation of selected inorganic metal complexes and their estimation by volumetric/gravimetric/colorimetric techniques to determine the percentage purity of the complexes prepared. a. Tetrammine cupric sulphate [Cu(NH₃)₄]SO₄·H₂O. - b. Tri (thiourea) cuprous sulphate [Cu (NH₂CSNH₂)₃]₂ SO₄ 2H₂O]. - c. Tri (thiourea) cuprous chloride [Cu (NH₂CSNH₂)₃] Cl. - d. Hexa ammine nickel(II) chloride [Ni (NH₃)₆] Cl₂. - e. Hexathiourea-plumbus nitrate [Pb (NH₂CSNH₂)₆] (NO₃)₂. - Potassium trioxalato chromate K₃ [Cr (C₂O₄)₃]. - g. Potassium trioxalato aluminate K₃ [Al (C₂O₄)₃]. - h. sodium trioxalate ferrrate(III) Na₃ [Fe (C₂O₄)₃] 9H₂O. - Hexamminecobalt(III) chloride [Co (NH₃)₆] Cl₃. - Pentathioureadicuprous nitrate [Cu (NH₂CSNH₂)₅] (NO₃)₂. - k. Iron(III) acetylacetonate Fe(acac)₃ / Fe(C₅H₇O₂)₃ 3. Quantitative Analysis Estimation of the metal complexes by different techniques to determine the percentage purity quantitatively of the complexes. - a. Cu-EDTA (Volumetrically) and Cu-KCNS(Gravimetrically). - b. Ni- EDTA (Volumetrically) Ni- DMG (Gravimetrically.) - c. Co- EDTA (Volumetrically). - d. Cr- EDTA-Pb(NO)2 (Volumetrically, Back Titration). - e. Al- EDTA –ZnSO₄ (Volumetrically, Back Titration). - Oxalate -KMnO₄(Volumetrically). (AFFILIATED TO SAURASHTRA UNIVERSITY & GTU) 2-vaishali nagar, Near Amrapali railway crossing, Raiya road, Rajkot-360001. Ph.No.-(0281)2440478, 2472590 3-vaishali nagar, Near Amrapali railway crossing, Raiya road, Rajkot-360001. Ph.No.-(0281)2471645 Behind marketing yard, Near Lalpari lake, Between Amargadh-Bhichri, Rajkot-360002. Ph.No.-90990 63150 ### ORGANIC CHEMISTRY ### 1. Multistep Preparation - a. m-Nitro aniline from nitrobenzene. - b. Hydro quinone diacetate from hydroquinone. - p-Methyl acetanilide from p-toluidine. - d. p-,Bromo-aniline from aniline. - e. 7-Hydroxycoumarine from resorcinol. - f. Hippuric acid from glycine. - g. Aspirin from salicylic acid - h. Phthalamide from phthlic acid. - Magneson-II (4,(4' nitro benzene azo 1)naphthol) from p-nitroaniline. - j. Benzimdazol from o-nitroaniline. - Resacetophenone from resorcinol. ### 2. Qualitative Analysis of Bi-functional Compounds: - a. Anthranilic acid - b. p-Aminobenzoic acid - c. o-Chlorobenzoic acid - d. m-Nitrobenzoic acid - e, o/m/p-Nitroaniline - f. Bi-phenyl amine - g. N,N-Dimethyl aniline - h. Resorcinol - i. Ethyl acetoacetate - P-Dichlorobenzene - k. o/p-Cresol - o/m/p-Toluidine - m. Benzanilide - n. Acetamide - α/β-Naphthole,etc. NOTE: Other bifunctional compounds may be asked in examination. www age 2 (AFFILIATED TO SAURASHTRA UNIVERSITY & GTU) 2-vaishali nagar, Near Amrapali railway crossing, Raiya road, Rajkot-360001. Ph.No.-(0281)2440478, 2472590 3-vaishali nagar, Near Amrapali railway crossing, Raiya road, Rajkot-360001. Ph.No.-(0281)2471645 Behind marketing yard, Near Lalpari lake, Between Amargadh-Bhichri, Rajkot-360002. Ph.No.-90990 63150 #### PHYSICAL CHEMISTRY #### Conductometry - To determine the concentration of HCl / CH₃COOH / Oxalic acid/ HCl + CH₃COOH+ CuSO4/ Satd BA/ NH₄Cl/CH₃COONa/ mix of CH₃COONa + NH₄Cl. To study the complexation of Ni⁺² with EDTA. To determine the equivalent conductance and dissociation constant of a weak electrolyte and to verify Oswald's dilution law. - 4. To determine the equivalent conductance of a strong electrolyte and hence to verify the Ostwald's equation. - To determine the degree of hydrolysis and hydrolysis constant NH₄Cl/ CH₃COONa. pHMetry - To determine the dissociation constant of benzoic/acetic / lactic acid. - To determine the concentration and amount of acid in a mixture of hydrochloric acid and acetic acid. - To determine the concentration and dissociation constants of a dibasic acid (oxalic acid). - To determine the dissociation constant of acetic acid (Buffer). #### Potentiometry - 10. To determine the normality and dissociation constant of the given acid (satd. BA). - 11. To determine the normality and dissociation constants of the given dibasic acid (oxalic - To determine the normality of hydrochloric acid and acetic acid in the mixture. - 13. To determine the standard redox potential and thermodynamic parameters of the Fe+2 - To determine the concentration of KCl and the solubility product of AgCl. - 15. To determine the normality of each halide in the mixture of halides - 16. To determine the standard oxidation potential of the quin hydroneelectrodel. #### Spectrophotometry - To examine Lambert-Beer law in concentrated solution. To study the rate of iodination. - 19. To determine the composition of binary mixture containing potassium permanganate and potassium dichromate. #### Ultrasonics To determine the acoustical parameters of a given liquid. #### Chemical kinetics - 21. To determine the reaction velocity and reaction rate constant for the reaction between acetone and iodine. - 22. To determine the heat and entropy of vaporization of a given liquid by kinetic - approach. 23. To determine the kinetic parameters and temperature coefficient of reaction between KBrO3 and KI. - 24. To determine the kinetic parameters and the temperature coefficient of the reaction between K2S2O8 and KI. #### Thermodynamics - 25. To determine the solubility and heat of solution of benzoic acid in toluene. - 26. To determine the partial molar volume and the composition of unknown mixture of ethanol/methanol and water. #### Partition function (AFFILIATED TO SAURASHTRA UNIVERSITY & GTU) 2-vaishali nagar, Near Amrapali railway crossing, Raiya road, Rajkot-360001. Ph.No.-(0281)2440478, 2472590 3-vaishali nagar, Near Amrapali railway crossing, Raiya road, Rajkot-360001. Ph.No.-(0281)2471645 Behind marketing yard, Near Lalpari lake, Between Amargadh-Bhichri, Rajkot-360002. Ph.No.-90990 63150 #### ANALYTICAL CHEMISTRY - Preparation and standardization of 0.1N HCl, 0.1N H₂SO₄ and 0.1N HNO₃, against 0.1N NaOH solution as well as other strength of solutions. Find mean, standard deviation and other statistical parameters. - Preparation and standardization of 0.1N and 0.5N solution of NaOH and standardized against potassium hydrogen phthalate and succinic acid. Find mean, standard deviation, t-test and F-test. - Preparation and standardization of 0.1N or 0.1M I₂ solution and standardized against standard thiosulphate solution and other standardization solutions. - To determine the amount of iodine in iodized salt. - 5. To determine the amount of vitamin-C (ascorbic acid) in a given sample. - To determine the percentage of reducing sugars in Honey sample. - To determine the percentage of reducing sugars in Froncy sample. To determine the saponification value of an oil or fat sample. - To determine the percentage of tannin in tea leaves. - To determine the percentage of calcium gluconate in the given commercial sample by complexometric titration. - 10. To determine the amount of aspirin in a given sample. - 11. To determine the iodine value of an oil or fat. - 12. To estimate the amines using bromate-bromides solution (Bromination) method. - 13. To estimate the calcium and magnesium in the given mixture solution of both by EDTA complexometric method. (50ml of mixture solution of Ca⁺² and Mg⁺² (25ml Ca⁺² solution from CaCO₃ 10gm/L and 25ml Mg⁺² solution (MgCO₃ 8.4 gm/L) use minimum quantity of dil. HCl (1ml) for Ca⁻² and Mg⁺² solution). - 14. To determine chloride and bromide ion by precipitation titration method. - 15. To determine barium gravimetrically and copper by volumetrically in a given mixture. - To determine the total protein content and solid content in sample of milk. (Formaldehyde method). - To determine the percentage of phthalic anhydride and maleic anhydride and find mean, and standard deviation. - To determine amount of iron (III) in solution by photometric titration (static) with EDTA. - 19. To determine the amount of Cu⁺² using DMG by spectrophotometric method. - 20. To determine available chlorine in bleaching materials. (AFFILIATED TO SAURASHTRA UNIVERSITY & GTU) S. W.Y. T.X. S 2-vaishali nagar, Near Amrapali railway crossing, Raiya road, Rajkot-360001. Ph.No.-(0281)2440478, 2472590 3-vaishali nagar, Near Amrapali railway crossing, Raiya road, Rajkot-360001. Ph.No.-(0281)2471645 Behind marketing yard, Near Lalpari lake, Between Amargadh-Bhichri, Rajkot-360002. Ph.No.-90990 63150 M.Sc. SEMESTER-I C-106: VIVA VOCE Based on theory C-101 to C104 and practicals. M. Sc. Chemistry