(AFFILIATED TO SAURASHTRA UNIVERSITY & GTU)

2-vaishali nagar, Near Amrapali railway crossing, Raiya road, Rajkot-360001. Ph.No.-(0281)2440478, 2472590 3-vaishali nagar, Near Amrapali railway crossing, Raiya road, Rajkot-360001. Ph.No.-(0281)2471645 Behind marketing yard, Near Lalpari lake, Between Amargadh-Bhichri, Rajkot-360002. Ph.No.-90990 63150

M.Sc. SEMESTER-I C-105: PRACTICAL

INORGANIC CHEMISTRY

1. Inorganic Qualitative Analysis

Analysis of a mixture containing six radicals including one less common metal ion: W, Tl, Ti, Mo,Se, Zr, Th, Ce,V and Li.

Minimum 15 mixtures containing inorganic salts like CuSO₄, KBr, TiO₂, Kl, Na₂CrO₄, CaCO₃, Zr(NO₃)₃, NaNO₃, ZnS, Na₂SO₄, SeO₂, NaCl, K₂SO₄, (NH₄) ₂SO₄, (NH₄) ₂MoO₄, BaCl₂, ZnCO₃, Al₂(SO₄)₃, V₂O₅, ZnS, Ni(NO₃)₂, KNO₂, Th(NO₃)₃, KCl, CdCO₃, CuCl₂, LiCO₃, K₂SO₄, AlPO₄, H₃BO₃, (NH₄) ₂SO₄, CeSO₄, CdCl₂, Th(NO₃)₃, NaNO₃, ZnCO₃, AlPO₄, LiCO₃, Pb(NO₃)₂, NaNO₂Zr(NO₃)₃, Na₂WO₄, MnSO₄, NaHSO₃, SeO₂, K₂CrO₄, FeSO₄, (NH₄) ₂SO₄, (NH₄) ₂MoO₄, Na₃AsO₃, Na₃AsO₄, (NH₄) ₂SO₄, K₂SO₄, CeSO₄, As₂O₃, NH₄Cl, NiSO₄, LiCO₃, MgCO₃, NaNO₂, Mg₃(PO₄)₂, V₂O₅, H₃BO₃, SrCO₃, Th(NO₃)₃, Na₃AsO₃, Na₃AsO₄, BaCO₃ and LiCO₃.

2. Inorganic Preparation Binuclear and Mono Nuclear Metal Complexes

Preparation of selected inorganic metal complexes and their estimation by volumetric/gravimetric/colorimetric techniques to determine the percentage purity of the complexes prepared.

a. Tetrammine cupric sulphate [Cu(NH₃)₄]SO₄·H₂O.

- b. Tri (thiourea) cuprous sulphate [Cu (NH₂CSNH₂)₃]₂ SO₄ 2H₂O].
- c. Tri (thiourea) cuprous chloride [Cu (NH₂CSNH₂)₃] Cl.
- d. Hexa ammine nickel(II) chloride [Ni (NH₃)₆] Cl₂.
- e. Hexathiourea-plumbus nitrate [Pb (NH₂CSNH₂)₆] (NO₃)₂.
- Potassium trioxalato chromate K₃ [Cr (C₂O₄)₃].
- g. Potassium trioxalato aluminate K₃ [Al (C₂O₄)₃].
- h. sodium trioxalate ferrrate(III) Na₃ [Fe (C₂O₄)₃] 9H₂O.
- Hexamminecobalt(III) chloride [Co (NH₃)₆] Cl₃.
- Pentathioureadicuprous nitrate [Cu (NH₂CSNH₂)₅] (NO₃)₂.
- k. Iron(III) acetylacetonate Fe(acac)₃ / Fe(C₅H₇O₂)₃

3. Quantitative Analysis

Estimation of the metal complexes by different techniques to determine the percentage purity quantitatively of the complexes.

- a. Cu-EDTA (Volumetrically) and Cu-KCNS(Gravimetrically).
- b. Ni- EDTA (Volumetrically) Ni- DMG (Gravimetrically.)
- c. Co- EDTA (Volumetrically).
- d. Cr- EDTA-Pb(NO)2 (Volumetrically, Back Titration).
- e. Al- EDTA –ZnSO₄ (Volumetrically, Back Titration).
- Oxalate -KMnO₄(Volumetrically).

(AFFILIATED TO SAURASHTRA UNIVERSITY & GTU)

2-vaishali nagar, Near Amrapali railway crossing, Raiya road, Rajkot-360001. Ph.No.-(0281)2440478, 2472590 3-vaishali nagar, Near Amrapali railway crossing, Raiya road, Rajkot-360001. Ph.No.-(0281)2471645 Behind marketing yard, Near Lalpari lake, Between Amargadh-Bhichri, Rajkot-360002. Ph.No.-90990 63150

ORGANIC CHEMISTRY

1. Multistep Preparation

- a. m-Nitro aniline from nitrobenzene.
- b. Hydro quinone diacetate from hydroquinone.
- p-Methyl acetanilide from p-toluidine.
- d. p-,Bromo-aniline from aniline.
- e. 7-Hydroxycoumarine from resorcinol.
- f. Hippuric acid from glycine.
- g. Aspirin from salicylic acid
- h. Phthalamide from phthlic acid.
- Magneson-II (4,(4' nitro benzene azo 1)naphthol) from p-nitroaniline.
- j. Benzimdazol from o-nitroaniline.
- Resacetophenone from resorcinol.

2. Qualitative Analysis of Bi-functional Compounds:

- a. Anthranilic acid
- b. p-Aminobenzoic acid
- c. o-Chlorobenzoic acid
- d. m-Nitrobenzoic acid
- e, o/m/p-Nitroaniline
- f. Bi-phenyl amine
- g. N,N-Dimethyl aniline
- h. Resorcinol

- i. Ethyl acetoacetate
- P-Dichlorobenzene
- k. o/p-Cresol
- o/m/p-Toluidine
- m. Benzanilide
- n. Acetamide
- α/β-Naphthole,etc.

NOTE: Other bifunctional compounds may be asked in examination.

www age 2

(AFFILIATED TO SAURASHTRA UNIVERSITY & GTU)

2-vaishali nagar, Near Amrapali railway crossing, Raiya road, Rajkot-360001. Ph.No.-(0281)2440478, 2472590 3-vaishali nagar, Near Amrapali railway crossing, Raiya road, Rajkot-360001. Ph.No.-(0281)2471645

Behind marketing yard, Near Lalpari lake, Between Amargadh-Bhichri, Rajkot-360002. Ph.No.-90990 63150

PHYSICAL CHEMISTRY

Conductometry

- To determine the concentration of HCl / CH₃COOH / Oxalic acid/ HCl + CH₃COOH+ CuSO4/ Satd BA/ NH₄Cl/CH₃COONa/ mix of CH₃COONa + NH₄Cl.
 To study the complexation of Ni⁺² with EDTA.
 To determine the equivalent conductance and dissociation constant of a weak electrolyte and to verify Oswald's dilution law.

- 4. To determine the equivalent conductance of a strong electrolyte and hence to verify the Ostwald's equation.
- To determine the degree of hydrolysis and hydrolysis constant NH₄Cl/ CH₃COONa. pHMetry
- To determine the dissociation constant of benzoic/acetic / lactic acid.
- To determine the concentration and amount of acid in a mixture of hydrochloric acid and acetic acid.
- To determine the concentration and dissociation constants of a dibasic acid (oxalic acid).
- To determine the dissociation constant of acetic acid (Buffer).

Potentiometry

- 10. To determine the normality and dissociation constant of the given acid (satd. BA).
- 11. To determine the normality and dissociation constants of the given dibasic acid (oxalic
- To determine the normality of hydrochloric acid and acetic acid in the mixture.
- 13. To determine the standard redox potential and thermodynamic parameters of the Fe+2
- To determine the concentration of KCl and the solubility product of AgCl.
- 15. To determine the normality of each halide in the mixture of halides
- 16. To determine the standard oxidation potential of the quin hydroneelectrodel.

Spectrophotometry

- To examine Lambert-Beer law in concentrated solution.
 To study the rate of iodination.
- 19. To determine the composition of binary mixture containing potassium permanganate and potassium dichromate.

Ultrasonics

To determine the acoustical parameters of a given liquid.

Chemical kinetics

- 21. To determine the reaction velocity and reaction rate constant for the reaction between acetone and iodine.
- 22. To determine the heat and entropy of vaporization of a given liquid by kinetic
- approach.

 23. To determine the kinetic parameters and temperature coefficient of reaction between KBrO3 and KI.
- 24. To determine the kinetic parameters and the temperature coefficient of the reaction between K2S2O8 and KI.

Thermodynamics

- 25. To determine the solubility and heat of solution of benzoic acid in toluene.
- 26. To determine the partial molar volume and the composition of unknown mixture of ethanol/methanol and water.

Partition function

(AFFILIATED TO SAURASHTRA UNIVERSITY & GTU)

2-vaishali nagar, Near Amrapali railway crossing, Raiya road, Rajkot-360001. Ph.No.-(0281)2440478, 2472590 3-vaishali nagar, Near Amrapali railway crossing, Raiya road, Rajkot-360001. Ph.No.-(0281)2471645 Behind marketing yard, Near Lalpari lake, Between Amargadh-Bhichri, Rajkot-360002. Ph.No.-90990 63150

ANALYTICAL CHEMISTRY

- Preparation and standardization of 0.1N HCl, 0.1N H₂SO₄ and 0.1N HNO₃, against 0.1N NaOH solution as well as other strength of solutions. Find mean, standard deviation and other statistical parameters.
- Preparation and standardization of 0.1N and 0.5N solution of NaOH and standardized against potassium hydrogen phthalate and succinic acid. Find mean, standard deviation, t-test and F-test.
- Preparation and standardization of 0.1N or 0.1M I₂ solution and standardized against standard thiosulphate solution and other standardization solutions.
- To determine the amount of iodine in iodized salt.
- 5. To determine the amount of vitamin-C (ascorbic acid) in a given sample.
- To determine the percentage of reducing sugars in Honey sample.
- To determine the percentage of reducing sugars in Froncy sample.
 To determine the saponification value of an oil or fat sample.
- To determine the percentage of tannin in tea leaves.
- To determine the percentage of calcium gluconate in the given commercial sample by complexometric titration.
- 10. To determine the amount of aspirin in a given sample.
- 11. To determine the iodine value of an oil or fat.
- 12. To estimate the amines using bromate-bromides solution (Bromination) method.
- 13. To estimate the calcium and magnesium in the given mixture solution of both by EDTA complexometric method. (50ml of mixture solution of Ca⁺² and Mg⁺² (25ml Ca⁺² solution from CaCO₃ 10gm/L and 25ml Mg⁺² solution (MgCO₃ 8.4 gm/L) use minimum quantity of dil. HCl (1ml) for Ca⁻² and Mg⁺² solution).
- 14. To determine chloride and bromide ion by precipitation titration method.
- 15. To determine barium gravimetrically and copper by volumetrically in a given mixture.
- To determine the total protein content and solid content in sample of milk. (Formaldehyde method).
- To determine the percentage of phthalic anhydride and maleic anhydride and find mean, and standard deviation.
- To determine amount of iron (III) in solution by photometric titration (static) with EDTA.
- 19. To determine the amount of Cu⁺² using DMG by spectrophotometric method.
- 20. To determine available chlorine in bleaching materials.

(AFFILIATED TO SAURASHTRA UNIVERSITY & GTU)

S. W.Y. T.X. S

2-vaishali nagar, Near Amrapali railway crossing, Raiya road, Rajkot-360001. Ph.No.-(0281)2440478, 2472590 3-vaishali nagar, Near Amrapali railway crossing, Raiya road, Rajkot-360001. Ph.No.-(0281)2471645 Behind marketing yard, Near Lalpari lake, Between Amargadh-Bhichri, Rajkot-360002. Ph.No.-90990 63150

M.Sc. SEMESTER-I

C-106: VIVA VOCE

Based on theory C-101 to C104 and practicals.

M. Sc. Chemistry