

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 1

Website:hnsgroupofcolleges.org

Email : hnsinfo@hnshukla.com

 Shree H.N.Shukla College,

 Street No. 2, Vaishali Nagar,

 Nr. Amrapali Railway Crossing,

 Raiya Road, Rajkot.

 Ph. (0281)2440478, 2472590

Shree H.N.Shukla College,

 Street No. 3, Vaishali Nagar,

 Nr. Amrapali Railway Crossing,

 Raiya Road, Rajkot.

 Ph. (0281)2471645

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 2

CS – 09: PROGRAMMING WITH C#

Unit
No.

Topics Details

1 Introduction Introduction to visual studio 2008
Visual studio editions
Visual studio IDE

C# Basics  Variables, Constants, Strings
 Data types
 Arrays
 Decision statements
 Loop statements
 Exception using try-catch-finally
 NameSpace
 Class
 Object
 Struct

2 Inheritance  Inheriting a class
 Sealed class
 Overloading an operator
 Overloading a method
 Overloading an Indexer
 Creating an Interface
 Implementing an Interface
 Inheriting an Interface

Pointers and
Delegates

 Pointers
 Pointers to Arrays
 Pointers to Structures
 Delegate
 Declaring and Instantiating Delegate
 Multicast delegate
 Creating events
 Chaining events
 Firing an event

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 3

3 Threading in C#  Introduction
 Difference between process and thread
 The thread class
 Multithreading
 Thread Priorities
 Thread Synchronization

Collection and
Generics

Understanding Collections:
ArrayList, BitArray, HashTable, Queue, SortedList, Stack,
Generics, Generic List, Generic Stack, Generic Queue, Generic
HashSet

4 Reflection in C# Reflection, Why we need Reflection?, Using Reflection,
Dynamic loading and reflection

 Windows Forms
and Control
Programming

Windows Forms:
MsgBox, DialogBox, Handling Mouse, Events, Handling Key
Events
Basic Control Programming For Following: Controls, Button,
Label, TextBox, RichTextBox, RadioButton, CheckBox ListBox,
CheckedListBox, ComboBox, ListView, TreeView, ImageList,
PictureBox
Panel, GroupBox, TabControl, ScrollBar
ToolTip, NotifyIcon, Timer, ProgressBar

5 ADO.NET
Programming

Architecture of ADO. NET Data providers in ADO.NET:
Connection Command DataReader DataAdapter
DataSet:
DataTable DataView DataColumn DataRow DataRelation
DataReader DataGridView Control Introduction to LINQ
Using LINQ to Dataset Example

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 4

Chapter-2 :- Inheritance

 Topics

Inheritance  Inheriting a class
 Sealed class
 Overloading an operator
 Overloading a method
 Overloading an Indexer
 Creating an Interface
 Implementing an Interface
 Inheriting an Interface

Pointers
and
Delegates

 Pointers
 Pointers to Arrays
 Pointers to Structures
 Delegate
 Declaring and Instantiating Delegate
 Multicast delegate
 Creating events
 Chaining events
 Firing an event

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 5

Topic: What is Inheritance?

Ans:

 In C#, inheritance is the process in which one object acquires all the

properties and behaviors of its parent object automatically

 In C#, the class which inherits the members another class is known as

derived class and the class whose members are inherited is known as base

class

 The advantage of inheritance is code reusability (that is you can reuse the

members of your parent class. So, there is no need to define the member

again. So, less code is required in the class.

 Following are the types of inheritance:

NOTE: Multiple inheritance is not supported in C# through class.

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 6

1) Single Inheritance:

 It is the type of inheritance in which there is one base class and one

derived class.

Example:

public class parent

{

 Public void displayp()

 {

 Console.WriteLine(“I am parent”);

 }

}

Public class son:parent

{

 Public void displays()

 {

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 7

 Console.WriteLine(“I am son”);

 }

}

Public class program

{

 Public static void main()

 {

 son s=new son();

 s.Displayp();

 s.Displays();

 }

}

2) Hierarchical Inheritance:

 In this type of inheritance, multiple classes derives from one base class.

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 8

Example:

public class parent

{

 Public void displayp()

 {

 Console.WriteLine(“I am parent”);

 }

}

Public class Child1:parent

{

 Public void displaychild1()

 {

 Console.WriteLine(“Child1”);

 }

}

Public class Child2:parent

{

 Public void displaychild2()

 {

 Console.WriteLine(“Child2”);

 }

}

Public class program

{

 Public static void main()

 {

 child1 c1=new child1();

 child c2=new child2();

 c1.displaychild1();

 c1.displayp();

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 9

 c2.displaychild2();

 c2.displayp();

 }

}

3) Multilevel Inheritance:

 In this type of inheritance, a class inherits derived/child class which in turn

inherits another class

 It's like a child inherits the traits of his/her parents, and parents inherit

the traits of their grandparents.

Example:

public class Grandparent

{

 Public void displaygp()

 {

 Console.WriteLine(“Grand Parent”);

 }

}

Public class Parent:Grandparent

{

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 10

 Public void displayp()

 {

 Console.WriteLine(“Parent”);

 }

}

Public class child:Parent

{

 Public void displayc()

 {

 Console.WriteLine(“Child”);

 }

}

Public class program

{

 Public static void main()

 {

 child c=new child();

 c.displayc();

 c.displayp();

 c.displaygp();

 }

}

MCQ

1) The concept of parent and
child is known as …..

Inheritance

2) Which type of inheritance is
not supported by C# directly?

MultipleIn

3) In which type of inheritance a
class inherits from another
class, which in turn inherits
another class?

Multilevel

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 11

Topic: Write a short note on sealed class

Ans:

Sealed Class:

 Sealed classes are used to restrict the users from inheriting the class.
 A class can be sealed by using the sealed keyword.
 The keyword tells the compiler that the class is sealed, and therefore,
cannot be extended.

 No class can be derived from a sealed class.

Syntax:

sealed class class_name

{

 // data members

 // methods

 .

 .

 .

}

 A method can also be sealed, and in that case, the method cannot be
overridden. However, a method can be sealed in the classes in which they
have been inherited.

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 12

Output: Error indicating that sealed class can not be inherited

MCQ

1) ……..class is used to restrict the
class from being inherited.

Sealed

2) Sealed methods can not be ……. Overridden

3) No class can be derived from
sealed class (T/F)

True

sealed class A

 {

 public void display()

 {

 Console.WriteLine("Hello");

 }

 }

 class B : A

 {

 public void display1()

 {

 Console.WriteLine("hi");

 }

 }

 class Program

 {

 static void Main(string[] args)

 {

 mercides m = new mercides();

 m.display1();

 Console.ReadKey();

 }

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 13

Topic: Explain Method overloading.

Ans:

 Method overloading means the method with same name but different

parameters.

class test

 {

 public void add(int a, int b)

 {

 Console.WriteLine(a + b);

 }

 public void add(int a, int b, int c)

 {

 Console.WriteLine(a + b + c);

 }

 }

 class Program

 {

 static void Main(string[] args)

 {

 test t1 = new test();

 t1.add(4, 5);

 t1.add(1, 2, 3);

 Console.ReadKey();

 }

 }

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 14

Topic: Write a short note on Constructor

Ans:

 In C#, constructor is a special method which is invoked automatically at the
time of object creation. It is used to initialize the data members of new
object generally. The constructor in C# has the same name as class name.

 There can be two types of constructors in C#.
o Default Constructor
o Parameterized Constructor
o Copy Constructor
o Static Constructor
o Private Constructor

 Default Constructor:
 A constructor which has no argument is known as default
constructor. It is invoked at the time of creating object.

Example:

Class test

 {

 Public test()

 {

 Console.WriteLine("Default Constructor");

 }

}

Class program{

 static void Main(string[] args)

 {

 test t1 = new test();

 Console.ReadKey();

 }

 }

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 15

 Parametrised Constructor:
 A constructor which has parameters is called parameterized
constructor. It is used to provide different values to distinct objects

class test
 {
 public int a, b;
 public test(int x, int y)
 {
 a = x;
 b = y;
 }
 }

 class Program
 {
 static void Main(string[] args)
 {
 test t1 = new test(4, 5);
 Console.WriteLine(t1.a);
 Console.WriteLine(t1.b);
 Console.ReadKey();
 }
 }

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 16

MCQ

1) Generally, the constructor is
used for …….

Initialization of members
object

2) The constructor with zero
arguments is known as ……

Default constructor

3) Can the class have multiple
constructors?

Yes

4) Constructor has same name as
class name (T/F)?

True

Topic: Explain Operator Overloading

Ans:

 Operator overloading gives the ability to use the same operator to do

various operations

 It provides additional capabilities to C# operators when they are applied to

user-defined data types.

 Only the predefined set of C# operators can be overloaded.

 An operator can be overloaded by defining a function to it.

 The function of the operator is declared by using the operator keyword.

Syntax:

Access specifier className operator Operator_symbol (parameters)

{

 // Code

}

Overloading Unary Operator

https://www.geeksforgeeks.org/introduction-to-c-sharp/
https://www.geeksforgeeks.org/introduction-to-c-sharp/

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 17

class test

 {

 public int x;

 public test(int a)

 {

 x = a;

 }

 public static test operator -(test t1)

 {

 t1.x = -t1.x;

 return t1;

 }

 public void display()

 {

 Console.WriteLine("Number 1 is" + x);

 }

 }

 class Program

 {

 static void Main(string[] args)

 {

 test t1 = new test(2);

 t1 = -t1;

 t1.display();

 Console.ReadKey();

 }

 }

}

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 18

Topic: What is interface?

Ans:

 Interface in C# is a blueprint of a class.

 It cannot have method body and cannot be instantiated.

 It is used to achieve multiple inheritance which can't be achieved by class.

 Interface does not implement any method itself. The methods of the

interface are implemented by the class that inherits the interface

interface A
 {
 void display();
 }
 class test : A
 {
 public void display()
 {
 Console.WriteLine("Hello");
 }
 }
 class test1:A
 {
 public void display()
 {
 Console.WriteLine("Hi");
 }
 }

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 19

Topic: How to achieve multiple inheritance in c# using interface?

Ans:

 In Multiple inheritance, one class can have more than one parent or base

class and inherit features from all its parent classes.

class Program
 {
 static void Main(string[] args)
 {
 test t1=new test();
 t1.display();
 test1 t=new test1();
 t.display();
 Console.ReadKey();
 }
 }
}

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 20

 But, C# does not support multiple inheritance directly, so interface is used

to achieve multiple inheritance in C#

interface vehicle
 {
 void display();
 }
 interface car
 {
 void display1();
 }
 class mercides :test,test1
 {
 public void display()
 {
 Console.WriteLine("Hello");
 }
 public void display1()
 {
 Console.WriteLine("Hi");
 }
 }
 class Program
 {
 static void Main(string[] args)
 {
 Mercides m=new mercides();
 m.display();
 m.display1();
 Console.ReadKey();

 }
 }
}

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 21

Topic: What is property? Explain in detail

Ans:

 Property in C# is a member of a class that provides a flexible mechanism for
classes to access private fields.

 Internally, C# properties are special methods called accessors.
 A C# property have two accessors, get property accessor and set property
accessor.

 A get accessor returns a property value, and a set accessor assigns a new
value.

 The value keyword represents the value of a property.
 Properties can be read-write, read-only, or write-only.
 The read-write property implements both, a get and a set accessor.
 A write-only property implements a set accessor, but no get accessor.
 A read-only property implements a get accessor, but no set accessor.

class test
 {
 private int roll;
 public int rollnumber
 {
 get
 {
 return roll;
 }
 set
 {
 roll = value;
 }
 }
 }

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 22

Topic: What is indexer? Explain in detail

 C# indexers are usually known as smart arrays.

 A C# indexer is a class property that allows you to access a member

variable of a class or struct using the features of an array.

 In C#, indexers are created using this keyword. Indexers in C# are

applicable on both classes and structs.

 Defining an indexer allows you to create a class like that can allows its

items to be accessed an array. Instances of that class can be accessed using

the [] array access operator.

class Program
 {
 static void Main(string[] args)
 {
 test t1=new test();
 t1.rollnumber=1;
 Console.WriteLine(t1.rollnumber);
 Console.ReadKey();
 }
 }

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 23

Syntax:

<modifier> <returntype> this [argument list]
{
 get
 {

 }
 set
 {

 }
}
<modifier> : private, public, protected
<return type> : can be any valid c# data types
this: keyword to indicate the object of current class
[argument-list]: Specifies the parameters of the indexer

Features:

 Indexers are always created with this keyword.

 Parameterized property are called indexer.

 Indexers are implemented through get and set accessors for the [] operator.

 ref and out parameter modifiers are not permitted in indexer.

 The formal parameter list of an indexer corresponds to that of a method and

at least one parameter should be specified.

 Indexer is an instance member so can't be static but property can be static.

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 24

 Indexers are used on group of elements.

 Indexer is identified by its signature where as a property is identified its

name.

 Indexers are accessed using indexes whereas properties are accessed by

names.

 Indexer can be overloaded.

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 25

class student

 {

 public string[] names = new string[5];

 public string this[int i]

 {

 get

 {

 return names[i];

 }

 set

 {

 names[i] = value;

 }

 }

 }

 class Program

 {

 static void Main(string[] args)

 {

 student s1 = new student();

 s1[0] = "xyz";

 s1[1] = "xxx";

 s1[2] = "abc";

 s1[3] = "aaa";

 s1[4] = "bbb";

 for (int i = 0; i < 5; i++)

 {

 Console.WriteLine(s1[i]);

 }

 Console.ReadKey();

 }

 }

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 26

Topic: What is Delegate? List out types of delegates and explain in detail

Ans:

 Delegates provides the way which tells which method is to be called when

an event is triggered.

 Example: If you click on button on form, the program would call a specific

method. In simple, it is a type that represents reference to methods with

particular parameters list and return type and then calls the method in a

program for execution when it is needed.

 Delegate type can be declared using delegate keyword. Once a delegate is

declared, delegate object will refer and call those methods whose return

type and parameter list matches with delegate declaration.

Indexer Property
1) Indexer cannot be static 1) Property ca be static

2) Indexer are accessed using index 2) Property are accessed by its names

3) Indexer can be overloaded 3) Property can not be overloaded

4) The name of indexer is this
keyword

4) The name of property can be any
name

5) Indexers are parametrized 5) Properties are not parameterized.

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 27

Syntax:

[modifier] delegate [return type] [delegatename] ([parameterlist]);

Note: A delegate will call only a method which agrees with its signature and

return type.

Types of Delegate:

1) Single Cast Delegate

2) Multi Cast Delegate

1) Single Cast Delegate:

 It is a kind of delegate that can refer to a single method at one time.

 Single Cast delegate refers to the single method with matching

signature.

 Single Cast delegate derives from System.Delegate Class.

Example:

public delegate void mydele(int x,int y);
 class A
 {
 public void add(int x, int y)
 {
 Console.WriteLine("Sum is" + (x + y));
 }
 public void sub(int x, int y)
 {
 Console.WriteLine("Sub is"+(x - y));
 }
 }

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 28

2) Multi Cast Delegate:
 It is a kind of delegate that can refer to multiple methods at one time
that have same signature.

 Mulitcast delegates are also known as Combinable Delegates.

Example:

 class Program
 {
 static void Main(string[] args)
 {
 A a1 = new A();
 mydele d1 = new mydele(a1.add);
 d1(5, 5);
 mydele d2 = new mydele(a1.sub);
 d2(2, 1);
 Console.ReadKey();
 }
 }

public delegate void mydele(int x,int y);
 class A
 {
 public void add(int x, int y)
 {
 Console.WriteLine("Sum is" + (x + y));
 }
 public void sub(int x, int y)
 {
 Console.WriteLine("Sub is"+(x - y));
 }
 }

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 29

Event Delegate:

 The applications and windows communicate with predefined messages

 These messages contain various pieces of information to determine both

windows and applications actions

 .Net considers this messages as events.

Example:

 Button click is one type of event.

Syntax:

Modifier static event deleagtename eventname;

class Program
 {
 static void Main(string[] args)
 {
 A a1 = new A();
 mydele d1 = new mydele(a1.add);
 mydele d2 = new mydele(a1.sub);
 mydele d3 = d1 + d2;
 d3(5, 6);

 Console.ReadKey();
 }

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 30

Defining the event is a 2 step process.

1) You need to define a delegate type that will hold the list of methods to be

called when the event is fired.

2) Next, you declare an event using event keyword

Example:

public delegate void mydelegate();

 class Program

 {

 public static event mydelegate e1;

 static void Main(string[] args)

 {

 e1 += new mydelegate(Hello);

 e1 += new mydelegate(Hi);

 e1.Invoke();

 }

static void Hello()
 {
 Console.WriteLine("Hello");
 }
 static void Hi()
 {
 Console.WriteLine("Hi");
 }

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 31

Topic: What is Pointer in c#? Why it is known as unsafe concept?

Ans:

 Pointer is the variable which is used to store the address of another

variable.

 When we are using pointers directly in C#, it will generate an error because

for c#, pointer is unsafe concept so including pointer in program directly

will execute the program in unsafe mode.

 In C#, unsafe is a keyword to denote a section of code that is not managed

by common language runtime

 In c#, you can define the pointers in unsafe context,

 To execute the programs in unsafe mode.

o Go to view tab

o Select Solution Explorer
o Expand Solution Explorer- Double click on property button

o Go to build tab

o Select the option of “Allow Unsafe Code” and mark it as check

class Program
 {
 static unsafe void Main(string[] args)
 {
 int a = 10;
 int* p;
 p = &a;
 Console.WriteLine("Address is” + (int)(p));
 Console.WriteLine(“Value is” +*p);
 Console.ReadKey();
 }
 }

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 32

Topic: Write a short note on pointer to array

Ans:

 In C#, an array name and a pointer to a data type are not the same variable

type.

 For example, int *p and int[] p , are not same type. You can increment the

pointer variable p because it is not fixed in memory but an array address is

fixed in memory, and you can't increment that.

 Therefore, if you need to access an array data using a pointer variable, as we

traditionally do in C, or C++, you need to fix the pointer using the fixed

keyword.

Example:

class Program

 {

 static unsafe void Main(string[] args)

 {

 int[] a = new int[3] { 10, 11, 12 };

 fixed(int *p=a)

 for (int i = 0; i < 3; i++)

 {

 Console.WriteLine((int)(p + i));

 Console.WriteLine(*(p + i));

 }

 Console.ReadKey();

 }

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 33

Topic: Write a short note on pointer to structure

Ans:

 Unlike C/C++, Structures in C# can have members that are methods, fields,

indexers, operator, methods, properties or evetns.

 Pointers are variables that store the addresses of the same type of variable

i.e. an int pointer can store an address of an integer, a char pointer can store

an address of a char

 Members of the structure can be accessed in 2 ways:

o Using arrow operator:

 If the members of structure are public then you can directly

access them using arrow operator (->)

If they are private then you can define methods for accessing

the values and use pointers to access the methods.

The arrow operator can be used to access structure variables as

well as methods.

Syntax:

Pointername->membername;

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 34

Example:

struct student

 {

 public int roll;

 public int marks;

 public student(int r, int m)

 {

 roll = r;

 marks = m;

 }

 };

class Program

 {

 static unsafe void Main(string[] args)

 {

 student s1 = new student(1, 20);

 student s2 = new student(2, 30);

 student* p1 = &s1;

 student* p2 = &s2;

 Console.WriteLine("Student1 Data");

 Console.WriteLine("Roll no is" + p1->roll);

 Console.WriteLine("Marks is" + p1->marks);

 Console.WriteLine("Student 2 Data");

 Console.WriteLine("Roll no is" + p2->roll);

 Console.WriteLine("Marks is" + p2->marks);

Console.ReadKey();

 }

 }

