SHREE H. N. SHUKLA GROUP OF COLLEGES

(AffiliatedtoSaurashtraUniversity&GujaratTechnologicalUniversity)

RO O OR VOB O OROFS OR R OB SO ORE

OFEORO RS ORSOF SO O OFSOFOESFIOROF SORSORIOROE SO

I'Hos

HOOSHORIOSIOMOF O BAOFIO SIS HOOS (O5H0)

SO0 TOSHONHOY:

Lt. Shree Ch|manbha| Shukla

BCA/ BSCIT SEM - 4

Programmino

(

ShreeH.N.ShuklaCollegeCampus,
StreetNo.2,VaishaliNagar,
Nr.AmrapaliRailwayUnder
Bridge,

RaiyaRoad,Rajkot.

K Ph.(0281)2440478,2472590

J

£GES

0[1

= mb

=

(>

':o
'f”’//(u na\\\\“

With Java

rShreeH.N.ShuklaCollegeCampus,
StreetNo.2,VaishaliNagar,
Nr.AmrapaliRailwayUnder Bridge,

RaiyaRoad,Rajkot.

kPh.(0281)2471645

~

J

[Website:https://hnsgroupofcolleges.org/

https://hnsgroupofcolleges.org/

Ch Topic
No.
1 History,

Introduction
and Language
Basics

classes and
objects

CS-07: ADVANCE C AND DATA STRUCUTRE

Details Mar
ks

e History and features of java

e Java editions

e JDK,JVM,JRE

e JDKTools

e Compiling and executing basic java program
e Java IDE(netbeans and eclipse)

e Datatypes

e Java Tokens

e Operators

e Type casting
e Decision Statements

e Looping Statements

e Jumping Statements

e Array

e Comand Line Argument Array

e OOP Concept
(class,objects,encapsulation,inheritance,polym
orphism)

e Creating and using class with members

e Constructor

e Finalize() method

e Static and non static members

e Overloading(constructor & method)

e VarArgs

Q-1 Write a short note on history of java

Ans

X/
°e

Java is an object oriented programming language developed by James Gosling in
early 1990s.
Initially this language was intended to develop digital devices like setup box,

/7
A X4

television etc. Originally C++ was considered to be used in this project but the idea
was rejected for several reasons (like c++ requires more memory, supports pointers
etc)
*+ James Gosling endeavored to alter and expand C++. This project was named as
“Green talk” by James gosling and his team and later became to be known as “Oak”.
* The name Oak was used by Gosling after an Oak tree but they had to later rename it

n «

as "Java" “s Oak was already a trademark by Oak Technologies.

X/
X4

L)

The name Java originates from espresso bean.

e

*

Java was created on the principles like portable, robust, platform independent, high

performance, multithread etc.

% Currently, java is used in internet programming, mobile devices, games, business
solutions etc.

¢ Many different versions of java came like: JdkBeta, JDK 1.0, JDK 1.1, JSE 1.3, JSE 1.4

etc.

Q-2 Explain features of Java

Ans:
Features:
1) Simple:
e Java inherits the C/C++ syntax and many of the object oriented features of C++,
e Java supports OOP and does not support pointer which makes it simpler.
2) Security:
e Javaisbest known forits security. With Java, we can develop virus-free systems.
Java is secured because:
o No explicit pointer
o Java Programs run inside a virtual machine sandbox
3) Portable:

e Javais portable because it facilitates you to carry the Java bytecode to any
platform. It doesn't require any implementation. It can be implemented in any
0S.

4)

5)

6)

7)

8)

9)

Object-Oriented:

e Object-oriented programming (OOPs) is a methodology that simplifies software
development and maintenance by providing some rules.
e Basic concepts of OOPs are:

1) Object
2) Class
3) Inheritance
4) Polymorphism
5) Abstraction
6) Encapsulation
Robust (Healthy, Strong):

e |t uses strong memory management.

e There is a lack of pointers that avoids security problems.

e Java provides automatic garbage collection which runs on the Java Virtual Machine

to get rid of objects which are not being used by a Java application anymore.

Multi-threaded:

e Athreadis like a separate program, executing concurrently. We can write Java
programs that deal with many tasks at once by defining multiple threads. The
main advantage of multi-threading is that it doesn't occupy memory for each
thread. It shares a common memory area.

Architecture-neutral:

e Java is architecture neutral because there are no implementation dependent
features, for example, the size of primitive types is fixed.

e InCprogramming, int data type occupies 2 bytes of memory for 32-bit architecture
and 4 bytes of memory for 64-bit architecture. However, it occupies 4 bytes of
memory for both 32 and 64-bit architectures in Java.

Interpreted:

e Usually a computer language is either compiled or interpreted. Java combines
these approaches thus making java a two-stage system.

e Java compiler translates source code into byte code instructions. Byte codes are
not machine instructions and so java interpreter generates machine code that can
be directly executed by the machine that is running the java program.

High Performance: .

e Java does not support pointer which increases the performance. It is portable,
secure.

https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/inheritance-in-java
https://www.javatpoint.com/runtime-polymorphism-in-java
https://www.javatpoint.com/abstract-class-in-java
https://www.javatpoint.com/encapsulation

10) Dynamic:

e Javais a dynamic language. It supports the dynamic loading of classes. It means
classes are loaded on demand

Sr No. Question Answer
1 Which type of Neutral

‘architecture java supports?

2 Robust means....... Strong/healthy
3 Javais ...eeeees programming language ooP
4 Class and object are the concepts of oop

Q-2 Explain editions of Java

Ans:

Three Java Editions

\ E g

Jove Texchnology
«

* Java Platform, Standard Edition (Java SE)
* Java Platform, Enterprise Edition (Java EE)
¢ Java Platform, Micro Edition (Java ME)

1) Java Platform, Micro Edition (J2ME):

e JEME stands for Java 2 platform Micro Edition

e Java ME, is designed for mobile phones (especially feature phones) and set-top
boxes.

e Java ME was designed by Sun Microsystems

2) Java Platform, Enterprise Edition (J2EE):

+»* J2EE stands for Java 2 Platform, Enterprise Edition. J2EE is the standard platform for
developing applications in the enterprise and is designed for enterprise applications
that run on servers.

3) Java Platform, Standard Edition (J2SE):

¢ It has concepts for developing software for Desktop based (standalone) CUI
(command user interface) and GUI (graphical user interface) applications, applets.

Sr No. Question Answer

1 J2ME stands for Java 2 platform Micro Edition

2 J2EE stands for Java 2 platform Enterprise Edition
3 J2SE stands for Java 2 Platform Standard Edition

Q-3 Write a short note on JVM, JRE and JDK
Ans:
JVM:

¢ JVM stands for Java Virtual Machine.
JVM loads, verifies and runs the java byte code.

L)

K/ 7/
L X X4

JVM is the interpreter or the core of the java programing language because it runs java
programming

K/
°e

JVM helps in executing java bytecode.’

3

S

Java compiler compiles source code into class file(byte code). Byte code is not machine
code. So JVM (Java Interpreter) converts byte code into machine code and execute

&

=" Java Virtual Machine

Java

Java Source File

=

Java Virtual Machine

s
& O
Java Compiler

=

Operating System

Java Class File

Interpreter

www.educba.com

JRE:

¢ The Java Runtime Environment (JRE), also known as Java Runtime, is part of the Java
Development Kit (JDK), a set of programming tools for developing Java applications.
It is a software that java programs require to run correctly.

JRE consists of JVM, core classes and supporting files.

R/

L X4
R/
L X4

JDK:

7
A X4

JDK stands for Java Development Kit.
R/

¢ It is a collection of tools/components which are used for developing and running the java
program.

Components:-

1)
2)
3)
4)
5)
6)
7)

Applet viewer :- it used to view the java applets without using the browser.
Javac :- the java compiler translate source code to byte code.

Java :- java interpreter runs the applets and application by reading the byte code.
Javadoc: - it creates html format documentation from java source code.

Javah :- it produce header file.

Javap :- it enables to convert byte code into program description.

Jdb :- it is java debugger used for find errors from the programs.

Sr No. Question Answer

1 JVM stands for Java Virtual Machine

2 JRE stands for Java Runtime Environment

3 JDK stands for Java Development Kit

4 What is javac? Compiler of java
5 Which component of jdk produce header javah

file?
6 Which component of jdk is used to java

execute or run the application?

7 Which component of jdk is used to find the jdb
errors from the program

Q-4 Write a short note on compiling and executing basic java program.

Ans:
class hello
{
public static void main(String args[])
{
System.out.printin(“Hello”);
}
}
Steps:

Step 1: Save the program with .java extension (Note: Name of the program must be same
as the name of the class)

Step 2: Open the command prompt and compile your program

javac hello.java (where hello.java is the name of your file)
Step 3: Execute/run the program

java hello

Output: hello

Sr No. Question Answer

1 The program of java should have the same Program name
name as

2 Java program should be saved with .java
....... extension

Q-5 Write a short note on java IDE
Ans:

IDE stands for Integrated Development Environment

Netbeans:

e This IDE for java can be used for developing applications in other languages like PHP, C,
C++

e Netbeans uses javac compiler present in JDK installed on client machine for compiling of
java source code.

e Developing enterprise applications in java is easy with netbeans as compared to eclipse

e [t has built-in drivers for mysql and oracle

e Netbeans takes more time to load IDE compared with eclipse.

e Netbeans can be more beginner friendly than eclipse. It has simple user interface

Eclipse:

e |t is open source java development platform for java, C, C++, PHP, Python, javascript etc

e Eclipse uses other compiler than javac compiler, thereby allows running broken code with
unresolved errors and display more warning and errors as compared to javac compiler

e To develop a enterprise applications, Eclipse IDE requires to install enterprise edition
tools.

e |t has different windows for designing or developing various applications,

e It has JDBC driver support but needs to configure them before working with database
e Eclipse IDE takes less time opening itself compared to Netbeans IDE.
e Eclipse is not more beginner friendly compared to Netbeans.

Sr No. Question Answer

1 IDE stands for Integrated Development
Environment

2 Which editors or platform are provided by NetBeans and Eclipse
java?

Q-6 Write a short note on data types in java

Ans:

7

+ Data type means the type of data.

integer floating point

non - numeric

4 NP
character boolean

Non Primitive

arrays

user defined
clases

Integer

+«+ Java provides four integer types: byte, short, int, long.
J

% All of these are signed, positive and negative values.

Type Size/bits Range

Byte 8 -128to 127

Short| 16 -32,768 to 32,767

Int 32 -2,147,483,648 to 2,147,483,647

Long 64 -9,223,372,036,854,775,808
9,223,372,036,854,775,807

Floating-Point Types

¢ Floating-Point numbers, also known as real numbers, are used when evaluating

expressions that require fractional precision.
+»» For example, calculations such as square root, or transcendental such as sine and cosine,

result in a value whose precision requires a floating-point type.
¢ There are two kinds of floating-point types, float and double, which represent single and

double-precision numbers, respectively.

Type Size/bytes Range
Float 32 1.4e — 045 to 3.4e + 038
Double 64 4.9e-324to 1.8e + 308

Character
% The data type used to store characters is char.

Type Size/bytes Range

Char 16 0to 65,536

Boolean:
¢+ Java has primitive type, called boolean, for logical values.
¢+ It can have only one of two possible values, true or false.

Type Size/bytes Range

Boolean 1 True/False , Yes/No, 0/1
Sr No. Question Answer
1 short requires bits 16 bits(2 byte)

2 int requires bits 32 bits (4 bytes)

3 Boolean data type can only the value true, false
either OF wvvennens

4 char requires 16 bits (2 bytes)

Q-7 what is ADT?

Ans:

X/
X4

L)

ADT stands for Abstract Data type

It is a model that defines operations and behaviours for a data type without
specifying how these are implemented or how data is stored.

s The definition of ADT only mentions what operations are to be performed but not
how these operations will be implemented. It does not specify how data will be
organized in memory and what algorithms will be used for implementing the
operations.

It is called “abstract” because it provides an implementation-independent view.
Examples of ADT are: List, Stack, Queue

ADT are a way of encapsulating data and operations on that data into a single unit.

X/
X4

L)

X/
X4

L)

R/ X/
RX AR X g

Q-8 Write a short note on java tokens

Ans:

0,

% Token is the smallest individual unit of a program.
¢+ Tokens are the various Java program elements which are identified by the compiler
*» Tokens supported in Java include keywords, operators, identifiers, literals, separators,

comments, white space

X/

1)

Java Tokens

—»I Keywords

—p| Literals

— Operators

| Identifiers

$——p Separators

— Comments

White space

Keywords: Keywords are the reserved or predefined words whose meaning cannot be
changed. Examples of keywords are: assert, strictfp,enum etc.
Literals: This are the constant values which can not be modified.
a. Integer Literal : 20, 30
b. Floating point literal: 2.5, 6.1
c. String literal : “hello”
Operators: The symbol which is used to perform various mathematical operations.
Examples: +, -, *, /
Identifiers: Identifiers means naming of variable, function or class
Separators: It separates different part of programs such as commas, semicolon,

parenthesis(), braces { }, brackets []

6) Comments: Comments are the information or code that will not be displayed in the
output. There are 2 types of comments:
a. Line Oriented (//): It is used to give single line comments
Example: // this is single line comment
b. Block Oriented (/*....... */): It is used to give multi line comments
Example: /* This is multiline comment
statementl
statement */

7) Whitespace: Whitespace characters are the characters that are used to give space, tab

or new line
Sr No. Question Answer
1 The smallest individual unit of programis Token
known as
2 are the reserved words keyword
3 Literals means the value

Q-9 Write a short note on Operators in java
Ans:

¢+ An operator is a symbol that tells the computer to perform certain mathematical or logical
manipulations.

+» Following are the types of operators in java:

1) Arithmetic

2) Relational

3) Logical

4) Assignment

5) Conditional

6) Instance Of

7) Sizeof

8) Bitwise

9) Increment/Decrement

1) Arithmetic Operators:

Addition of two numbers

Subtraction of two numbers

Multiplication of two numbers
Division of two numbers
(Modulus Operator)Divides

two numbers and retums the
remainder

Example:

import java.util.*;
class arithmetic

{

public static void main(String args(])

{

int a,b;

Scanner sc=new Scanner(System.in);
System.out.printin(“Enter a”);
a=sc.nextint();
System.out.printin(“Enter b”);
b=sc.nextInt();
System.out.printin(“Addition=" +(a+b));
System.out.printin(“Sub is” +(a-b));
System.out.printin(“Mul is” +(a*b));
System.out.printIn(“Div is”+(a/b));
System.out.printin(“Modulas is” +(a%b));
}

}

2) Relational Operators:

Operators

Operations

Equal to

Not Equal to

Greater than

Greater than equal to

Less than

Less than equal to

Example:

import java.util.*;
class arithmetic

{

public static void main(String args[])

{

int a,b;

Scanner sc=new Scanner(System.in);

System.out.printin(“Enter a”);

a=sc.nextInt();

System.out.printin(“Enter b”);

b=sc.nextInt();

System.out.printin(“> than” +(a>b));
System.out.printin(“< than” +(a<b));
System.out.printin(“>=is” +(a>=b));
System.out.printin(“<="+(a<=b));

System.out.printin(“==is” +(a==b));

System.out.printin(“!=is” +(a!=b));
}
}

3) Logical Operators:

Logical Operator Java Operator
AND &&

OR ||

NOT I

Example:

import java.util.*;
class arithmetic
{
public static void main(String args[])
{
int a,b,c;
Scanner sc=new Scanner(System.in);
System.out.printin(“Enter a”);
a=sc.nextInt();
System.out.printin(“Enter b”);
b=sc.nextInt();
System.out.printin(“Enter c”);
c=sc.nextInt();
if(a>b && a>c)
System.out.printin(“a is max”);
else if(b>c && b>a)
System.out.printIn(“b is max”);
else

System.out.printin(“c is max”);

4) Assignment Operators:
s Assignment operator is indicated by =

Case 1: (Copy the value to the variable)
a=5
In the above case, 5 is assigned the value to a

Case 2: (Copy the variable value to another variable)

a=4,b=5
a=b
In the above case, the value of b is assigned to a

Case 3: (Copy the expression to the variable)
a=5,b=4
c=a+b
In the above case, the value of a+b is assigned to c.

Note: Assignment operator is also known as shorthand operator because it represent
shorthand ways to represent the variable.

Example:

a=a+5 a+=5
a=a-4 a-=4
a=a*2 a*=2

5) Conditional Operators:
¢ Conditional operator is indicated by ?
¢ Itis also known as ternary operator because it requires 3 parts:

Syntax:
Condition? True part: false part

Example:
(a>b) ? “ais max” : “b is max”

6) Instance of Operator:
+» Itis used to test whether the object is an instance of the specified type
¢ Itis also known as type comparison operator because it compares instance with the
class type.

Syntax:
objectname=classname
Example:
test tl=new test();

The above example checks whether the t1 is object of the class test or not

7) size of Operator:
¢ Itis used to find the size of the variable or the type.

Syntax:
Datatype (SIZE)

Example:
Float(SIZE);

8) Bitwise Operator:

++ Bitwise operator operates on the bits(0 and 1)

¢+ Following are the types of bitwise operators.
o Bitwise AND (&)
o Bitwise OR(])
o Bitwise Exclusive OR(?)
o Bitwise Complement (~)
o Bitwise Shift operators

Truth Table of Bitwise AND, Bitwise OR, Bitwise Exclusive OR,

a b a&b alb a’b
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

1) Bitwise AND (&):
¢ It is the binary operator which returns true only if both the bits are 1 or else it
returns 0.

Example:
int x=8, y=9
The binary value of 8 is 1000 and binary value of 9 is 1001.
So x & y will give 8 (1000)

2) Bitwise OR(]):
< It is the binary operator which returns true if any of both the bits are 1 or else it

returns 0.
X ~X
Example:
int x=8, 0 1 y=9
The 1 0 binary value of 8 is 1000 and binary value
of 9is 1001.
So x | y will give 9 (1001)

3) Bitwise Exclusive OR (0):
+* Itis the binary operator and it returns 0 if both the bits are 1
Example:
int x=8, y=9
The binary value of 8 is 1000 and binary value of 9 is 1001.
So x M y will give 1 (0001)

4) Bitwise Complement (~):
+»+ Itis the unary operator and it returns inverse or opposite of the bit

5) Bitwise Shift operators

+»+ Shift operators are used to shift the bits of a number left or right, thereby
multiplying or dividing number by 2

Example: a=256, b=4
a>>4 gives a/2* 256/2% =256/16=16

a<<4 gives a*2* 256*24 =256 * 16= 4096

6) Increment/Decrement Operator:
+» This operator is used to increment or decrement the value by 1.
+» There are 2 types of increment and decrement:
o pre-increment (++a)
o Post-increment(a++)
o pre-decrement(--a)
o post-decrement(a--)

Pre-increment Post-Increment
1) In this, value is increment first and 1) In this, value is first assigned to the
then it is assigned to the variable variable and then it is incremented.
2) ++a 2) a++
Example:

class inc

{

public static void main(String args|[])

{

int i=0,j=0;
System.out.printin(i++); //post increment
System.out.printin(++j); // pre-increment

2) In this, value is decremented first and | 3) In this, value is first assigned to the
then it is assigned to the variable variable and then it is decremented.
4) --a 2) a--
Example:

class dec

{

public static void main(String args[])

{

int i=0,j=0;
System.out.printin(i- -); //post increment
System.out.printin(- -j); // pre-increment

Sr No. Question

1 Assignment Operator is also known as

2 Conditional Operator is also known as

3 Which operator is used to test whether the
object is an instance of the specified type?

4 Relational operator is also known as

........ operator

Q-10 Write a short note on Decision Control structures

Ans:

B

2

if

if-else
Nested if
else-if ladder
switch case

\ 4
\ 4
¢
\ 4

1) if:

Answer
Shorthand Operator
Ternary Operator

instance of

Comparison

% Following are the types of decision control structures:

Description: This decision control structure only deals with the true part of the condition

and it works only with one condition.
Syntax:

if(condition)

‘ True part

statements;

Example:

import java.util.*;
class dc

{

public static void main(String args[])

{
int a,b;
Scanner sc=new Scanner(System.in);
System.out.printin(“Enter a”);
a=sc.nextInt();
System.out.printin(“Enter b”);
b=sc.nextInt();
if(a==b)

System.out.printin(“Equal”);

2) if-else:

Description: This decision control structure deals with the true and false part of the
condition and it works only with one condition.

If the condition is true then statements inside if are executed and if the condition is false
then statements inside false are executed.

Syntax:

if(condition)

{ True part
statementl;

}

else

{ False part

statement 2;

Example:

import java.util.*;
class dc
{
public static void main(String args[])
{
int a,b;
Scanner sc=new Scanner(System.in);
System.out.printin(“Enter a”);
a=sc.nextint();
System.out.printin(“Enter b”);
b=sc.nextInt();
if(a==b)
System.out.printin(“Equal”);
else
System.out,printIn(“Not Equal”);

3) Nested if:
Description:
+* Nested if means one if inside another if. It is used when you have more than 1

condition.
** In Nested if, there are two if-else, one is inner if-else and other is outer if-else

Syntax:
if(condition1)
{
if(condition2)
{
Statementl;
} Inner if-else
@ else
< {
“ Statement2;
o }
£)
o
else
{

Statement 3;

}

Example:

import java.util.*;
class dc

{

public static void main(String args(])

{
int a,b,c;
Scanner sc=new Scanner(System.in);
System.out.printin(“Enter a”);
a=sc.nextlint();
System.out.printin(“Enter b");
b=sc.nextInt();
System.out.printIn(“Enter c”);
c=sc.nextint();

if(a>b)
{
if(a>c)
System.out.printin(“a is max”);
else
System.out,printIn(“c is max”);
}
else
{
if(b>c)
System.out.printin(“b is max”);
else
System.out.printin(“c is max”);
}

4) else-if ladder:
Description:
» If-elseif-elseif-elseif....else is known as else-if ladder.

¢ It is used when you have more than 2 conditions.
¢ In else-if ladder, when all the conditions are false then else part is executed

Syntax:
if(condition1)
{

statementl;
}
elseif(condition2)
{

statement2;
}
elseif(condition3)
{

statement3;
}
else
{

statement4;
}

Example:

import java.util.*;
class dc

{

public static void main(String args[])

{
int a,b,c;
Scanner sc=new Scanner(System.in);
System.out.printin(“Enter a”);
a=sc.nextint();
System.out.printin(“Enter b”);
b=sc.nextInt();
System.out.printIn(“Enter c”);
c=sc.nextInt();

if(a>b && a>c)

System.out.printin(“a is max”);
else if(b>c && b>a)

System.out.printIn(“b is max”);
else

System.out.printIn(“c is max”);

5) switch case:
Description:

switch case is used with multiple options.

In switch case, the value of the variable is passed which is compared with the different
cases, the case which matches the value is executed.

switch case have 4 keywords: switch, case, default, break

break keyword is used to exit from the particular case

When no case is executed, at that time default case is executed

K/ K/
R X X4

7/ K/ K/
A XS X X

Syntax:
switch(variable)
{
case 1: statementl;
break;
case 2: statement2;
break;
case 3: statement3;
break;
cased: statements;
break;
default: statement5;
break;

}

Example:

import java.util.*;

class dc

{

public static void main(String args[])

{
int a,b,ch;
Scanner sc=new Scanner(System.in);
System.out.printin(“Enter a”);
a=sc.nextint();
System.out.printin(“Enter b”);
b=sc.nextiInt();
System.out.printin(“Enter 1.add 2.sub 3.mul 4.div”);
ch=sc.nextlInt();
switch(ch)
{

case 1: System.out.printin(a+b);
break;

case 2: System.out.printin(a-b);
break;

case 3: System.out.printin(a*b);
break;

case 4: System.out.printin(a/b);
break;

default: System.out.printIn(“Invalid”);
break;

MCQ

Sr No. Question Answer

1 Which decision control structure is used Switch case
when we have multiple options?

2 In switch case, there are keywords 4

3 break in switch case is used to Exit from the particular case
4 if inside another if is known as Nested if

5 Which decision control sturucture only if

deals with true part

Q-11 what is loop? List out types of looping structures and explain in detail

Ans:

+* When same task is to be performed multiple times, then in that case loop is used.

®,

+* Following are the types of loop

Entry Controlled Loop Exit Controlled Loop

do-whileloop

for loop

while loop

1) Entry Controlled Loop:
** When the condition is checked in the starting of the loop, it is known as entry
controlled loop.
++» for loop and while loop are known as entry controlled loop.
* for loop:

Syntax:

for(initialization ;condition ;increment/decrement)

{
Statements;
}
Example:
class loop
{
public static void main(String args[])
{
inti;
for(i=1;i<=5;i++)
{
System.out.printin(i);
}
}
* while loop:
Syntax:

Initialization;
while(condition)

{

Statements;
Increment/decrement;

Example:

class loop

{
public static void main(String args[])
{
inti=1;
while(i<=5)
{
System.out.printin(i);
i++;

?

2) Exit Controlled Loop:

+* When the condition is checked in the end of the loop, it is known as exit controlled

loop.
» do-while loop is example of exit controlled loop

DS

DS

condition.

Syntax:

Initialization;
do
{
Statements;
Increment/decrement;
} while (condition);

Example:

* In do-while loop, statements are executed atleast once without checking the

class loop

{
public static void main(String args[])
{
inti=1;
do
{
System.out.printin(i);
i++;

?

twhile(i<=5);

*** Difference between while and do-while loop

while loop do-while loop
It is known as entry controlled loop It is known as exit controlled loop
If the condition is true then only The statements are executed atleast once
statements are executed and after that the condition is checked.
While loop does not have semicolon do-while loop have terminating semicolon
Sr No. Question Answer
1 Which 3 things all the loops have? initialization, condition,

increment/decrement
2 for loop is known as Entry controlled loop
3 do-while loop is known as Exit controlled loop
4 Which loop have terminating semi-colon do-while
at the end?

5 In which loop, without checking the do-while

condition the statements are executed at
least once?

Q-12 Write a short note on jumping statements in java
Ans:

¢ Jumping statements transfers the control from one location to another location.
+ Following are the types of jumping statements:

o break

o continue

1) break statement:
+» This statement is used to exit immediately from the loop or program

**» When the break statement is encountered in the program, the control directly
moves to the end of the program.

Syntax:
for(; ;)
{
if(condition)
break;
}
Example:
class jm
{
public static void main(String args[])
{
inti;
for(i=1;i<=5;i++)
{
if(i==3)
break;
System.out.printin(i);
}
}

2) continue statement:

+* This statement is used to continue back to the re-evaluation of the condition.
+* Using continue statement, certain statements are bypassed.

Syntax:

for(; ;)

{
if(condition)
continue;

Example:

class jm

{

public static void main(String args(])
{
inti;
for(i=1;i<=5;i++)
{
if(i==3)
continue;
System.out.printin(i);

*** Difference between break and continue statement

break continue
it is used to exit immediately from the It transfers the cursor back to the re-
loop evaluation of the condition

Using break, certain statements cannot be | Using continue statement, certain
bypassed statements can be bypassed.

3) return statement:

¢ This statement helps you to transfer the control from one method to the method
that is called

+»+ Since, the control jumps from one part of program to another, return is also a
jumping statement

Example:

class jm
{
public static int add(int a,int b)
{
int sum=a+b;
return sum;
}
public static void main(String args[])
{
int result= add(2,3);
System.out.printin(result);
}
}
Sr No. Question Answer
1 Which are the jumping statements in java? break,continue
2 In which type of jumping statement, continue
certain statements are bypassed
3 Which jumping statement is used to break
immediately exit from the loop or
program?

Q-13 Write a short note on typecasting
Ans:

+»» Typecasting means converting one data type into another datatype.
+»» Type casting is required when there are different data types in same statement.
¢ There are 2 types of type casting in java.

1) Widening type casting/Casting down

It is also known as implicit/ automatic type casting

In widening type casting, smaller data type is automatically converted in to large
data type.

Converting a lower data type into a higher one is called widening

No data loss occurs in widening type casting

X/ X/
L XA X4

/7 X/
LX AR X g

Example:
class type
{
public static void main(String args[])
{
int x=10;
float y=x;
System.out.printin(y);
}

Narrowing Type Casting

R R R - KoK

<

Widening Type Casting

Type Casting in Java

1) Narrowing type casting/Casting up

7/
X

L)

It is also known as Explicit/user type casting

In narrowing type casting, large data type is manually converted into small data type
Converting a large data type into a small one is called widening

In this type of typecasting, user manually coverts large data type into small data type
using typecast / cast operator

X/ X/ X/
R X IR X X4

+»* The main disadvantage of narrowing type casting is that: Data loss occurs as we
convert large data type into smaller data type.

Example:
class expl
{
public static void main(String args[])
{
double x=2.5;
int y=(int) x;
System.out.printin(y);
}
}
Sr No. Question Answer
1 Converting one data type into another Type casting
data type is known as
2 In which type of typecasting, smaller data Widening
type is automatically type casted to larger
data type?
3 Narrowing data type is known as Explicit type casting

Q-14 Write a short note on Arrays
Ans:
¢ Array is the collection of elements that have same data type. All the elements of array
share same array name
+ The main concept of array is index

Advantages:

o Code Optimization: It makes the code optimized, we can retrieve or sort the data
efficiently.

o Random access: We can get any data located at an index position.

Disadvantages:
Size Limit: We can store only the fixed size of elements in the array. It doesn't grow

its size at runtime.

1-d array

Multi-dimensional array Jagged array

1) 1-d array (One Dimensional Array):

++» The array having only one dimension (row size) is known as 1-d array.
Syntax:
Declaration of array:
datatype[] arrayname OR
datatype arrayname]] OR
Initialization of array:
datatype arrayname[]=new datatype[size];

Example:

import java.util.*;
class arr
{
public static void main(String args[])
{
inti;
int a[]=new int[5];
Scanner sc=new Scanner(System.in);
for(i=0;i<5;i++)
{
System.out.printin("Enter array elements");
ali]=sc.nextlnt();
}
for(i=0;i<5;i++)
{
System.out.printin("Array ele" +ali]);
}
}
}

2) 2-d array/Multi-Dimensional array/rectangular array
¢ In this array, the data is stored in row and column based index (also known as
matrix form)

o,

+ Total number of elements in 2-d array is row size * column size
Syntax:
Declaration of array:

datatypel[][] arrayname OR
datatype arrayname[][]
Initialization of array:

datatype arrayname[][]=new datatype[rowsize][columnsize];

Example:

import java.util.*;

matrix form?

class arr
{
public static void main(String args[])
{
int i,j;
int a[][]=new int[2][3];
Scanner sc=new Scanner(System.in);
for(i=0;i<2;i++)
{
for(j=0;j<3;j++)
{
System.out.printin("Enter array elements");
ali][j]=sc.nextInt();
}
}
for(i=0;i<2;i++)
{
for(j=0;j<3;j++)
{
System.out.printin("Array ele" +ali][j]);
}
}
}
}
Sr No. Question Answer
1 The collection of elements having same Array
data type and same array name is known
as
2 Which type of array have both row and Multi-dimensional array
column size?
3 In which type of array, data is stored in Multi-dimensional array

3) Jagged array:
+«+ Array of array is known as jagged array
+» The main feature of jagged array is that row size of jagged array is fixed but the
size of column will vary according to row
+» In jagged array, each row can have different columns

Example:
int a[][]=new int [2][];

a[0]=new int [3];
a[1l]=new int[2];

import java.util.*;
class arr
{
public static void main(String args[])
{
intij;
int a[][]=new int[2][];
Scanner sc=new Scanner(System.in);
for(i=0;i<2;i++)
{
for(j=0;j<ali].length;j++)
{
System.out.printIn("Enter array elements");
a[il[jl=sc.nextInt();
}
}
for(i=0;i<2;i++)
{
for(j=0;j<ali].length;j++)
{
System.out.printin("Array ele" +a[il[j]);
}
}
}
}

Q-14 Write a short note on Command Line arguments

Ans:

¢ The java command-line argument is an argument i.e. passed at the time of running

the java program.

+»» The arguments passed from the console can be received in the java program and it

can be used as an input.

Example 1:
class cmd1l
{
public static void main(String args[])
{
System.out.printin(args[0]);
}
}
Sr No. Question Answer
1 The arguments passed at runtime of Command line arguments
program is known as......
2 Passing of arguments in command line args[0]

arguments starts with

Unit 1 —Class Fundas (Part 2)

OOPs (Object-Oriented Programming System)

Abstraction
* Encapsulation

Polymorphism ' *
* '
L

l

Inheritance

Class l

Object

Q-1 Explain class and object
Ans:

% Aclass is a template from which objects are created. That is objects are instance of a
class

+* When you create a class, you are creating a new data-type. You can use this type to
declare objects of that type.

% An entity that has state and behaviour is known as an object e.g., chair, bike,

marker, pen, table, car, etc.

An object is an instance of a class.

Class defines structure and behaviour (data & code) that will be shared by a set of

objects

Each object contains its own copy of each variable defined by the class

A class is a group of objects which have common properties. It is a template or

blueprint from which objects are created. It is a logical entity. It can't be physical.

X/
X4

L)

K/
X4

)

7/
X4

L)

7/
X4

L)

An object has three characteristics:

Characteristics of Object

State

Represents the data
of an object.

Behavior

represents the behavior of an
object such as deposit,
withdraw, etc.

Identity

It is used internally by the JVM
to identify each object uniquely

o State: represents the data (value) of an object.

o Behavior: represents the behavior (functionality) of an object such as deposit,

withdraw, etc.

o Identity: An object identity is typically implemented via a unique ID. The value of the
ID is not visible to the external user. However, it is used internally by the JVM to

identify each object uniquely.

e For Example, Pen is an object. Its name is Reynolds; color is white, known as its state.
It is used to write, so writing is its behavior.

Syntax:

class ClassName

{

type instance variablel; }
type instance variable2;

}

Example:

type methodnamel (parameter list)

{
body of method;

}

type methodname2 (parameter list)

{
body of method;

}

class student

{

{

}

{

int a=10;
int b=20;
public void add()

System.out.printin(a+b);

public static void main(String args[])

student s=new student();
s.add();

Sr No. Question Answer

1 Which are the features or characteristics state,behavior,identity
of object?
2 A ... is a template from which objects class

are created

3 and are the main concept of class, object

Q-2 Explain Encapsulation
Ans:

Encapsulation is one of the fundamental concept of OOP

Encapsulation in Java is a mechanism of wrapping the data (variables) and code acting
on the data (methods) together as a single unit.

*» In encapsulation, the variables of a class will be hidden from other classes, and can
be accessed only through the methods of their current class. Therefore, it is also
known as data hiding.

To achieve encapsulation in Java:
¢ Declare the variables of a class as private.
¢ Provide public setter and getter methods to modify and view the variables values.
¢+ To achieve encapsulation in Java :
Advantages of Encapsulation:
% The fields of a class can be made read-only or write-only.

% A class can have total control over what is stored in its fields.

Example:

class test
{
private int roll;
public void get(int r)
{
roll=r;
}
public void set()

{

System.out.printin(roll);

class enc
{
public static void main(String args[])
{
test t=new test();
t.get(1);
t.set();

Sr No.

Question

Wrapping of variables and methods in
single unit is known as......

The main concept of encapsulation is

To achieve encapsulation, the variables
have to be declared

To access the private variable of the class
which methods are used?

Answer

Encapsulation

Data Hiding

Private

get() and set()

Q-3 Write a short note on Inheritance
Ans:

¢ Inheritance in Java is a mechanism in which one object acquires all the properties and
behaviours of a parent object. It is an important part of OOPs (Object Oriented
programming system).

Terms used in inheritance:
1) Class: A class is a group of objects which have common properties. It is a template or

blueprint from which objects are created.

2) Sub Class/Child Class: Subclass is a class which inherits the other class. It is also called

a derived class, extended class, or child class.

3) Super Class/Parent Class: Superclass is the class from where a subclass inherits the

features. It is also called a base class or a parent class
Advantage of Inheritance:

Reusability: As the name specifies, reusability is a mechanism which facilitates you to
reuse the fields and methods of the existing class when you create a new class. You can use

the same fields and methods already defined in the previous class.

Syntax:
class subclass extends superclass

{
//methods and fields

The extends keyword indicates that you are making a new class that derives from an

existing class.

Types of Inheritance:

https://www.javatpoint.com/java-oops-concepts

ClassA

ClassA

ClassA

N\

ClassB

ClassB

ClassC

1) Single

|

ClassC

2) Multilevel

3) Hierarchical

ClassC

4) Multiple

ClassB

ClassC

e

ClassD

5) Hybrid

Note: Multiple inheritance is not supported in Java through class.

1) Single Inheritance :

¢ When a class inherits another class, it is known as a single inheritance.
Example:

In the below example, Dog is the subclass and Animal is the Parent Class. So Dog
inherits the method of the Animal Class and also it have its own method

class Animal
{
void eat()
{
System.out.printIn("Eating");
}
}
class Dog extends Animal
{
void bark()
{
System.out.printIn("Barking");
}
}
class single
{
public static void main(String args(])
{
Dog d=new Dog();
d.bark();
d.eat();
}

2) Multilevel Inheritance :
** When there is a chain of inheritance, it is known as multilevel inheritance.
*» In Multilevel inheritance, one class inherits from another class, another class inherits

from next class and so on.

class Animal
{
void eat()
{
System.out.printIn("Eating");
}
}
class Dog extends Animal
{
void bark()
{
System.out.printin("Barking");
}
}
class BabyDog extends Dog
{
void sleep()
{
System.out.printin(“Sleeping”);
}
}
class single
{
public static void main(String args[])
{
BabyDog bd=new BabyDog();
d.bark();
d.eat();
d.sleep();
}

3) Hierarchical Inheritance :

¢ When two or more classes inherits a single class, it is known as hierarchical

inheritance.
class Animal
{
void eat()
{
System.out.printIn("Eating");
}
}
class Dog extends Animal
{
void bark()
{
System.out.printin("Barking");
}
}
class cat extends Animal
{
void sleep()
{
System.out.printin(“Sleeping”);
}
}
class single
{
public static void main(String args[])
{
cat c=new cat();
c.eat();
c.sleep();
Dog d=new Dog();
d.bark();
d.eat();

4) Multiple Inheritance :

¢+ Multiple inheritance is not supported in java by class. The reason is suppose A, B, and
C are three classes. The C class inherits A and B classes. If A and B classes have the

same method and you call it from child class object, there will be ambiguity to call the

method of A or B class.

Example:
class A
{
void msg()
{
System.out.printin(“Hello”);
}
}
class B
{
void msg()
{
System.out.printin(“Hi”);
}
}
class C extends A,B
{
public static void main(String args[])
{
C cl=new C();
cl.msg();//Which msg() method will be called?
}

Will generate compile time error

5) Hybrid Inheritance :
¢ Hybrid inheritance is the combination of more than 1 type of inheritance.

Example:
class Animal
{
void eat()
{
System.out.printin("Eating");
}
}
class Dog extends Animal //Single level inheritance
{
void bark()
{
System.out.printin("Barking");
}
}
class cat extends Animal //Multilevel inheritance
{
void sleep()
{
System.out.printin(“Sleeping”);
}
}
class single
{
public static void main(String args[])
{
cat c=new cat();
c.eat();
c.sleep();
Dog d=new Dog();
d.bark();
d.eat();

MCQ

Sr No. Question Answer

1 The parent child concept is known as Inheritance

2 The main advantage of inheritance is reusability

3 Which inheritance is not supported in Multiple Inheritance
java?

4 In............ inheritance, there is one parent Hierarchical

class and multiple child class and all child
class access same parent class

5 Which inheritance is known as chain of Multilevel
inheritance?

6inheritance is the combination of Hybrid
more than one type of inheritance

Q-3 Write a short note on Polymorphism
Ans:

«*» Polymorphism in Java is a concept by which we can perform a single action in
different ways.
R/

% Polymorphism is derived from 2 Greek words: poly and morphs. The word "poly"
means many and "morphs" means forms. So polymorphism means many forms.

Polymorphism

Runtime

Compile Time .
Polymorphism

Polymorphism

BN Method Overloading Method Overriding
Operator Overloading

1) Compile time Polymorphism:

¢ Itis also known as static polymorphism which is achieved by method overloading.
+» Method overloading means methods with same name but different parameters.
¢ Method can be overloaded by change in number of arguments or change in type of
arguments.
Example:
class overload
{
void add(int a,int b,int c)
{
System.out.printin(a+b+c);
}
void add(int a,int b)
{
System.out.printin(a+b);
}
}
class method1
{
public static void main(String args[])
{
overload o1=new overload();
ol.add(2,3,4);
ol.add(1,2);
}
}

2) Run time Polymorphism:

¢ Itis also known as dynamic polymorphism which is achieved by method overriding.

¢ Itis a process in which a function call to the overridden method is resolved at
Runtime.

¢ In the below example, When an object of child class is created, then the method
inside the child class is called. This is because the method in the parent class is
overridden by the child class. Since the method is overridden, this method has more

priority than the parent method inside the child class. So, the body inside the child

class is executed.

Example:
class A
{
void run()
{
System.out.printin("Hello");
}
}
class B extends A
{
void run()
{
System.out.printin("Hi");
}
}
class sam
{
public static void main(String args[])
{
B bl=new B();
bl.run();
}

Compile Time Polymorphism Runtime polymorphism

1) This type of polymorphism is known as 1) This type of polymorphism is known as
Static binding or early binding dynamic binding or late binding

2) Itis achieved by method overloading 2) It is achieved by method overriding
as operator overloading is not
supported by java

3) Inheritance is not used in this type of 3) Inheritance is used in this type of

inheritance polymorphism to achieve method
overrding.
Sr No. Question Answer
1 Compile time polymorphism is also known Static binding
as ...

2 Runtime polymorphism is also known as.... Dynamic Binding

3 Compile time polymorphism is achieved by Method overloading

4 The methods with same name but Method overloading

different parameters is known as

5 Operator overloading is supported by False. Not supported
java? (T/F)

6 Runtime polymorphism is achieved by = Method overriding

7 IN coveeernnnee , child class overwrites the Method overriding
method of parent class

Q-4 Write a short note on Constructor.
Ans:

¢ A constructor is a special method which have same name as class name
It is automatically called when object of class is created.

Rules for creating Java constructor
There are two rules defined for the constructor.
1. Constructor name must be the same as its class name

2. A Constructor must have no explicit return type
3. Alava constructor cannot be abstract, static, final, and synchronized

Types of Java constructor
% There are two types of constructors in Java:

1) Default constructor (no-arg constructor)
2) Parameterized constructor

Types
of Java

Constructor f "/3

Default
Cun:t?:ctor Parameterized
Constructor

1) Default Constructor:
A constructor with zero parameter or no argument is known as default
constructor.

Example:

class A
{
A()
{
System.out.printIn("Default constructor");
}
}
class inhe
{
public static void main(String args(])
{
A al=new A();
}
}

2) Parameterised Constructor:
% A constructor with parameters is known as parameterised constructor.

Example:
class A
{
int roll;
A(intr)
{
roll=r;
}
void display()
{
System.out.printin(roll);
}
}
class inhe
{
public static void main(String args[])
{
A al=new A(10);
al.display();
}
}

Sr No. Question Answer

1 Which method have same name as class Constructor
name
2 Constructor does not have return type True
(T/F)
3 The constructor with no or 0 argumentsis Default constructor
known as......
4 The constructor with parameters is known Parameterized constructor
as ...
5 When constructor is called? When object of class is created.

Q-5 Write a short note on Constructor overloading

Ans:

@

< A constructor with same name but different parameters is known as constructor
overloading.

Example:

class cons

{

int a,b;
cons()

{

}

System.out.printin("Hello");

cons(int al)

{

}

a=al;

cons(int a.int b1)

{

}

a=al;
b=b1;

void display()

{

}

System.out.printin(a);
System.out.printin(b);

class consoverload

{

public static void main(String args[])

{

cons c=new cons();

cons cl=new cons(10);
cons c2=new cons(10,11);
cl.display();

c2.display();

Sr No. Question Answer

1 Constructor with same name but different = Constructor overloading
parameters is known as

Q-6 Write a short note on static and non-static members in java
Ans:

Static Variables:

7

** When a variable is declared as static, then a single copy of the variable is created
and shared among all objects at a class level. Static variables are, essentially, global
variables. All instances of the class share the same static variable.

¢ We can create static variables at class-level only

Example:

class test

{
static int a=20;
void display()

{
a++;
System.out.printin(a);
}
}
class sample
{
public static void main(String args[])
{
test tl=new test();
test t2=new test();
test t3=new test();
t1.display();
t2.display();
t3.display();
}

Non-Static Variables:

R/

< When a variable is declared as non-static, then individual copy of the variable is
created for the different objects. Static variables are, essentially, local variables. All
object of the class share the different non-static variable.

Example:
class test
{
int a=20;
void display()
{
at++,;
System.out.printin(a);
}
}
class sample
{
public static void main(String args[])
{
test t1=new test();
test t2=new test();
test t3=new test();
tl.display();
t2.display();
t3.display();
}

Static Members

1) Static members can be accessed directly
using classname

2) Static variables can be accessed by
static and non-static methods both

3) All the objects of class share same static
variables

4) Static variables are like global variables

5) static keyword is used to declare the
static members.

Non-static Members

1) Non-static members can be accessed
using object of class

2) Non-static variables cannot be accessed
inside static method

3) All the objects of the class have its own
non-static variable.

4) Non-static variables are like local
variables.

5) No keyword is required to declare non-
static members.

Sr No. Question Answer
1 In variable, only 1 copy of variable is ' static
shared by all the objects of the class
2 Which keyword is used to declare static static
variable?
3 Invariable, all the objects have their Non-static
own copy of variable
4 Static variables can be accessed by both static and non-static

....... andmethods

5 Static variables are like variables global

6. Non-static variables are like variables local

Q-7 Write a short note on varargs
Ans:

¢ The varrags allows the method to accept zero or multiple arguments.

+» If we don't know how many argument we will have to pass in the method, varargs is
the better approach.

¢ The varargs uses ellipsis i.e. three dots after the data type. Syntax is as follows:

Syntax:

return_type method_name(data_type... variableName)

{
}
Example:
class varg
{
public void display(int...values)
{

System.out.printin("hello");
for(int i:values)
System.out.printin(i);

}

}

class B

{
public static void main(String args(])
{

A a=new A();

a.display();

a.display(1,2,3,4);
a.display(12,22);
}

Sr No. Question Answer

1 If we don't know how many argument we varargs
will have to pass in the method, is the
better approach

2 vVarargs Uses ellipsis (...)
Q-8 Write a short note on IIB block in java

Ans:

«* |IB stands for instance initializer block
+» Instance Initializer block is used to initialize the instance data member
% It run each time when object of the class is created.

Example:
class iib
{
int a;
{ e
a=10;
}
public void display()
{
System.out.printin(a);
}
}
class im
{
public static void main(String args(])
{
iib i=new iib();
i.display();
iib i2=new iib();
i2.display();
}

Sr No.

1

2

Question

1IB stands for

1B runs each time the

is created

Answer
Instance Intializer Block

object of class

JAVA UNIT-2 MATERIAL

0Ch.

No.

Topic

Detail+s

Marks

Inheritance
and java
packages

Universal Class (Object Class)

Access Specifiers (public, private,
protected, default, private protected)
Constructors in inheritance

Method Overriding

Interface, Object Cloning

Nested and Inner Class

Abstract and -Final Class

Normal import and Static Import
Introduction to Java API Packages and
imp. Classes

java.lang , java.util ,java.io, java.net,

java.awt ,java.awt.event, java.applet,
java.swing

java.lang Package Classes (Math, Wrapper

Classes, String, String Buffer)

java.util Package Classes (Random, Date,

GregorianCalendar

StringTokenizer, Collection in Java -Vector,
HashTable, LinkedList, SortedSet, Stack,

Queue, Map

Creating and Using UserDefined package

and sub-package

14

Q-1 Explain Universal class

Ans:

+»» The Object class is the parent class of all the classes in java by default. In other
words, it is the topmost class of java.

“+ Object class is present in java. Lang package. Every class in Java is directly or
indirectly derived from the Object class.

+» If aclass does not extend any other class then it is a direct child class of Object and
if extends another class then it is indirectly derived.

¢ Therefore the Object class methods are available to all Java classes.

¢ Hence object class acts as a root of inheritance hierarchy in any Java Program.

¢+ The Object class is beneficial if you want to refer any object whose type you don't
know.

¢ Following are the methods of object class.

Sr No. | Method Name Description

1 toString() It is used to convert an object to string
Note: It is always recommended to override
toString() method to get our own string
representation.

2 hashcode() It returns a hashvalue that is used to search the
object in the collection
Note: For every object, JVM generates unique
number which is known as hascode.

3 equals It compares given object to “this” object (the object
on which method is called)

4 getClass() It returns the class of the object and is used to get
actual runtime class of the object.

5 finalize() This method is called just before an object is
garbage collected. It is called on an object when
garbage collector determines that there are no
references to the object.

Note: finalize() is just called once on an object

6 clone() It returns the new object that is exactly same as this
object

7 notify() wakes up single thread, waiting on object’s monitor

8 notifyall() wakes up all thread, waiting on object’s monitor

9 wait() Causes the current thread to wait for the specified
milliseconds until another thread notifies.

Sr No. Question Answer
1 Which is the universal class in java? Object

2 Object class is present in package java.lang

3 Which method of object class is used to hashcode()

return a hash value that is used to search
the object in collection?

4 Which method of object class generates clone()
exactly same object as this object?

5 Which method of object class is called just finalize()
before the object is garbage collected?

Q-2 Write a short note on Access Specifier
Ans:

¢ The access modifiers in Java specifies the accessibility or scope of a field, method,
constructor, or class. We can change the access level of fields, constructors,
methods, and class by applying the access modifier on it.

+»+ There are 4 types of java access modifiers

programming

[Access Modifiers]

\ 4 |

[private] [default J [protected} { public }

1. Private: The access level of a private modifier is only within the class. It cannot be

accessed from outside the class. A class cannot be private except nested class.

class A

{

private int data=40;

private void msg()

{

System.out.printin("Hello java");

}

class Simple

{

public static void main(String args[])

{
A obj=new A();

System.out.printin(obj.data);//Compile Time Error

obj.msg();//Compile Time Error

2. Default:

e A default access modifier in java has no specific keyword
e If we do not explicitly specify any access modifier for classes, methods, variables, etc.,

then by default the default access modifier is considered

class A

{
void display()

{

System.out.printIn(“hello”);

}

. class Simple

{

public static void main(String args[])

{
A obj=new A();

obj.display();

Note:

¢ In the above example, we have a class and method inside it without any access

Specifier. Hence both the class and method have default access

3. Protected: The protected access Specifier allows access to entities through subclasses

of the class in which the entity is declared.

class A

{
Protected void display()

{

System.out.printIn(“hello”);

}

class B extends A

{

}

class Simple

{

public static void main(String args[])

{

B obj=new B();
obj.display();

4. Public: A class or method or data field specified as public is accessible from any class.

class A

{
public void display()

{

System.out.printin(“hello”);

-}
. class Simple

{

public static void main(String args[])

{

A obj=new A();
obj.display();

Sr No. Question
1modifier is accessible from everywhere
2 The access level of modifier is within

the package and outside the package
through inheritance

3 Which is the default access modifier?

Answer
public

protected

default

Q-3 Write a short note on Constructor in inheritance

Ans:

** A constructor in Java is similar to a method with a few differences. Constructor has

the same name as the class name. A constructor doesn't have a return type.

¢ A Java program will automatically create a constructor if it is not already defined in

the program. It is executed when an instance of the class is created.

¢ A constructor cannot be static, abstract, final or synchronized. It cannot be
overridden.

** When the constructor is used in inheritance, then the constructor of base class is
executed first and then constructor of child class is executed.

Constructor in multi level inheritance

class parent

{
parent()
{
System.out.printIn("Parent class constructor");
}
}
class child extends parent
{
child()
{
System.out.printIn("Child class constructor");
}
}
class child1 extends child
{
child1()
{
System.out.printin("Child1 constructor");
}
}
class sample
{
public static void main(String args[])
{
child1 c=new child1();
}

Sr No. Question Answer

1 In case of constructor in inheritance, the parent class constructor

order of execution of constructor will be]
child class constructor

2 In case of constructor in multilevel parent class constructor

inheritance, the order of execution of

. child class constructor
constructor will be.....

child1 constructor

Q-4 Write a short note on Interface

Ans:

X/
X4

An interface in Java is a blueprint of a class. It has static constants and abstract

L)

methods.

e

AS

Interface in java is used to achieve abstraction and multiple inheritance

K/
L X4

Interface can only have abstract methods that is methods without body

e

AS

“Implements” keyword is used when the class implements interface.
Syntax:

interface interfacename

{

returntype methodname();
}
Example:

Multiple inheritance in java using interface:

R/

+* Multiple inheritance means multiple parent class and one child class. The child
class inherits from multiple parent class.

¢ Multiple inheritance is not supported by java. But through the interface multiple

inheritance is achieved in java.

Example:

interface a
{
void display();
}
interface b
{
void display1();
}
class mul implements a,b
{
public void display()
{
System.out.printin("hello");
}
public void display1()
{
System.out.printin("hi");
}
}
class multiple
{
public static void main(String args[])
{
mul m=new mul();
m.display();
m.display1();
}
}
Sr No. Question Answer
1 classccuue.... interface implements
2 Which keyword is used to declare the interface? interface
3 interface can have only methods abstract
4 Multiple inheritance in java is achieved using interface

Q-5 Write a short note on Object cloning

Ans:

/7
A X4

The object cloning is a way to create exact copy of an object.

The clone() method of Object class is used to clone an object.

The clone() method is defined in the Object class.

Every class that implements clone() should call super.clone() to obtain the cloned

X/ /7 /7
L X X X 4

object reference.

/7
A X4

The class must also implement java.lang.Cloneable interface whose object clone
we want to create otherwise it will throw CloneNotSupportedException when
clone method is called on that class’s object.

Syntax:
public Object clone() throws CloneNotSupportedException

Example:

class stu implements Cloneable

{
int x,y;
stu
{
x=10;
y=20;
}
public Object clone()throws CloneNotSupportedException
{
return super.clone();
}
}
class B
{

public static void main(String args[])throws CloneNotSupportedException

{

A al=new A();
A a2=(A)al.clone();

System.out.printin(al.x)
System.out.printin(al.y);
System.out.printin(a2.x);
System.out.printin(a2.y);
}
}

MCQ

Sr No. Question Answer
1 Which method is used to create exact copy of the clone()
object?
2 To use clone(), which interface class should Cloneable
implement?
3 Every class that implements clone() should call super.clone()

........ to obtain the cloned object reference.

Q-6 Write a short note on Nested and Inner Class

Ans:

>

7
*

Java inner class or nested class is a class that is declared inside the class or interface.

D)

7
X4

D)

We use inner classes to logically group classes and interfaces in one place to be more
readable and maintainable.

» Additionally, it can access all the members of the outer class, including private data
members and methods.

Syntax:

class Java_Outer_class

{
//code
class Java_Inner_class
{
//code
}
}

Types of Nested Classes:

Non-static Nested Class Static Nested Class

1) Non-Static Nested class:
+* A non-static nested class is a class within another class. It has access to members
of the enclosing class (outer class). It is commonly known as inner class
+» Asinner class exists inside outer class, the object of outer class must be created in
order to create object of inner class

Example:
class outer
{
int x=10;
class inner
{
int y=4;
public int display()
{
return x;
}
}
}
class nested
{
public static void main(String args[])
{
outer o=new outer();
outer.inner i=o.new inner();
System.out.printin(i.y);
System.out.printin(i.display());
}
}
Note:

Dot operator(.) is used to create the object of inner class using outer class

2) Static Nested class:
++ Static class inside another class is known as static nested class.
++ Static nested class are not known as static inner class.
++ The main difference between static nested class and inner class is that a static
nested class cannot access member variables of the outer class.it is because the

static nested class does not require you to create an object of outer class.

Example:

class outer
{
int x=10;
class inner
{
int y=4;
public int display()
{
return x;
}
}
}
class nested
{
public static void main(String args[])
{
outer o=new outer();
outer.inner i=new inner();
System.out.printin(i.y);
System.out.printin(i.display());
}
1

**Difference between static and non-static nested class

1) In non-static nested class, static 1)
keyword is not used

2) Non-static nested class is known as 2)
inner class
3) Non-static nested class requires 3)

object of outer class

4) Non-static nested class can access 4)
the members of outer class

In static nested class, static
keyword is used

Static nested class is not known as
inner class

Static nested class does not require
object of outer class

Static nested class cannot access
members of the outer class

MCQ

Sr No. Question Answer
1 Which keyword is used to declare static nested Static
class?
2 In , object of outer class is required non-static
3 . can access members of outer class Non-static nested class

Q-6 Write a short note on abstract class and final class
Ans:

Abstract Class:

=l

A class which is declared as abstract is known as an abstract class.

=l

It can have abstract and non-abstract methods.

=l

It needs to be extended and its method implemented.

=l

It cannot be instantiated.

Rules for Java Abstract class

It can have abstract and
non-abstract methods.

It cannot be Instantiated.

It can have final methods

5 It can have constructors and static
methods also.

Example:

abstract class bike

{
abstract void run();
void display()
{
System.out.printin("hello");
}
}
class honda extends bike
{
public void run()
{
System.out.printin("hi");
}
}
class sampe
{
public static void main(String args[])
{
honda h=new honda();
h.run();
h.display();
}
}
Final:

% The final keyword in java is used to restrict the user. The java final keyword can
be used in many context. Final can be:
= Variable
= Method
= (lass

@
** A class which cannot be inherited or extended is known as final class.

Example:

final class bike

{
}
class ja extends bike
{
void display()
{
System.out.printin("hi");
}
public static void main(String args[])
{
bike b=new bike();
b.display(); //Compile time error
}
}
Sr No. Question Answer
1 Which keyword is used to declare the class as abstract
abstract?
2 Can we create the object of abstract class? No
3 Abstract class can contain non-abstract True
methods?
4 When final keyword is applied to the class it Inheritance

prevents

Q-7 Write a short note on normal import and static import

Ans:

Normal import:

s The import allows the java programmer to access classes of a package without

package qualification

% The import provides accessibility to classes and interface

class ke

{

public static void main(String args[])

{
System.out.printin(Math.sqrt(25));

System.out.printin(Math.pow(2,2));

static import:

7
A X4

7
A X4

*
A X4

In Java, static import concept is introduced in 1.5 version.

With the help of static import, we can access the static members of a class directly
without class name or any object.

For Example: we always use sqrt() method of Math class by using Math class
i.e. Math.sqrt(), but by using static import we can access sqrt() method directly.

import static java.lang.Math.*;

class ke

{

public static void main(String args[])

{
System.out.printin(sqrt(25));

System.out.printin(pow(2,2));

** Difference between normal import and static import

1) The normal import provides access 1) static import provides access to the
to class and interface static members of the class.
2) The normal import allows to access 2) Static import feature allows to
the class of the package without access the static members of a class
package qualification without class qualification.
Sr No. Question Answer
1 import provides access to class and normal
interface
2 import provides access to the static static

members of the class

Q-8 what is package? List out the packages in java

Ans:

+» Package in Java is a mechanism to encapsulate a group of classes, sub packages and
interfaces. Packages are used for: Preventing naming conflicts

% For example there can be two classes with name Employee in two packages,

college.staff.cse.Employee and college.staff.ee.Employee

Types of Packages in Java

Packages

User Defined In Built
Packages Packages

% Following are the types of in built packages:

: .

Java.lang Java.applet Java.io Java.net

T R e

Server
Socket

Calendar Class Object I/P Stream | |o/P Stream Socket

Built-in Packages:

+* These packages consist of a large number of classes which are a part of Java API.
+» Some of the commonly used built-in packages are:

o java.lang: Contains language support classes(e.g classed which defines
primitive data types, math operations). This package is automatically
imported.
java.io: Contains classed for supporting input / output operations.
java.util: Contains utility classes which implement data structures like Linked
List, Dictionary and support ; for Date / Time operations.
java.applet: Contains classes for creating Applets.
java.awt: Contain the classes for implementing the components of graphical
user in java.applet terfaces like button, menus etc.

o java.net: Contain classes for supporting networking operations.

java. lang Package

Provides classes that are fundamental to the design of the Java programming language.
% Following are few important classes of java.lang package

K/
°e

e

1. Math
2. Wrapper Classes
3. String

4. String Buffer

< The java.lang.Math class contains various methods for performing basic numeric
operations such as the logarithm, cube root, and trigonometric functions etc. The various
java math methods are as follows:

5

%

®,
°n

Method
Math.abs()
Math.max()
Math.min()
Math.round()
Math.sqrt()
Math.cbrt()

Math.pow()

Math.ceil()

Math.floor()

Math.random()

Math.cos()
Math.sin()
Math.tan()

Math.log()

All the methods of the Math class are static so it can be called by class name
Basic Math methods

Description

It will return the Absolute value of the given value.

It returns the Largest of two values.

It is used to return the Smallest of two values.

It is used to round of the decimal numbers to the nearest value.
It is used to return the square root of a number.

It is used to return the cube root of a number.

It returns the value of first argument raised to the power to second
argument.

It is used to find the smallest integer value that is greater than or equal to
the argument or mathematical integer.

It is used to find the largest integer value which is less than or equal to
the argument and is equal to the mathematical integer of a double value.

It returns a double value with a positive sign, greater than or equal
to 0.0 and less than 1.0.

Returns the trigonometric cosine of an angle.
Returns the trigonometric sine of an angle.
Returns the trigonometric tangent of an angle.

Returns the natural logarithm (base e) of a double value.

import java.lang.*;

class mathfunctions

{

public static void main(String argsl])

{

System.out.printIn(“Absolute” +Math.abs(-2));
System.out.printIn("maximum “ +Math.ceil(2.56));
System.out.printIn("maximum “ +Math.floor(2.56));
System.out.printIn("round “ +Math.round(2.56));

System.out.printIn("random “ +Math.random());
System.out.printlin

(
(
(
(
System.out.printIn(“Minimum “+Math.min(24,56));
(
(
(
(

“

power “ +Math.pow(2,3));

System.out.printIn(“Maximum “+Math.max(24,56));
System.out.printIn(“square “+Math.sqrt(25));
System.out.printin(“square “+Math.cbrt(25));
System.out.printIn(“cos” +Math.cos(25));

Sr No.

Question Answer

Math.ceil gives Maximum round value
of floating point number

Math.sqgrt() gives..... Square root of number
Math class is included in java.lang

.......... is the default package java.lang

Wrapper class in java.lang package

¢

The wrapper class in Java provides the mechanism to convert primitive into object and

o
A5

object into primitive.

< autoboxing and unboxing feature convert primitives into objects and objects into
primitives automatically. The automatic conversion of primitive into an object is known
as autoboxing and vice-versa unboxing.

byte Byte float Float

boolean Boolean int Integer

char Character long Long

double Double short Short
Autoboxing:

0,

+* The automatic conversion of primitive data type into its corresponding wrapper class is
known as autoboxing, for example, byte to Byte, char to Character, int to Integer, long to
Long, float to Float, boolean to Boolean, double to Double, and short to Short.

Example:

class wrapperl

{

public static void main(String args[])

{

int a=20;

Integer j=a; //Converting primitive data type to Integer wrapper class
System.out.printin(j);

Unboxing:

+» The automatic conversion of wrapper type into its corresponding primitive type is
known as unboxing. It is the reverse process of unboxing.

class wrapperl
{
public static void main(String args[])
{
Integer a=new Integer(3);
int i=a; //Converting Wrapper class into primitive data type
System.out.printin(i);

MCQ

Sr No. Question Answer

.......... Provides the mechanism to convert Wrapper Class
primitive into object and object into primitive.
2 The process of converting primitive data type autoboxing

into object is known as

3 The process of converting object into primitive unboxing
data type is known as

String class in java.lang package

% The java.lang.String class represents character strings. All string literals in Java
programs, such as "abc", are implemented as instances of this class.Strings are
constant, their values cannot be changed after they are created.

char charAt(int index) Returns char value for the particular index

int length()

String substring(int beginindex)

String substring(int beginindex, int
endIndex)

boolean contains(Char Sequences)

boolean equals(Object another)
Boolean isEmpty()

String concat(String str)

String replace(char old, char new)

static String
equalslgnoreCase(String another)

int indexOf(int ch)
String toLowerCase()
String toUpperCase()
String trim()

int compareTo(String)

int compareTolgnoreCase(String)

Example:

Returns string length

Returns substring for given begin index.

Returns substring for given begin index and end index.

Returns true or false after matching the sequence of
char value.

Checks the equality of string with the given object.
Checks if string is empty.

Concatenates the specified string.

Replaces all occurrences of the specified char value.

Compares another string. It doesn't check case.

Returns the specified char value index.

Returns a string in lowercase.

Returns a string in uppercase.

Removes beginning and ending spaces of this string.

Compares this String to another specified String if
match then return zero(0) otherwise not zero(0).

Compares two strings lexicographically, ignoring case
differences.

class stringfunctions

{

public static void main(String args[])

{

String s="hello";

String s1="hello";

String s3="karishma";

String s4="rupani";

String s5="hi";

String s6="Hi";

System.out.printin("Charat" +s.charAt(1));
System.out.printin("length" +s.length());
System.out.printIn("substring" +s.substring(1));
System.out.printin("substring" +s.substring(1,3));
System.out.printin("index" +s.contains("el"));
System.out.printin("Equality" +s.equals(s1));
System.out.printin("Empty" +s.isEmpty());
System.out.printin("Concate"+s3.concat(s4));
System.out.printin("replace"+s.replace('l','k"));
System.out.printIn("Uppercase" +s3.toUpperCase());
System.out.printin("Lowercase" +s3.toLowerCase());
System.out.printin("IndexOf" +s.indexOf('0"));
System.out.printIn("ignorecase" +s5.equalslgnoreCase(s6));

Sr No.

Question Answer

Which class contains the string functions? String class

substring(startind,endind) gives Substring from start
index to end index.

Which function of string class is used to merge 2 concat()
strings?

4 Which function returns the index of the given indexOf()

character

StringBuffer class in java.lang package

«+» StringBuffer is a peer class of String that provides much of the functionality of strings.
% The string represents fixed-length, immutable character sequences while StringBuffer

represents growable and writable character sequences

the end.

«» StringBuffer may have characters and substrings inserted in the middle or appended to

% It will automatically grow to make room for such additions and often has more

characters preallocated than are actually needed, to allow room for growth.

append(String s)

insert(int offset, String s)

replace(intstartindex,
intendIndex, String str)

delete(int startindex, int
endindex)

reverse()
capacity()
charAt(int index)

length()

substring(int beginindex)

int indexOf(String str)

Is used to append the specified string with this string.

Is used to insert the specified string with this string at the specified
position.

Is used to replace the string from specified startindex and endindex.

Is used to delete the string from specified startindex and endindex.

Is used to reverse the string.
Is used to return the current capacity.
Is used to return the character at the specified position.

Is used to return the length of the string i.e. Total number of
characters.

Is used to return the substring from the specified begin index.

returns the index within this string of the first occurrence of the
specified substring.

Example:

class stringfunctions

{

public static void main(String args[])

{
StringBuffer s=new StringBuffer("hello");
System.out.printIn("Length" +s.length());
System.out.printin("Specified" +s.insert(2,"hi"));
System.out.printIn("Replace" +s.replace(1,3,"ee"));
System.out.printin("Deleting" +s.delete(1,3));
System.out.printin("Reversing" +s.reverse());
System.out.printin("Capacity" +s.capacity());
System.out.printin("Charat" +s.charAt(2));
System.out.printIn("Substring" +s.substring(1));

\[ele}

Sr No. Question Answer

........ is the peer class of the String class StringBuffer

2 is the growable sequence of characters StringBuffer

3 Which method is used to add insert the stringin insert()
the specified string?

java.util Package

+* The java.util packages provide support for the event model, collections framework, date
and time facilities, and contain various utility classes.
¢ Following are the classes in java.util package
% Random
« Date
+«»+ GregorianCalendar
« Vector

% HashTable
%+ StringTokenizer
% Collections in Java : Linked List, SortedSet, Stack, Queue, Map

% Java Random class is used to generate a stream of pseudorandom numbers
R/
*

)
L)

*

This class provides various method calls to generate different random data types
such as float, double, int.

Methods Description

doubles() Returns an unlimited stream of pseudorandom double values.
ints() Returns an unlimited stream of pseudorandom int values.
longs() Returns an unlimited stream of pseudorandom long values.
next() Generates the next pseudorandom number.

nextBoolean() Returns the next uniformly distributed pseudorandom boolean value
from the random number generator's sequence

nextByte() Generates random bytes and puts them into a specified byte array.

nextDouble() Returns the next pseudorandom Double value between 0.0 and 1.0 from
the random number generator's sequence

nextFloat() Returns the next uniformly distributed pseudorandom Float value
between 0.0 and 1.0 from this random number generator's sequence

nextint() Returns a uniformly distributed pseudorandom int value generated from
this random number generator's sequence

nextL.ong() Returns the next uniformly distributed pseudorandom long value from
the random number generator's sequence.

Example:

import java.util.*;
class randomn
{
public static void main(String args[])
{
Random r=new Random();
System.out.printIn("Integer val" +r.nextInt());
System.out.printIn("Next decimal" +r.nextDouble());
}
}
McQ
Sr No. Question Answer
1 Random class comes in which package? lava.util
2 Which class generates pseudorandom numbers? Random()

Date class in java.lang package

R/

%+ The java.util.Date class represents date and time in java.

boolean after(Date date) Tests if current date is after the given date.

boolean before(Date date) Tests if current date is before the given date.

int compareTo(Date date) Compares current date with given date.

boolean equals(Date date) Compares current date with given date for equality.
long getTime() Returns the time represented by this date object.

void setTime(long time) Changes the current date and time to given time.

Example:

import java.util.*;

public class mainl

{

public static void main(String[] args)

{
Date d=new Date();
Date d1=new Date(03-12-2022);
Date d2=new Date(01-11-2022);

System.out.printin(d);

System.out.printin("checking "+d1.before(d2));
System.out.printIn("checking " +d1.after(d2));
System.out.printin("Compare "+d1.compareTo(d2));
System.out.printin("Compare "+d1.equals(d2));
System.out.printIn("Time "+d.getTime());
System.out.printin("Time" +d.hashCode());

Sr No. Question Answer

Which class of java.util package is used to give Date

date and time

2 Which method is used to check that current date before()
is before given date or not?

3 Which method of Date class is used to generate hashcode
unique ID of Date object

StringTokenizer class in java.util package

¢ The java.util.StringTokenizer class allows you to break a string into tokens. It is
simple way to break string.

Example of String Tokenizer class in Java

hello welcome to

w
String
Tokenizer

w
I
¥

 d -
welcome to JavaTpoint

Method Description

booleanhasMoreTokens() Checks if there is more tokens available.

String nextToken() Returns the next token from the stringtokenizer object.
String nextToken(String delim) Returns the next token based on the delimeter.
booleanhasMoreElements() Same as hasmoretokens() method.

Object nextElement() Same as nexttoken() but its return type is Object.

intcountTokens() Returns the total number of tokens.

Example:

import java.util.*;

class mainl
{
public static void main(String[] args)
{
StringTokenizer st=new StringTokenizer("my name is karishma");
System.out.printIn("Total number of Tokens: "+st.countTokens());
while(st.hasMoreTokens())

{
System.out.printin(st.nextToken());
}
}
}
Sr No. Question Answer
1 Which class of java.util package allows you to StringToeknizer
break the string into tokens?
2 Which method is used to count total no. of countTokens()
tokens in the string?
3 Which method is used to print next token of the nextToken()

string?

¢ Gregorian calendar is a concrete subclass(one which has implementation of all of its
inherited members either from interface or abstract class) of a Calendar.
+ The major difference between Gregorian calendar and Calendar class are that the
Calendar class being an abstract class cannot be instantiated.
Calendar cal = Calendar.getInstance();

¢ GregorianCalendar Class being a concrete class, can be instantiated. So an object
of the GregorianCalendar Class
GregorianCalendar gcal = new GregorianCalendar();

Example:

import java.util.*;

class greg
{
public static void main(String args[])
{
Calendar cal=Calendar.getInstance();
GregorianCalendar c=new GregorianCalendar();
System.out.printIn("Calendar date:"+cal.getTime());
System.out.printin("Greg" +c.getTime());
}
}
Sr No. Question Answer
e . is the subclass of Calendar Class Gregorian Calendar
2 We cannot create object of Calendar Class True
directly (T/F)?
3 Which method is used to create the object of getlinstance()

calendar class?

X/
°e

The Collection interface is the root interface of the collections framework hierarchy. A
Collection represents a single unit of objects, i.e., a group.

Java does not provide direct implementations of the Collection interface but provides
implementations of its sub interfaces like List, Set, and Queue.

X/
°e

X/
°e

Java Collections can achieve all the operations that you perform on a data such as
searching, sorting, insertion, manipulation, and deletion.

>

* Following are the collections in java:

= Vector

= HashTable
= Linked List
= Sorted Set
= Stack

= Queue

= Map

0,

*» Vector is like the dynamic array which can grow or shrink its size. Unlike array, we
can store n-number of elements in it as there is no size limit.

void add(int index, Inserts the element at the given position.

Object element)

void add() Adds the elements in vector

void clear() Removes all of the elements from this.

int lastElement() Returns the last element of vector

int firstElement() Returns the first element of vector

int indexOf(Object element) Searches for the first occurrence of the given
argument.

boolean remove(Object 0) Removes the first occurrence of the specified
element.

void removeElementAt(int index) | Deletes the component at the specified index.

void clone() Creates the clone of vetor.

int capacity() Returns the capacity of vector.

int size() Returns the number of components in this vector.
boolean contains() Checks whether the element is contained in vector

or not.

import java.util.*;

class greg

{public static void main(String args[])

{

Vector<Integer>ve=new Vector<Integer>(5);ve.add(10);
ve.add(20);ve.add(30);

ve.addElement(40);

System.out.printIn("Elements of vector" +ve)
System.out.printIn("Clone" +ve.clone());
System.out.printIn("Capacity" +ve.capacity());
System.out.printin("Size" +ve.size());
System.out.printin("Firstelement" +ve.firstElement());
System.out.printIn("Firstelement" +ve.lastElement());
System.out.printin("Index" +ve.indexOf(20));
System.out.printin("Contains" +ve.contains(10));
ve.remove(0);

System.out.printin("Elements after removal" +ve);

}

}

0,

+* The Hashtable class implements a hash table, which maps keys to values.

put(key,value) Maps the specified key to the specified value in
hashtable

remove(key) Removes the element specified at key in the
hashtable

size() Returns the number of keys in the hashtable

replace(key,value) Replaces the value at given key in the hashtable

Boolean containsKey(key) Checks if hastable contains specified key or not

Boolean containsValue(value) Checks if hashtable contains specified value or not

import java.util.*;
class hash1

{

public static void main(String args[])
{
Hashtable<Integer,String> h=new Hashtable<Integer,String>();
h.put(1,"abc");
h.put(2,"xyz");
System.out.printin("Mapping" +h);
h.put(2,"ddd");
System.out.printin("Mapping" +h);
h.remove(2);
System.out.printin("Mapping" +h);
System.out.printin("Check key:" +h.containsKey(1));
System.out.printIn("Check value: "+h.containsValue("abc"));

X/
X4

L)

Linked List is a part of the Collection framework present in java.util package.

*

% This class is an implementation of the LinkedList data structure which is a linear
data structure where the elements are not stored in contiguous locations and
every element is a separate object with a data part and address part.

>

X/
*

The elements are linked using pointers and addresses.

L)

>

X/
*

Each element is known as a node.

L)

add(ele) Adds the element in the linked list

addFirst(ele) Adds the element in the first node of the linked list
addLast(ele) Adds the element in the last node of the linked list
remove(ele) Removes the given element from the linked list
removeFirst() Removes the first element from the linked list
removeLast() Removes the last element from the linked list

https://www.geeksforgeeks.org/collections-in-java-2/
https://www.geeksforgeeks.org/java-util-package-java/
https://www.geeksforgeeks.org/data-structures/linked-list/

import java.util.*;
class linked

{

public static void main(String args[])

{

LinkedList<String>s=new LinkedList<String>();

s.add("A");
s.add("B");
s.add("C");
s.addLast("D");
s.addFirst("E");
System.out.printin(s);
s.remove("C");
s.removeFirst();
s.removelast();
System.out.printin(s);

a Stack data structure.

+» Java Collection framework provides a Stack class that models and implements

** The class is based on the basic principle of last-in-first-out. In addition to the basic

push and pop operations, the class provides three more functions of empty,

search, and peek.

push(ele) Insert the element in the stack

pop() Removes the last element inserted in the stack
search(ele) Searches the given element in the stack

peek() Returns the first element of the stack

empty() Returns the Boolean value after checking whether

the stack is empty or not

https://www.geeksforgeeks.org/collections-in-java-2/
https://www.geeksforgeeks.org/stack-data-structure/

import java.util.*;

public static void main(String args[])

class stack
{

{

}

Stack<Integer> s=new Stack<Integer>();
s.push(10);

s.push(11);

s.push(12);

s.push(13);

s.push(14);

System.out.printin(s);

s.pop();

System.out.printin(s);
System.out.printin("Stack empty :"+s.empty());
System.out.printin("Search :"+s.search(11));
System.out.printin("Peek: "+s.peek());

0,

+» Java Collection framework provides a Queue class that models and implements

a Queue data structure.
+* The class is based on the basic principle of First-in-first-out.

add(ele) It is used to insert the element in the queue
remove() Removes the head element from the queue
poll() Used to retrieve and removes the head of queue
peek() Returns the head element of the stack

https://www.geeksforgeeks.org/collections-in-java-2/
https://www.geeksforgeeks.org/stack-data-structure/

import java.util.*;

4 To create the queue, is used

class que
{
public static void main(String args[])
{
PriorityQueue<String> p=new PriorityQueue<String>();
p.add("abc");
p.add("xyz");
p.add("aaa");
System.out.printin("Queue ele: "+p);
p.remove();
System.out.printin("After removal: "+p);
System.out.printin("Poll: "+p.poll());
System.out.printin("After poll:" +p);
System.out.printin("Peek: "+p.peek());
}
}
Sr No. Question Answer
e class allows to insert and remove the Vector
elements unlike array
2 is the collection which represents element Hashtable
in key value form?
3 Which Class works on LIFO? Stack

Priority Queue

¢ It is used to provide particular ordering on its element.

¢+ The elements are ordered either by using natural ordering or by using comparator.

comparator() Order the elements in given set

first() Returns the first element of sorted set

last() Returns the last element of sorted set

add() add the elements in the sorted set

remove() Removes or delete the element of sorted set

import java.util.*;

public static void main(String args[])

SortedSet s=new Treeset();

s.add(“abc”);
s.add(“aaa”);
s.add(“xyz");
s.add(“yyy”);
s.add(“bbb”);
System.out.printin(s);
s.remove(“aaa”);

System.out.printin(s.first());
System.out.printin(s.last());

class que
{
{
}

¢ It contains the values on the basis of the key that is key and value pair
¢+ Each key and value pair is known as entry
¢ A map contains unique key

put() add the elements in the Map

remove() Removes or delete the element of Map

import java.util.*;

class que
{
public static void main(String args[])
{
HashMap m=new HashMap();
m.put(1,”abc”);
m.put(2,”aaa”);
System.out.printin(m);
m.remove(2);
System.out.printin(m);
}

= This package provides classes needed to create applets and communicate with their
applet.

= AWT (Abstract Window Toolkit) package contains the classes for creating user
interfaces and graphics. It also includes classes for painting images

= java.awt and jawa.awt.event packages are used for different events related to
graphics and user interfaces

= This package provides different classes for system input and output through data
source, serialization and file system

= Different classes of java.io package are: BufferedReader, BufferedWriter,
StreamReader, StreamWriter etc

= This package provides the classes for implementing networking applications.
= |tincludes various classes that provide easy way to access network resource

= This package provides different swing components
® Swing is JFC (Java Foundation Class) and extension of AWT (Abstract Window Toolkit)

and components of swing are lightweight components.
Q-8 what is User define package? How to create the package

Ans:

++ The package which is created by the user is known as User Define Package.
+» Following are the steps to create the package

Step 1: Create the notepad file

package mypackage;
public class Demo

{
public void display()
{
System.out.printIn("hi");
}

Step 2: Create the folder named “mypackage” and save the above file with Demo.java
E:\java\mypackage\Demo.java

Step 3: Create the file and import the created package

import mypackage.*;
public class sample
{
public static void main(String args[])
{
Demo d=new Demo();
d.display();
}

Step 4: Save the file in the root directory outside the “mypackage” folder as sample.java
E:\java\mypackage\sample.java

Step 5: Compile Package (E\java\mypackage\javac Demo.java)

Step 6: Compile the file in which you imported package (E:\java\sample.java)

Step 7: Run the File in which you imported package (E:\java\java sample)

JAVA UNIT-3 MATERIAL

Ch. Topic Details Marks
No.
Introduction to exception handling
(try,catch, finally, throw, throws)
Creating user defined exception class
Thread and its life cycle (Thread States)
Thread class and its methods
Synchronization in multiple threads
(Multithreading)
Deamon thread
Non-Daemon thread
Exception Stream and its types (Input, Output,
Handling, Character, Byte)
Threading File and Random access file
and Streams Reading and writing through Character 14
(Input and Stream classes (File Reader, Buffered
Output) Reader, File Writer, Buffered Writer)

Reading and writing through byte stream
class (Inputstream, FilelnputStream,
DatalnputStream, OutputStream,
FileOutputStream, DataOutputStream)
StreamTokenizer Class

Piped Streams, Bridge Classes:
InputStreamReader, OutputStreamWriter
ObjectinputStream, ObjectOutputStream

Q-1 what is Exception Handling?
Ans:

¢ The Exception Handling in Java is one of the powerful mechanism to handle the
runtime errors so that the normal flow of the application can be maintained.

¢ The core advantage of exception handling is to maintain the normal flow of the
application. An exception normally disrupts the normal flow of the application; that

is why we need to handle exceptions.

Types of Java Exceptions

Exception
Handling

Checked
Exception

Unchecked
Exception

1) Checked Exception:

¢ The classes that directly inherit the Throwable class except RuntimeException and
Error are known as checked exceptions. For example, IOException, SQLException, etc.
Checked exceptions are checked at compile-time.

2) UnChecked Exception:

¢ The classes that inherit the RuntimeException are known as unchecked exceptions.
For example, ArithmeticException, NullPointerException,
ArraylndexOutOfBoundsException, etc. Unchecked exceptions are not checked at
compile-time, but they are checked at runtime.

3) Error:

% Error is irrecoverable. Some example of errors are OutOfMemoryError,
VirtualMachineError, AssertionError etc.

Java Exception Keywords

Keyword Description

try The "try" keyword is used to specify a block where we should place an
exception code. It means we can't use try block alone. The try block must be
followed by either catch or finally.

catch The "catch” block is used to handle the exception. It must be preceded by try
block which means we can't use catch block alone. It can be followed by
finally block later.

finally The "finally" block is used to execute the necessary code of the program. It is
executed whether an exception is handled or not.

throw The "throw" keyword is used to throw an exception.

throws The "throws" keyword is used to declare exceptions. It specifies that there
may occur an exception in the method. It doesn't throw an exception. It is
always used with method signature.

class exc
{
public static void main(String args[])
{
try
{
int a=5/0;
}catch(ArithmeticException e)
{
System.out.printin(e);
}
finally
{
System.out.printin("hi");
}
}

** Difference between checked and unchecked exception

Checked Exception Unchecked Exception

1) Checked Exceptions are declared at 1) Unchecked Exceptions are declared
compile time at runtime

2) This class inherits Throwable Class 2) This class inherits Runtime
except Rutime Exception Exception class

3) Example: 10 Exception 3) Example: Arithmetic Exception

** Difference between throw and throws in java

throw throws

1) throw keyword is used to throw the 1) throws keyword is used to declare the
exception explicitly in the code, inside exception in the method signature
the function or the block of code.

2) ltis followed by an instance of the 2) It is followed by the class njgame of
exception to be thrown exception to be thrown

3) Only 1 exception can be thrown at a 3) We can declare multiple exceptions using
time throws keyword.

1) Which is the superclass of all the Throwable
errors and exceptions?

2) Which keyword is used to write the | try
code that contains error or
exception?

3) Which keyword is used to write the finally
code that must be compulsory
executed?

4) ... Exception is declared at Checked Exception
compile time

Q-2 what is User Defined Exception? How to create it

Ans:

¢+ Creating our own Exception is known as custom exception or user-defined exception.
Basically, Java custom exceptions are used to customize the exception according to
user need.

¢ This can be done by extending the class Exception

class userdefinedexception

{

public static void main(String args[])

{
try

{

throw new myexception(400);

}

catch(myexception e)

{

System.out.printin(e);

}
}

class myexception extends Exception

{
int nl;
myexception(int n2)
{
nl=n2;

}
public String toString()

{

return ("Status: " +n1);

}

MCQ

1) Creating the customized exception | User defined exception

is known as
2) User defined exception should Exception
extend Class

Q-3 what is thread? Explain life cycle of thread

Ans:

* A thread is a single sequential flow of control within a program. A process can have
multiple threads, all executing at the same time.

¢ There can be more than one thread inside a process. Each thread of the same
process makes use of a separate program counter

0,

% In Java, a thread always exists in any one of the following states. These states
are:

New

Active

Blocked / Waiting
Timed Waiting
Terminated

iAW =

- s
10 -

Active State

Waiting For run() exited
CPU

Waiting

Terminated / Dead

Life Cycle of a Thread

1) New:

*»» Whenever a new thread is created, it is always in the new state. For a thread in
the new state, the code has not been run yet and thus has not begun its
execution.

2) Active:

** When a thread invokes the start() method, it moves from the new state to the
active state. The active state contains two states within it: one is runnable, and
the other is running.

Runnable:

¢ Athread that is ready to run is then moved to the runnable state. In the
runnable state, the thread may be running or may be ready to run at any
given instant of time.

R/

* Itis the duty of the thread scheduler to provide the thread time to run,
i.e., moving the thread the running state.

Running:

** When the thread gets the CPU, it moves from the runnable to the running state

3) Blocked/Waiting:
¢ Whenever a thread is inactive for a span of time (not permanently) then, either
the thread is in the blocked state or is in the waiting state.
s Forexample, athread (let's say its name is A) may want to print some data from
the printer. However, at the same time, the other thread (let's say its name is
B) is using the printer to print some data.
¢ Therefore, thread A has to wait for thread B to use the printer. Thus, thread A

is in the blocked state.

4) Timed Waiting:

2
*

R?
*

Sometimes, waiting for leads to starvation. For example, a thread (its name is A)

has entered the critical section of a code and is not willing to leave that critical

section.

< In such a scenario, another thread (its name is B) has to wait forever, which leads
to starvation. To avoid such scenario, a timed waiting state is given to thread B.

<% Thus, thread lies in the waiting state for a specific span of time, and not forever.

% A real example of timed waiting is when we invoke the sleep() method on a
specific thread. The sleep() method puts the thread in the timed wait state.

»* After the time runs out, the thread wakes up and start its execution from when

it has left earlier.

5) Terminated:

¢ Athread reaches the termination state because of the following reasons:

“* When a thread has finished its job, then it exists or terminates normally.

% Abnormal termination: It occurs when some unusual events such as an
unhandled exception or segmentation fault.

McQ

1) e, is a sequential flow of the Thread
control within the program

2) There can be more than one thread | True
inside the process (T/F)?

3) The active state of thread contains = Runnable, Running
....... andstates

4) Which process occurs when some Abnormal Termination
unusual events such as an
unhandled exception or
segmentation fault?

Q-4) what is Thread Class? Explain its methods.

Ans:

¢ Thread can be created using following methods:
o Extending Thread Class
o Implementing Runnable interface
o Explicitly creating thread object using Thread Class
1) Extending Thread Class:
¢ Thread class provide constructors and methods to create and perform operations

on a thread.
class m extends Thread
{
public void run()
{
System.out.printin(“Running”);
}
public static void main(String args[])
{
m ml=new m();
m1l.start();
}
}

2) Implementing Runnable Interface:
¢ Create Runnable implementer which implements run()
¢+ Create the object of Thread Class

¢+ Pass the instance of class in Thread class

** Runnable interface have only one method named run().

class m extends implements Runnable

{
public void run()
{
System.out.printin(“Running”);
}
public static void main(String args[])
{
m ml=new m();
Thread tl1=new Thread(m1);
tl.start();
}
}

3) Explicitly creating thread object using Thread Class:
¢ If we don’t extend the Thread class, then object of thread class is created explicitly.

class m extends

{
public static void main(String args[])
{
Thread t1=new Thread(“First Thread”);
tl.start();
System.out.printin(“Thread Name: “+t1.getName());
}

Methods of Thread Class:

Methods
void run()

void start()

public String getName()

public void setName(String)

public int getPriority()
public int setPriority()
public void suspend()
public void resume()

public void sleep(long
milliseconds)

public void yield()

public Boolean isDaemon()

Description
Used to perform action for thread

Starts the execution of thread. JVM calls run()
on thread

It is used to get the name of thread

It is used to change or set the name of the
given thread.

It is used to get the priority of the thread
It is used to set the priority of the thread
It is used to suspend the given thread

It is used to resume the suspended thread

Waits for a thread to die for the specified
milliseconds

Causes currently executing thread object to
temporarily pause and allow other threads to
execute.

Tests if the thread is daemon thread or not

Thread t1=new Thread("First Thread");
System.out.printIn("Thread Priority: "+t1.getPriority());

System.out.printin("Thread Name: "+t1.getName());
System.out.printin("Thread Priority: "+t1.getPriority());
System.out.printin("Daemon Thread: "+t1.isDaemon());

class th
{
public static void main(String args[])
{
tl.setPriority(6);
tl.start();
tl.setName("My Thread");
}

class thl extends Thread

{
public void run()
{
for(int i=1;i<=5;i++)
{
try
{
Thread.sleep(1000);
}
catch(InterruptedException e)
{
System.out.printin(e);
}
System.out.printin(i);
}
}
public static void main(String args[])
{
thl t=new th1();
t.start();
}
}
MCQ
1) Thread can be created by Runnable
implementing interface
2) Which method of thread class start()
moves the thread from new state
to active state?
3) Which method of thread class is run()
called on the start () of thread?
4) Runnable interface have only 1 run()
method. Which is that?
5) Which method causes currently yield()

executing thread object to

temporarily pause and allow other
threads to execute

Q-5) Write a short note on Thread Synchronization? OR

Write a short note on Multithreading

¢ Synchronization in Java is the capability to control the access of multiple threads to
any shared resource.
¢+ Java Synchronization is better option where we want to allow only one thread to
access the shared resource.
+* Synchronization can be achieved by:
o Using Synchronized method
o Using Synchronized block
o Using Static Synchronization

Why use Synchronization?

¢+ The synchronization is mainly used to

1. To prevent thread interference.

2. To prevent consistency problem.

¢ Below example shows the scenario where synchronization is not there. In the below
example, thread t1 and thread t2 are not synchronized so thread t1 prints table of 5
and simultaneously thread t2 prints table of 10. So in this case, synchronization is
required

class table

{
void printtable(int n)
{
for(int i=1;i<=5;i++)
{
System.out.printin(n*i);
try
{
Thread.sleep(500);
}
catch(InterruptedException e)
{
System.out.printin(e);
}
}
}
}
class mythread1l extends Thread
{
table t;
mythreadl(table t)
{
this.t=t;
}
public void run()
{
t.printtable(5);
}
}
class mythread2 extends Thread
{
table t;
mythread2(table t)
{
this.t=t;
}
public void run()
{
t.printtable(10);
}

class synch

{
public static void main(String args[])
{
table o=new table();
mythreadl t1=new mythread1(o);
mythread2 t2=new mythread2(o);
tl.start();
t2.start();
}
}

Example with synchronization:

class table
{
synchronized void printtable(int n)
{
for(int i=1;i<=5;i++)
{
System.out.printin(n*i);
try
{
Thread.sleep(500);
}
catch(InterruptedException e)
{
System.out.printin(e);
}
}
}
}
class mythread1l extends Thread
{
table t;
mythreadl(table t)
{
this.t=t;
}
public void run()
{

t.printtable(5);
}

class mythread2 extends Thread
{
table t;
mythread2(table t)
{
this.t=t;
}
public void run()
{
t.printtable(5);
}

class synch

{

public static void main(String args[])

{
table o=new table();
mythreadl t1=new mythread1(o);
mythread2 t2=new mythread2(o);
tl.start();
t2.start();

McQ

1)is the capability to control the | Synchronization
access of multiple threads to any
shared resource.

2) What are the advantages of 1) To reduce conflicts among threads
Synchronization? 2) To avoid interference among threads

Q-6) Write a short note on Daemon and Non-Daemon Thread
Ans:

Daemon Thread:

«¢* Damon thread in java is a low-priority thread that runs in the background to perform
tasks such as garbage collection.

+«* Daemon thread in java is also a service provider thread that provides services to the
user thread.

Non-Daemon Thread:

+* Non-Damon thread in java is a thread that does not run in the background.

+* Non-daemon thread in java are not service provider

Daemon Threads User Threads (Non-daemon)
Daemon threads are created by JVM User threads are created by an application
itself
JVM does not wait for its execution JVM waits until the execution completes
Low Priority threads High priority threads
Used for background tasks(not critical) Used for foreground tasks(critical)

Life is dependent on user threads Life is independent

Q-7) what is Stream? Explain types

Ans:

+» Astream is a sequence of data. In Java, a stream is composed of bytes. It's called a
stream

¢+ Java uses the concept of a stream to make 1/O operation fast. The java.io package
contains all the classes required for input and output operations.

** In general, a Stream will be an input stream or, an output stream.

e InputStream - this is used to read data from a source.

e OutputStream - this is used to write data to a destination.

+* Based on the data they handle there are two types of streams -

e Byte Streams - these handle data in bytes (8 bits) i.e., the byte stream
classes read/write data of 8 bits. Using these you can store characters,
videos, audios, images etc.

e Character Streams - these handle data in 16 bit Unicode. Using these you
can read and write text data only.

Input stream
Classes

(reads)

Byte Stream
d Output stream

Classes

(writes)

Reader Classes

Character (reads)

Stream)
Writer Classes

(writes)

Brief classification of /O streams

** Difference between byte stream and character stream:

Byte Stream

Java Byte streams are used to perform
input and output of 8-bit bytes

Byte stream are not tied to any data type. Data
of any data type can be read

Byte stream reads byte by byte

Byte stream are known as data streams-Data
input stream and Data Output Stream

1).... is sequence of data

2) Which package contains all the class for
input and output operations?

3) Which streams are used to perform
input and output for 8-bit bytes

4) Which stream are tied to data type?

Q-8) what is File Class?

Ans:

Character Stream

Java Character streams are used to perform
input and output for 16-bit Unicode.

Character stream are tied to data type. Only
string or character data type can be read.

Character stream reads character by character

Character streams are also known as reader
and writer streams.

Stream

java.io package

Byte Stream

Character Stream

% The File class is an abstract representation of file and directory pathname.

s A pathname can be either absolute or relative.

s The File class have several methods for working with directories and files such as
creating new directories or files, deleting and renaming directories or files, listing the

contents of a directory etc.

Example:

import java.io.*;
class filedemo
{
public static void main(String args[])
{
File f=new File("d:\\th123.java");
if(f.isFile())
System.out.printin("\n File Exists");
else
System.out.printin("\n File does not exists");

File Operations in Java

Get File Write to a
Information File

Read From a Delete a File
File

Create a File

Creating a new file:

¢ Create a File operation is performed to create a new file.

% We use the createNewFile() method of file.

+» The createNewfFile() method returns true when it successfully creates a new file and
returns false when the file already exists.

Example:

import java.io.*;
import java.io.lOException;

class crf
{
public static void main(String args[])
{
try
{
File f=new File("D:\\hel.txt");
if(f.createNewfFile())
System.out.printin("Created");
else
System.out.printin("Not Created");
}
catch(IOException e)
{

System.out.printin(e);

}

Getting the file information:

¢ The operation is performed to get the file information. We use several methods to
get the information about the file like name, absolute path, is readable, is writable
and length.

Example:

import java.io.*;
import java.io.lOException;

class crf
{
public static void main(String args[])
{
File f=new File("D:\\hel.txt");
if(f.exists())
{
System.out.printin("Name of file: "+f.getName());
System.out.printIn("Path of file: "+f.getAbsolutePath());
System.out.printin("Path of file: "+f.length());
}
else
{
System.out.printIn("Does not exists");
}
}

Write into file:

+%* In order to write data into a file, we will use the FileWriter class and its write() method
together. We need to close the stream using the close() method to retrieve the

allocated resources.

Example:

import java.io.*;
import java.io.lOException;

class crf

{

public static void main(String args[])

{
try

{
FileWriter w=new FileWriter("d:\\hel.txt");

w.write("Hello");
w.close();

}
catch(IOException e)

{

System.out.printin(e);

}

Read from the file:

¢ In order to read the data from file, we will use the Scanner class. Here, we need to
close the stream using the close() method.

% We will create an instance of the Scanner class and use
the hasNextLine() method nextLine() method to get data from the file.

Example:

https://www.javatpoint.com/Scanner-class
https://www.javatpoint.com/post/java-scanner-hasnextline-method
https://www.javatpoint.com/post/java-scanner-nextline-method

import java.io.*;
import java.io.FileNotFoundException;
import java.util.*;

class crf
{
public static void main(String args[])
{
try
{

File f=new File("D:\\hel.txt");
Scanner s=new Scanner(f);
while(s.hasNextLine())

{
String fd=s.nextLine();
System.out.printin(fd);
}
s.close();
}
catch(FileNotFoundException e)
{
System.out.printin(e);
}

Delete from the file:

¢ In order to delete a file, we will use the delete() method of the file. We don't need to
close the stream using the close() method because for deleting a file

Example:

import java.io.*;

class del
{
public static void main(String args[])
{
File f=new File("D:\\hel.txt");
if(f.delete())
System.out.printin("Deleted");
else
System.out.printin("Not Deleted");
}

McQ

1) Which method is used to create the file? = createNewfFile()

2) createNewfFile() must be used with IOException
........ exception
3) In order to write the data into file, FileWriter

which class is used?

4) Which class is used to read the data Scanner
from the file?

5) hasnextLine() and nextLine() are the Scanner
methods of class

6) ... method is used to delete the file | delete()

Q-9) what is Random Access File Class?

Ans:

/7
A X4

A sequential file structure is the common way where records are stored in order by
the record key field.

X/
°e

Random file access is the superimposed mechanism implemented through Java code
to access individual records directly and quickly without searching through records in
the file

The RandomAccessFile class allows you to write programs that can seek to any

/7
A X4

location in a file and read or write data at that point.
*» This type of functionality is very valuable in some programs.

Method Description

Void close() Close the file.

Long getFilePointer() Returns the current position of the file pointer. This identifies
the point at which the next byte is read or written.

Long length() Returns the number of bytes in the file.
Int read() Reads and returns a byte from the file. Waits until data is
available.

Int read(byte buffer[], | Attempts to read size bytes from the file and places these in
int index, int size) buffer starting at position index. Returns the number of bytes
actually read. Waits until data is available.

Int read(byte buffer[]) | Reads bytes form the file and places these in buffer. Returns
the number of bytes read. Waits until data is available.

Void seek(long n) Positions the file pointer at n bytes form the beginning of the
file. The next read or write occurs at this position.

Int skipBytes(int n) Adds n to the file pointer. Returns the actual number of bytes
skipped. If n is negative, no bytes are skipped.

Example

import java.io.*;
class Random1
{
public static void main(String args[])
{
try
{
RandomAccessFile f=new RandomAccessFile("test1.txt","rw");
f.writeChar(‘k’);
f.writelnt(10);
f.writeDouble(10.2);
f.seek(0);

System.out.printin(f.readChar());
System.out.printin(f.readint());
System.out.printin(f.readDouble());
f.close();

}

catch(IOException e)
{

System.out.printin(e);

}

McQ

1) Random Access is used to perform read,write
...... andoperations both
simultaneously

2) In random access file, the file can be seek()
moved to any location using
............. method

Q-10) Write a short note on character stream class
Ans:

+»* The java.io package provides character stream classes to overcome the limitations of
byte stream classes which can only handle 8 bit and is not compatible to work
directly with characters.

¢+ Character stream classes are used to work with 16 -bit.

*» Generally, character stream classes are used to read the characters from the source
and write them into destination.

Classes of Character Stream

Class Description

Buffered Reader | This class provides the methods to read characters from buffer

FileReader This class provides the methods to read characters from the file
BufferedWriter This class provides the methods to write the characters to the buffer
FileWriter This class provides the methods to write the characters to the file.

File Reader Class and File Writer Class:

«» Java FileWriter and FileReader classes are used to write and read data from text
files

+* Unlike FileOutputStream class, you don't need to convert string into
byte array because it provides method to write string directly.

Methods of File Reader and File Writer

Methods Description

int read() This method returns the integral representation of the next character
present in the input.

void write() This method is used to write the data to the output stream

void flush() This method is used to flush the output stream

https://www.javatpoint.com/array-in-java

Example of File Reader and File Writer

import java.io.*;
import java.io.lOException;

class chl
{
public static void main(String args[])
{
try
{
FileWriter f=new FileWriter("D:\\myf6.txt");
f.write("Hello");
f.close();
FileReader f=new FileReader("D:\\myf6.txt");
inti;
while((i=f.read())!=-1)
System.out.printin((char)i);
f.close();
}
catch(IOException e)
{
System.out.printin(e);
}
}

Buffered Reader Class and Buffered Writer Class:

+* The "BufferedWriter" class of java supports writing a chain of characters output
stream (Text based) in an efficient way. The Chain-Of-Characters can be Arrays,
Strings etc. The "BufferedReader" class is used to read stream of text from a
character based input stream.

+ The BufferedReader and BufferedWriter class provides support for writing and
reading

Example of Buffered Reader and Buffered Writer:

import java.io.*;
import java.io.lOException;

class chl
{
public static void main(String args[])
{

try

{
FileWriter f=new FileWriter("D:\\myf7.txt");
BufferedWriter b=new BufferedWriter(f);
f.write("Hello");
f.close();
FileReader f=new FileReader("D:\\myf7.txt");
BufferedReader b=new BufferedReader(f);
inti;
while(i=f.read())!=-1)
{

System.out.printin((char)i);

}
b.close();

}

catch(lOException e)

{
System.out.printin(e);

}

SN

1) Character Stream class works on 16

2) BufferedReader inherits from FileReader

Q-11) Write a short note on Byte stream class

Ans:

++» Byte Stream classes are used to read bytes from the input stream and write bytes to
the output stream. In other words, we can say that Byte Stream classes read/write
the 8-bits.

¢ The Byte Stream classes are divided into two types of classes, i.e., Input Stream and
Output Stream.

InputStreamClass:

¢ The Input Stream class provides methods to read bytes from a file, console or
memory. It is an abstract class and can't be instantiated.

0,

+* The subclass of Input Stream class are:

Class Description

BufferedinputStream This class provides methods to read bytes from the buffer.

ByteArraylnputStream = This class provides methods to read bytes from the byte array.

DatalnputStream This class provides methods to read Java primitive data types.
FilelnputStream This class provides methods to read bytes from a file.
FilterlnputStream This class contains methods to read bytes from the other input

streams, which are used as the primary source of data.

ObjectinputStream This class provides methods to read objects.

https://www.javatpoint.com/java-bufferedinputstream-class
https://www.javatpoint.com/java-bytearrayinputstream-class
https://www.javatpoint.com/java-datainputstream-class
https://www.javatpoint.com/java-fileinputstream-class
https://www.javatpoint.com/java-filterinputstream-class
https://www.javatpoint.com/java-objectinputstream

7 PipedinputStream This class provides methods to read from a piped output stream to
which the piped input stream must be connected.

Methods of File InputStream
Methods Description
int read() It is s used to read the byte from the current stream
void flush() This method is used to flush the input stream
void close() It is used to close the input stream
OutputStreamClass:

®,

+* The Java.io.OutputStream class is the superclass of all classes representing an
output stream of bytes. An output stream accepts output bytes and sends them to

some sink.
SN Class Description
1 BufferedOutputStream | This class provides methods to write bytes in the buffer.
2 ByteArrayOutputStream = This class provides methods to write bytes from the byte array.
3 DataOutputStream This class provides methods to write Java primitive data types.
4 FileOutputStream This class provides methods to write bytes in a file.
5 FilterOutputStream This class contains methods to write bytes in the other input

streams, which are used as the primary source of data.

6 ObjectOutputStream This class provides methods to write objects.

https://www.javatpoint.com/PipedInputStream-and-PipedOutputStream-classes-using-threads
https://www.javatpoint.com/java-bufferedinputstream-class
https://www.javatpoint.com/java-bytearrayinputstream-class
https://www.javatpoint.com/java-datainputstream-class
https://www.javatpoint.com/java-fileinputstream-class
https://www.javatpoint.com/java-filterinputstream-class
https://www.javatpoint.com/java-objectinputstream

PipedOutputStream This class provides methods to write in a piped output stream to

which the piped input stream must be connected.

Methods of File OutputStream
Methods Description
int write() It is s used to write the byte in the current stream
void flush() This method is used to flush the output stream
void close() It is used to close the output stream

FileInputStreamClass

++ Java FilelnputStream class obtains input bytes from a file.

¢ It is used for reading byte-oriented data (streams of raw bytes) such as image data,

audio, video etc.

Methods of File Input Stream
Methods Description
int read() It is s used to read the byte from the current stream
void flush() This method is used to flush the input stream
void close() It is used to close the input stream

FileOutputStreamClass

+* FileOutputStream is an output stream used for writing data to a file.

+» If you have to write primitive values into a file, use FileOutputStream class.

¢ You can write byte-oriented as well as character-oriented data through

FileOutputStream class.

https://www.javatpoint.com/PipedInputStream-and-PipedOutputStream-classes-using-threads
https://www.javatpoint.com/java-file-class
https://www.javatpoint.com/java-file-class

Methods of File Output Stream
Methods Description
int write() It is s used to write the byte in the current stream
void flush() This method is used to flush the output stream
void close() It is used to close the output stream

Example of FileOutputStream and FilelnputStream:

import java.io.*;
class inp
{
public static void main(String args[])
{
try
{
FileOutputStream f=new FileOutputStream("D:\\myf9.txt");
f.write(10);
FilelnputStream fl=new FilelnputStream("D:\\myf9.txt");
inti;
while((i=f1.read())!=-1)
{
System.out.printin(i);
}
}
catch(IOException e)
{
System.out.printin(e);
}
}

DatalnputStreamcClass and DataOutputStream Class:

¢ The DatalnputStream class read primitive Java data types from an underlying input stream
in a machine-independent way. While the DataOutputStream class write primitive Java
data types to an output stream in a portable way.

Example of DatalnputStream and DataOutputStream:

import java.io.*;
class da

{

public static void main(String args[])throws IOException

{
FileOutputStream f=new FileOutputStream("D:\\myf10.txt");
DataOutputStream fl=new DataOutputStream(f);
f1.write(10);
FilelInputStream f2=new FilelnputStream("D:\\myf10.txt");
DatalnputStream f3=new DatalnputStream(f2);
inti;
while((i=f3.read())!=-1)
{

}

System.out.printin(i);

fl.close();
f3.close();

Program: Write a program to copy the data of one file into another file

import java.io.*;

class cop
{
public static void main(String args[])throws IOException
{
FileInputStream f=new FilelnputStream("D:\\myf1l.txt");
FileOutputStream fl=new FileOutputStream("D:\\copy.txt");
inti;
while((i=f.read())!=-1)
{
f1.write((char)i);
}
f.close();
fl.close();
}

MCQ
1) Byte stream class works on bits 8 ibts
2) Which subclass of byte stream class is DatalnputStream and DataOutputStream
used to read and write the primitive data
types

Q-12) Write a short note on Stream Tokenizer Class

Ans:

RS

% The Java.io.StreamTokenizer class takes an input stream and parses it into "tokens",
allowing the tokens to be read one at a time.

** The stream tokenizer can recognize identifiers, numbers, quoted strings, and various
comment styles.

+«+ For StreamTokenizer, the source is a character stream, Reader.

¢+ Following constant variables used to decide the type of the token:

int ttype When the nextToken() returns a token, this field can be used
to decide the type of the token.

int TT_EOF This field is used to know the end of file is reached.

int TT_EOL This field is used to know the end of line is reached.

int This field is used to decide the token returned by the

TT_NUMBER nextToken() method is a number or not.

int TT_WORD This field is used to decide the token returned by the
nextToken() method is a word or not.

String sval If the token is a word, this filed contains the word that can be
used in programming.

double nval If the token is a word, this filed contains the number that can
be used in programming.

import java.io.*;

public static void main(String args[])throws IOException

FileReader r=new FileReader("D:\\myf1.txt");
StreamTokenizer st=new StreamTokenizer(r);
double sum=0;

int n=0;

while(st.nextToken()!=st.TT_EOF)

if(st.ttype==StreamTokenizer.TT_NUMBER)
sum=sum-+st.nval;

else if(st.ttype==StreamTokenizer.TT_WORD)
n++;

System.out.printin("Sum:" +sum);
System.out.printin("Total Words: "+n);

class stto
{
{
{
}
}

McQ

1) Which class takes an input stream and Stream Tokenizer
parses it in to tokens?

2) Which constant is used to indicate type | ttype

of token?

3) TT_EOF indicates End of File
4) Which constant is used to check TT_NUMBER
whether the returned token is number or

not?

5) Which constant is used to check TT_WORD

whether the returned token is word or
not?

Q-13) Write a short note on Piped Input and Output Stream

Ans:

o,

+* The PipedInputStream and PipedOutputStream classes can be used to read and write
data simultaneously.

¢ Both streams are connected with each other using the connect() method of the

PipedOutputStream class.

import java.io.*;
class pipe
{
public static void main(String args[])
{
PipedOutputStream out=new PipedOutputStream();
PipedinputStream in=new PipedinputStream();

try
{
in.connect(out);
out.write(23);
out.write(24);
for(int i=0;i<2;i++)
System.out.printin(in.read());
}
catch(IOException e)
{
System.out.printin(e);
}

MCQ

1) Which method is used to connect piped connect()
input stream with piped output stream

2) What is main Feature of piped stream? Allows to read and write the data
simultaneously

Q-14) Write a short note on Bridge Class
Ans:

InputStreamReader:

¢ An InputStreamReader is a bridge from byte streams to character streams: It reads
bytes and decodes them into characters using a specified charset.

import java.io.*;

class br
{
public static void main(String args[])throws IOException
{
FileInputStream f=new FilelnputStream("D:\\myf3.txt");
InputStreamReader r=new InputStreamReader(f);
inti;
while((i=r.read())!=-1)
{
System.out.printin((char)i);
}
r.close();
}

OutputStreamWriter:

¢ OutputStreamWriter is a which is used to convert character stream to byte stream,
the characters are encoded into byte using a specified charset. write() method calls
the encoding converter which converts the character into bytes.

import java.io.*;
class br

{

public static void main(String args[])throws IOException
{
FileOutputStream f=new
FileOutputStream("D:\\myf100.txt");
OutputStreamWriter w=new OutputStreamWriter(f);
w.write("hello world");
w.close();

}
}

OB ETTMPUTSTrEaTT aNa UBJeCtOUTPUTSTreanT

¢ The objectinputstream class is mainly used to deserialize the primitive data and
objects which are written by using ObjectOutputStream.

import java.io.*;
class br

{

public static void main(String args[])throws IOException

{
int i=10;
FileOutputStream f=new FileOutputStream("d:\\myfile101.txt");
ObjectOutputStream o=new ObjectOutputStream(f);
o.writelnt(i);

FileInputStream fl=new FilelnputStream("d:\\myfile101.txt");
ObjectinputStream ol=new ObjectinputStream(f1);
System.out.printin("Integer:" +ol.readint());

f.close();
fl.close();

MCQ

1)class is used to convert byte stream InputStreamReader
to character stream class?

2) Which class is used to convert character = OutputStreamWriter
stream to byte stream class?

JAVA UNIT-4 and UNIT-5 MATERIAL

Ch. Topic Details Marks
No.

e Basic Structure of JavaFx Program

e Panes

e Ul Controls and Shapes

e Color and Font Class

¢ Image and Image-View Class

e Layout panes and shapes

e Events and Events Sources

e Registering Handlers and Handling events
e Inner Classes, anonymous inner class

JavaFx basics handlers
and Event e Mouse and Key Events

Driven e Listeners for observable objects
4 Programming ® Animation 14
and and

5 animations

Q-1 what is JavaFx? Explain basic structure of JavaFx program

Ans:

< JavaFx is a java program which is a set of graphics and media packages that enables
developers to design, create, test, debug and deploy rich client applications that
operate consistently across different platforms.

7

% Itis a powerful way for creating graphics applications in java

Basic Structure of JavaFx Program:

Main
Container

Background

for Ul Elements

+* JavaFx have 3 major components namely Stage, Scene and Node
+* Each and every javaFx application must extend
javaFx.application.Application package
1) Stage:
e It contains all the objects of javafx application. It is represented by
Stage class of javafx.stage package.
e The primary stage is created by the platform itself. The created
Stage object is passed to the start() as arguments.
e Start() is the method of application class
e Stage is divided in to content area and border
e Show() is called to display the content of the page

2) Scene:

e |t represents the physical content of javaFx application

e |t contains all the contents of Scene graph

e |tisrepresented by Scene class of javaFx.scene package

e At one time, Scene object is added to only one stage.

e Scene can be created by instantiating Scene class

3) Node:

e Node contains the Ul controls such as button, textbox etc

Different Methods:

1) start() : It is the entry point method of javaFx application where all code
is written

2) init(): It is empty method that can be overridden. In this method, user
can not create a stage or scene

3) stop(): It is also an empty method that can be overridden just like init().
In this method, user can write the code to halt the application

4) launch(): JavaFx implements a static method known as launch() which is
used to launch the javaFx application. As launch is static, the user should
call it from static method only. Generally, static method which calls
launch() is main()

Example:

import javaFx.application.Application;
import javaFx.scene.Scene;

import javafx.stage.Stage;

import javafx.Scene.Control.Button;

public class A extends Application

{

public void start(Stage ps)

{
Button b=new Button(“Ok”);
Scene s=new Scene(b,200,250);
ps.setTitle(“My first prog”);
ps.setScene(s);
ps.show();

}

Q-2 Explain panes in JavaFx
Ans:

e Apaneisa Ul element ("Node") that contains other Ul elements ("child
nodes") and manages the layout of those nodes within the Pane.

e Following are the types of pane in JavaFx class

Flow Pane

Stack Pane

Border Pane

Grid Pane

Tile Pane

O O O O

o Anchor Pane
1) Flow Pane:
e Flow Pane lays all nodes one after another in the order they were
added.

import javafx.application.Application;
import javafx.scene.Scene;

import javafx.stage.Stage;

import javafx.scene.Control.Button;
import javafx.scene.layout.FlowPane;

public class A extends Application

{
public void start(Stage ps)

{
FlowPane p=new FlowPane();
Button b1=new Button(“Ok”);
Button b2=new Button(“Cancel”);
p.getChildren.addAll(b2,b1);
Scene s=new Scene(p,200,250);
ps.setTitle(“Flow layout”);
ps.setScene(s);
ps.show();

2) Stack Pane:
e Stack Pane lays all nodes one on top of another

import javafx.application.Application;
import javaFx.scene.Scene;

import javafx.stage.Stage;

import javafx.scene.Control.Button;
import javafx.scene.layout.StackPane;

public class A extends Application

{

public void start(Stage ps)

{
StackPane p=new StackPane();
Button bl=new Button(“Ok”);
Button b2=new Button(“Cancel”);
p.getChildren.addAll(b2,b1);
Scene s=new Scene(p,200,250);
ps.setTitle(“Stack layout”);
ps.setScene(s);
ps.show();

3) Grid Pane:
e Grid Pane allows you to create flexible grid of rows and columns and
position each node in exact place.

import java.application.Application;
import javaFx.scene.Scene;

import javafx.stage.Stage;

import javafx.Scene.Control.Button;
import javafx.scene.layout.GridPane;
import javafx.Scene.Control.Label;
import javafx.Scene.Control.TextField;

public class A extends Application

{

public void start(Stage ps)

{

Lable I1=new Label(“Username”);
Label 12=new Label(“Password”);
TextField t1=new TextField();
TextField t2=new TextField();
Button b=new Button(“Submit”);
GridPane g=new GridPane();
g.addRow(0,I1,t1);
g.addRow(1,12,t2);
g.addRow(2,b);

Scene s=new Scene(g,200,250);
ps.setTitle(“Grid layout”);
ps.setScene(s);

ps.show();

4) Border Pane:

e BorderPane splits the scene in five regions such as: top, bottom, left,
right, and center. Where you can adjust added nodes. BorderPane also
allows you to add different panes in each region

import javafx.application.Application;
import javafx.scene.Scene;

import javafx.stage.Stage;

import javafx.Scene.Control.Button;
import javafx.scene.layout.BorderPane;

public class A extends Application

{
public void start(Stage ps)

{
Button bl=new Button(“Left Button”);
Button b2=new Button(“Right Button”);
Button b3=new Button(“Top Button”);
Button b4=new Button(“Bottom Button”);
Button b5=new Button(“Center Button”);
BorderPane bp=new BorderPane();
bp.setLeft(b1);
bp.setRight(b2);
bp.setTop(b3);
bp.setBottom(b4);
bp.setCenter(b5);
Scene s1=new Scene(bp,200,250);
ps.setScene(s1);
ps.show();

5) Anchor Pane:
e ltis alayout component that allows the edges of child nodes to be

anchored to an offset from edges of Anchor Pane

e Each child can have up to 4 anchors
o Top Anchor
o Bottom Anchor
o Left Anchor
o Right Anchor
e When you specify the constraints to one of the above mentioned 4
anchors, you specify the node and distance from pane to child
node in pixel

Example:

import javafx.application.Application;
import javafx.scene.Scene;

import javafx.stage.Stage;

import javafx.Scene.Control.Button;
import javafx.scene.layout.AnchorPane;

public class A extends Application

{

public void start(Stage ps)

{

Button b=new Button(“ok”);
TextArea t=new TextArea();
AnchorPane a=new AnchorPane();
a.getChildren().addAll(t,b);
a.setTopAnchor(t,10.0);
a.setBottomAnchor(t,10.0);
a.setLeftAnchro(t,10.0);
a.setRightAnchor(t,10.0);

a.setLeftAnchor(b,20.0);
a.setRightAnchor(b,20.0);
a.setTopAnchor(b,20.0);
a.setBottomAnchor(b,20.0);

Scene s1=new Scene(a,200.250);
ps.setScene(sl);
ps.show();

}

6) Tile Pane:

It is a layout container which is so similar to Flow Pane

It arranges the child components on a row and automatically pushes the
components down to next line if the current row is filled up

Tile Pane will arrange all its child nodes in same cell size while in Flow
Pane the cell size differs depending upon button size.

import javafx.application.Application;
import javafx.scene.Scene;

import javafx.stage.Stage;

import javafx.Scene.Control.Button;
import javafx.scene.layout.TilePane;

public class A extends Application

{

public void start(Stage ps)

{
Button bl=new Button(“ok”);
Button b2=new Button(“Cancel”);
Button b3=new Button(“Retry”);
Button b4=new Button(“hide”);
Button b5=new button(“hhh”);

b1l.setMaxSize(Double. MAX_VALUE, Double.MAX_VALUE);
b2.setMaxSize(Double. MAX_VALUE, Double.MAX_VALUE);
b3.setMaxSize(Double. MAX_VALUE, Double.MAX_VALUE);
b4.setMaxSize(Double. MAX_VALUE, Double.MAX_VALUE);
b5.setMaxSize(Double.MAX_VALUE, Double.MAX_VALUE);

b2.setPrefSize(80,60);

TilePane t=new TilePane();
t.getChildren().addAll(b1,b2,b3,b4,b5);
Scene s1=new Scene(t,200.250);
ps.setScene(sl);

ps.show();

}

Border Pane

1) Anchor Pane allows the edges
of child nodes to be anchored

to an offset from the anchor

pane's edges

Anchor Pane

1) Border Pane lays out children
in top, left, right, bottom, and
center positions.

Difference between Flow Pane and Tile Pane

Flow Pane

1) The Tile Pane places all of the

child nodes in a single row and

pushes in the next line if row is

completed but each cell have

same size

Q-3 Explain Ul controls and shapes

Ans:
Ul Controls:

1) Label:

Tile Pane

1) The Tile Pane places all of the
child nodes in a single row and
pushes in the next line if row is
completed but each cell have
same size

e A Label object is a component for placing text.

Example:

import javafx.application.Application;
import javafx.stage.Stage;

import javafx.scene.Scene;

import javafx.scene.control.Label;
import javafx.scene.layout.FlowPane;

public class A extends Application

{
public void start(Stage s)
{
Label I=new Label();
FlowPane f=new FlowPane();
f.getChildren().addAll(l);
Scene sl=new Scene(f,200,250);
s.setScene(sl);
s.show();
}
}
2) Labeled:

e Labeled is a more general class that Label extends. It is an abstract
class that is the parent of Label and other controls like Button,
CheckBox, and RadioButton. These controls can display text and/or
graphics.

e While Label is a subclass of Labeled, other controls like Button also
inherit from Labeled.

Label Labeled

Label is a specific subclass of Labeled is an abstract class that
Labeled designed for displaying provides a foundation for any control
text only. that can display both text and

graphics (like Button, CheckBox, etc.).

Use Label when you want to Use Labeled when working with

display a simple text element. other controls like Button, CheckBox,
etc., that can contain both text and
graphics.

3) Button:
e This class creates a labeled button. This control is used to perform
some action on its click event

import javafx.application.Application;
import javafx.stage.Stage;

import javafx.scene.Scene;

import javafx.scene.control.Button;
import javafx.scene.layout.FlowPane;
public class A extends Application

{
public void start(Stage s)

{
Button bl=new Button("Ok");
Button b2=new Button("Cancel");
FlowPane f=new FlowPane();
f.getChildren().addAll(b1,b2);
Scene s1l=new Scene(f,200,250);
s.setScene(sl);
s.show();

4) TextField:
e ATextField object is a text component that allows for the editing of
a single line of text.
e ltis a control that allows the user to enter single line data

import javafx.application.Application;
import javafx.stage.Stage;

import javafx.scene.Scene;

import javafx.scene.control.TextField;
import javafx.scene.layout.FlowPane;

public class A extends Application
{
public void start(Stage s)
{
TextField t=new TextField();
FlowPane f=new FlowPane();
f.getChildren().addAll(t);
Scene s1=new Scene(f,200,250);
s.setScene(sl);
s.show();

5) TextArea:

e A Text Area object is a text component that allows for the editing
of a multi-line of text.

e I|tis a control that allows the user to enter multi- line data like
address

import javafx.application.Application;
import javafx.stage.Stage;

import javafx.scene.Scene;

import javafx.scene.control.TextArea;
import javafx.scene.layout.FlowPane;

public class A extends Application
{
public void start(Stage s)
{
TextField t=new TextArea();
FlowPane f=new FlowPane();
f.getChildren().addAll(t);
Scene sl=new Scene(f,200,250);
s.setScene(sl);
s.show();

6) CheckBox:
e A CheckBox is a graphical component that can be in either an
on(true) or off (false) state.
e User can select multiple checkbox or single checkbox or zero
checkbox depending upon requirement of user.

import javafx.application.Application;

import javafx.stage.Stage;

import javafx.scene.Scene;

import javafx.scene.control.CheckBox;
import javafx.scene.layout.FlowPane;

public class A extends Application

{
public void start(Stage s)

{
CheckBox c1=new CheckBox(“Reading”);
CheckBox c2=new CheckBox(“Dancing”);
CheckBox c3=new CheckBox(“Singing”);
FlowPane f=new FlowPane();
f.getChildren().addAll(c1,c2,c3);
Scene s1l=new Scene(f,200,250);
s.setScene(sl);
s.show();

7) RadioButton:
e The Radio Button class is a graphical component, which can either
be in a ON (true) or OFF (false) state in a group.
e Radio button are mutually exclusive that is user can select only one
radio button at a time.

import javafx.application.Application;
import javafx.stage.Stage;

import javafx.scene.Scene;

import javafx.scene.control.CheckBox;
import javafx.scene.layout.FlowPane;
import javafx.scene.control.ToggleGroup
public class A extends Application

{
public void start(Stage s)

{
ToggleGroup t=new ToggleGroup();
RadioButton rl=new RadioButton(“Male”);
rl.setToggleGroup(t);
RadioButton r2=new RadioButton(“Female”);
r2.setToggleGroup(t);
FlowPane f=new FlowPane();
f.getChildren().addAll(r1,r2);
Scene s1=new Scene(f,200,250);
s.setScene(sl);
s.show();

8) Combo Box:

e AJavaFX ComboBox control enables the user to select an option
from a predefined list of choices, or type in a value.

e The difference between combo box and listview is that in
combobox, at load time only one data will be visible to user, rest of
items will be visible when user will click that combobox and in
listivew, at load time entire list or all the items are visible to user

import javafx.application.Application;
import javafx.stage.Stage;

import javafx.scene.Scene;

import javafx.scene.control.ComboBox;
import javafx.scene.layout.FlowPane;
import jaafx.collections.FXCollections;
import javafx.collections.Observablelist;
public class A extends Application

{
public void start(Stage s)

{

ObservablelList<String>

items=FXCollections.observableArrayList(“M.B.A”,M.Sc.IT”, L.T”);
ComboBox c=new ComboBox(items);
FlowPane f=new FlowPane();
f.getChildren().addAll(c);
Scene s1l=new Scene(f,200,250);
s.setScene(sl);
s.show();

9) ListView:

e A ListView component presents the user with a scrolling list of text
items.

e The difference between combo box and listview is that in combobox,
at load time only one data will be visible to user, rest of items will be
visible when user will click that combobox and in listivew, at load time
entire list or all the items are visible to user

import javafx.application.Application;
import javafx.stage.Stage;

import javafx.scene.Scene;

import javafx.scene.control.ListView;
import javafx.scene.layout.FlowPane;
import jaafx.collections.FXCollections;
import javafx.collections.Observablelist;

public class A extends Application

{
public void start(Stage s)

{
ObservablelList<String>
items=FXCollections.observableArrayList(“M.B.A”,M.Sc.IT”, I.T”);
LisView<String>l=new ListView<String>(items);
FlowPane f=new FlowPane();
f.getChildren().addAll(l);
Scene sl1=new Scene(f,200,250);
s.setScene(sl);
s.show();

10) ProgressBar:

e Asthe task progresses towards completion, the progress bar
displays the task's percentage of completion.

import javafx.application.Application;
import javafx.stage.Stage;

import javafx.scene.Scene;

import javafx.scene.control.ProgressBar;
import javafx.scene.layout.FlowPane;

public class A extends Application

{
public void start(Stage s)
{
ProgressBar p=new ProgressBar(0.6);
Progressindicator pi=new Progresindicator(0.6);
FlowPane f=new FlowPane();
f.getChildren().addAll(p,pi);
Scene s1l=new Scene(f,200,250);
s.setScene(sl);
s.show();
}
}
11) Slider:

e ASlider lets the user graphically select a value by sliding a knob within a
bounded interval.

import javafx.application.Application;
import javafx.stage.Stage;

import javafx.scene.Scene;

import javafx.scene.control.Slider;
import javafx.scene.layout.FlowPane;

public class A extends Application

{
public void start(Stage s)

{
Slider s=new Slider();
s.setMin(0);
s.setMax(100);
s.setValue(50);
FlowPane f=new FlowPane();
f.getChildren().addAll(s);
Scene s1=new Scene(f,200,250);
s.setScene(sl);
s.show();

12) ColorPicker:

e A ColorPicker provides a pane of controls designed to allow a user to
manipulate and select a color.

import javafx.application.Application;
import javafx.stage.Stage;

import javafx.scene.Scene;

import javafx.scene.control.ColorPicker;
import javafx.scene.layout.FlowPane;
public class A extends Application

{
public void start(Stage s)

{

ColorPicker c=new ColorPicker();
FlowPane f=new FlowPane();
f.getChildren().addAll(c);

Scene s1l=new Scene(f,200,250);
s.setScene(sl);

s.show();

13) DatePicker:

e The DatePicker control allows the user to enter a date as text or to
select a date from a calendar popup.

import javafx.application.Application;
import javafx.stage.Stage;

import javafx.scene.Scene;

import javafx.scene.control.DatePicker;
import javafx.scene.layout.FlowPane;
public class A extends Application

{

public void start(Stage s)

{
DatePicker d=new DatePicker();
FlowPane f=new FlowPane();
f.getChildren().addAll(d);
Scene sl1=new Scene(f,200,250);
s.setScene(sl);
s.show();

14) ScrollBar:

e A Scrollbar control represents a scroll bar component in order to enable
user to select from range of values.

import javafx.application.Application;
import javafx.stage.Stage;

import javafx.scene.Scene;

import javafx.scene.control.ScrollBar;
import javafx.scene.layout.FlowPane;
public class A extends Application

{
public void start(Stage s)

{
ScrollBar s=new ScrollBar();
s.setMin(0);
s.setMax(100);
s.setValue(50);
FlowPane f=new FlowPane();
f.getChildren().addAll(s);
Scene s1=new Scene(f,200,250);
s.setScene(sl);
s.show();

15) Password Field:

e A PasswordField object is a text component specialized for password
entry.

import javafx.application.Application;
import javafx.stage.Stage;

import javafx.scene.Scene;

import javafx.scene.control.PasswordField;
import javafx.scene.layout.FlowPane;

public class A extends Application

{
public void start(Stage s)
{
PasswordField p=new PasswordField();
FlowPane f=new FlowPane();
f.getChildren().addAll(p);
Scene s1l=new Scene(f,200,250);
s.setScene(s1);
s.show();
}
}
Shapes:
1) Line:

e InJavaFX, a line, or a line segment, is represented by a class named
Line
e This class belongs to the package javafx.scene.shape
e By instantiating this class, you can create a line node in JavaFX.
e Line class has following 4 methods:
o setStartX()
o setStartY()
o seteEndX()
o setEndY()

(x1, y1) (x2, y2)

import javafx.application.Application;
import javafx.stage.Stage;

import javafx.scene.Scene;

import javafx.scene.shape.Line;
import javafx.scene.Group;

public class A extends Application

{
public void start(Stage s)

{
Line I=new Line();
l.setStartX(100.0);
l.setStartY(150.0);
l.setEndX(500.0);
l.setEndY(150.0);
Group g=new Group(l);
Scene sl=new Scene(g,200,250);
s.setScene(s1);
s.show();

2) Rectangle:
e InJavaFX, a Rectangle is represented by a class named Rectangle
e This class belongs to the package javafx.scene.shape
e Rectangle class has following 4 methods:
o setX()
o setY()
o setWidth()
o setHeight()

(x, .v)

bz =05 —

1

= —— width ——

import javafx.application.Application;
import javafx.stage.Stage;

import javafx.scene.Scene;

import javafx.scene.shape.Rectangle;
import javafx.scene.Group;

public class A extends Application

{
public void start(Stage s)

{
Rectangle r=new Rectangle();
r.setX(150.0);
r.setY(75.0);
r.setWidth(400.0);
r.setHeight(150.0);
Group g=new Group(r);
Scene sl=new Scene(g,200,250);
s.setScene(sl);
s.show();

3) Rounded rectangle:

e InJavaFX, a rectangle with arched edges is known as rounded
rectangle.
e ltisrepresented by Rectangle class.
e This class belongs to the package javafx.scene.shape
e Rounded rectangle class has following 6 methods:
o setX()
setY()
setWidth()
setHeight()
setArcHeight()
setArcWidth()

O O O O O

Aréc iviédth
r . BENG

Arc height

import javafx.application.Application;

import javafx.stage.Stage;

import javafx.scene.Scene;

import javafx.scene.shape.Rectangle;

import javafx.scene.Group;

public class A extends Application

{

public void start(Stage s)

{

4) Circle:

e InlJavaFX, a circle is represented by a class named Circle. A circle is the
locus of all points at a fixed distance (radius of circle) from a fixed point

Rectangle r=new Rectangle();
r.setX(150.0);

r.setY(75.0);
r.setWidth(400.0);
r.setHeight(150.0);
r.setArcWidth(30.0);
r.setArcHeight(20.0);

Group g=new Group(r);
Scene s1l=new Scene(g,200,250);
s.setScene(s1);

s.show();

(the centre of circle).

e This class belongs to the package javafx.scene.shape

e Circle class has following 3 methods:

o setCenterX()
o setCenterY()
o setRadius()

Center of the circle

radius of the circle

import javafx.application.Application;
import javafx.stage.Stage;
import javafx.scene.Scene;

import javafx.scene.shape.Circle;

import javafx.scene.Group;

public class A extends Application

{

public void start(Stage s)

{
Circle c=new Circle();
c.setCenterX(300.0);
c.setCenterY(150.0);
c.setRadius(50.0);
Group g=new Group(c);
Scene s1=new Scene(g,200,250);
s.setScene(sl);
s.show();

5) Ellipse:

e An Ellipse is defined by two points, each called a focus. If any point
on the Ellipse is taken, the sum of the distances to the focus points
is constant. The size of the Ellipse is determined by the sum of these
two distances. The sum of these distances is equal to the length of
the major axis (the longest diameter of the ellipse).

e InlJavaFX, a circle is represented by a class named Ellipse.

e This class belongs to the package javafx.scene.shape

e Circle class has following 4 methods:

setCenterX()

setCenterY()

setRadiusX()

setRadiusY()

O

O

O

import javafx.application.Application;
import javafx.stage.Stage;

import javafx.scene.Scene;

import javafx.scene.shape.Ellipse;
import javafx.scene.Group;

public class A extends Application
{
public void start(Stage s)
{
Ellipse e=new Ellipse();
e.setCenterX(300.0);
e.setCenterY(150.0);
e.setRadiusX(150.0);
e.setRadiusY(75.0);
Group g=new Group(e);
Scene s1=new Scene(g,200,250);
s.setScene(s1);
s.show();

6) Arc:

An arc in simple geometry is defined as a portion of a circumference
of an ellipse or a circle.
In JavaFX, arc is represented by a class named Arc.
This class belongs to the package javafx.scene.shape
Arc class has following 6 methods:
o setCenterX()
setCenterY()
setRadiusX()
setRadiusY()
setStartAngle()
setLength()

O O O O O

radiusX

import javafx.application.Application;
import javafx.stage.Stage;
import javafx.scene.Scene;
import javafx.scene.shape.Arc;
import javafx.scene.Group;
public class A extends Application
{
public void start(Stage s)
{
Arc a=new Arc();
a.setCenterX(400.0);
a.setCenterY(200.0);
a.setRadiusX(50.0);
a.setRadiusY(80.0);
a.setStartAngle(30.0);
a.setLength(70.0);
Group g=new Group(a);
Scene sl=new Scene(g,200,250);
s.setScene(sl);
s.show();

}

6) Polygon:

e Polygon is geometrically defined as a closed shape formed by a number
of coplanar line segments connected from end to end.

e There are various types of Polygons based on the numbers of sides and
angles.

If a polygon has three sides, then it is referred to as a triangle.

If a polygon has four sides, then it is known as quadrilateral. Shapes like
rectangles, squares, parallelogram etc., are all types of quadrilaterals.

If a polygon has five sides, then it is known as a pentagon. Similarly, the polygon
with six sides is called hexagon, seven sides is heptagon, eight sides is octagon
etc.

Triangle Rectangle Pentagon

Hexagon Heptagon Octagon

Decagon

e InJavaFX, Polygon is represented by a class named Polygon.

e This class belongs to the package javafx.scene.shape
e Polygon has only 1 method:
o getPoints().addAll(new Double[]){.......};

Triangle:

import javafx.application.Application;
import javafx.stage.Stage;

import javafx.scene.Scene;

import javafx.scene.shape.Polygon;
import javafx.scene.Group;

public class A extends Application
{
public void start(Stage s)
{
Polygon p=new Polygon();
p.getPoints().addAll(new Double[]{200.0,200.0,300.0,100.0,400.0,200.0});
Group g=new Group(p);
Scene sl=new Scene(g,200,250);
s.setScene(sl);
s.show();

Pentagon:

import javafx.application.Application;
import javafx.stage.Stage;
import javafx.scene.Scene;
import javafx.scene.shape.Polygon;
import javafx.scene.Group;
public class A extends Application
{
public void start(Stage s)
{

Polygon p=new Polygon();
p.getPoints().addAll(new Double][]
{400.0,300.0,350.0,250.0,450.0,150.0,500.0,250.0,470.0,300.0});

Group g=new Group(p);

Scene sl=new Scene(g,200,250);

s.setScene(s1);

s.show();

Hexagon:

import javafx.application.Application;
import javafx.stage.Stage;

import javafx.scene.Scene;

import javafx.scene.shape.Polygon;
import javafx.scene.Group;

public class A extends Application

{
public void start(Stage s)

{
Polygon p=new Polygon();
p.getPoints().addAll(new Double[]
{400.0,300.0,300.0,200.0,400.0,100.0,500.0,100.0,600.0,200.0,500.0,300.0});
Group g=new Group(p);
Scene sl=new Scene(g,200,250);
s.setScene(sl);
s.show();

Octagon:

import javafx.application.Application;
import javafx.stage.Stage;

import javafx.scene.Scene;

import javafx.scene.shape.Polygon;
import javafx.scene.Group;

public class A extends Application

{
public void start(Stage s)

{
Polygon p=new Polygon();

p.getPoints().addAll(new Double[]
{400.0,300.0,300.0,200.0,300.0,100.0,400.0,50.0,500.0,50.0,600.0,100.0,600.0,
200.0,500.0,300.0});

Group g=new Group(p);

Scene sl=new Scene(g,200,250);

s.setScene(s1);

s.show();

7) PolyLine:

e A Polyline is same as a polygon except that a polyline is not closed in the
end.
e InJavaFX, Polyline is represented by a class named Polyline.
e This class belongs to the package javafx.scene.shape
e Polyline has only 1 method:
o getPoints().addAll(new Double[]){.......};

A polyline of 5 lines A polyline of 6 lines

Triangle with PolyLine:

import javafx.application.Application;
import javafx.stage.Stage;
import javafx.scene.Scene;
import javafx.scene.shape.PolylLine;
import javafx.scene.Group;
public class A extends Application
{
public void start(Stage s)
{
PolyLine p=new PolyLine();
p.getPoints().addAll(new Double[]{200.0,200.0,300.0,100.0,400.0,200.0});
Group g=new Group(p);
Scene sl=new Scene(g,200,250);
s.setScene(s1);
s.show();

8) CubicCurve:

e A cubic curve is a Bezier parametric curve in the XY plane is a curve of
degree 3. It is drawn using four points — Start Point, End Point, Control
Pointl and ControlPoint2.

e InJavaFX, Cubic Curve is represented by a class named Cubic Curve

e This class belongs to the package javafx.scene.shape

e Cubic Curve class has following 8 methods:

o setStartX()
o setStartY()

setControlX1()

setControlY1()

setControlX2()

setControlY2()

setEndX()

setEndY()

o O O O O O

Control point 1

(x, v)

(x, v)
End point

Start point
x, ¥)

(x, ¥v)

Control point 2

Example:

import javafx.application.Application;
import javafx.stage.Stage;

import javafx.scene.Scene;

import javafx.scene.shape.CubicCurve;

import javafx.scene.Group;

public class A extends Application

{

public void start(Stage s)

{

CubicCurve c=new CubicCurve();
c.setStartX(200.0);
c.setStartY(200.0);
c.setControlX1(300.0);
c.setControlY(100.0);
c.setControlX2(400.0);
c.setControlY2(300.0);
c.setEndX(500.0);
c.setEndY(200.0);

Group g=new Group(c);

Scene sl=new Scene(g,200,250);
s.setScene(sl);

s.show();

}

9) QuadCurve:

A quadratic curve is a Bezier parametric curve in the XY plane which is a
curve of degree 2. It is drawn using three points. Start Point, End Point,
Control Point.
In JavaFX, Quad Curve is represented by a class named Quad Curve
This class belongs to the package javafx.scene.shape

Quad Curve class has following 8 methods:

o setStartX()
o setStartY()
o setControlX()

o setControlY()
o setEndX()
o setEndY()

Control point

(x, v)
// \\
- & \\
/ \
& b
7, R
g \
V4 \N
/ \\
S .
4 N
/ .
: \
< o
xX
(r y) (x’ y)
Start point End point

Example:

import javafx.application.Application;

import javafx.stage.Stage;

import javafx.scene.Scene;

import javafx.scene.shape.QuadCurve;

import javafx.scene.Group;

public class A extends Application

{

public void start(Stage s)

{

QuadCurve c=new QuadCurve();
c.setStartX(200.0);
c.setStartY(200.0);
c.setControlX(300.0);
c.setControlY(100.0);
c.setEndX(500.0);
c.setEndY(200.0);

Group g=new Group(c);

Scene sl=new Scene(g,200,250);
s.setScene(s1);

s.show();

}

Q-4 Write a short note on Color class and Font class
Ans:
Color Class:

e When you draw a 2D shape in a JavaFX application, you might have
observed that, by default, it is colored black. But, the color black is not
always suitable for all types of applications a user creates. Hence, JavaFX
allows you to change this default color into whichever color the user
deems perfect for their application.

e To apply colors to an application, JavaFX provides various classes in the
package javafx.scene.paint package. This package contains an abstract
class named Paint and it is the base class of all the classes that are used
to apply colors.

e All those node classes to which color can be applied such as shape, text
have two methods: setFill() and setStroke()

Example:

import javafx.application.Application;
import javafx.stage.Stage;

import javafx.scene.Scene;

import javafx.scene.shape.Circle;
import javafx.scene.Group;

import javafx.scene.paint.Color;
public class A extends Application

{
public void start(Stage s)

{

Circle c=new Circle();
c.setCenterX(300.0);
c.setCenterY(150.0);
c.setRadius(50.0);
c.setFill(Color.RED);

Group g=new Group(c);

Scene sl=new Scene(g,200,250);
s.setScene(sl);

s.show();

}

Font Class:

e A Fontis defined by its name, weight, posture, and size.

e The javafx.scene.text.Font class is used to create fonts,

Font Class
Fc()EZITI:rrir)‘e Font Posture Font Size
(ITALIC)
Font Weight
(BOLD,
EXTRA_BOLD
Example:

import javafx.application.Application;
import javafx.stage.Stage;

import javafx.scene.Scene;

import javafx.scene.layout.FlowPane;
import javafx.scene.text.Text;

import javafx.scene.text.Font;

import javafx.scene.text.FontWeight;
import javafx.scene.text.FontPosture;
public class A extends Application

{
public void start(Stage s)

{
Text t=new Text(“hello how are you”);
Font f= Font. font(“Calibri”,FontWeight.EXTRA_BOLD,FontPosture.ITALIC,40);
t.setFont(f);
FlowPane fl=new FlowPane();
f1.getChildren().addAll(t);
Scene s1=new Scene(f1,200,250);
s.setScene(sl);
s.show();

}

Q-5 Explain Property Binding

Ans

e Target object can be binded to source object. A change in source object

will be automatically reflected in target object

Property binding in javafx is a concept that enables a target object to be
bound to source object. The target object is called a binding object or
binding property and source object is called bindable object.

Example: Circle is not centered after window is resized. In order to
display the circle centered as window resizes, x and y coordinates of
circle need to be reset to the center of the pane. This can be done by
binding centerX with pane’s width/2 and center with pane’s height/2

Example:

import javafx.application.Application;
import javafx.scene.Scene;

import javafx.stage.Stage;

import javafx.scene.layout.Pane;
import javafx.scene.shape.Circle;

public class A extends Application

{

public void start(Stage s)

{
Circle c=new Circle();
Pane p=new Pane();
c.centerXProperty().bind(p.widthProperty().divide(2));
c.centerYProperty().bind(p.heightProperty().divide(2));
c.setRadius(50.0);
p.getChildren().addAll(c);
Scene s1=new Scene(p,200,250);
s.setScene(s1);
s.show();

Q-6 Explain Image and ImageView Class

Ans:

ImageView is a class used for painting and loading images with Image
class
Image View class is allowing user to resize the displayed image by
without affecting the aspect ratio and also without effecting image
pixels
In javafx, before creating the lamgeView class, we must create Image
Class to load this object into ImageView class
Following are the different methods of ImageView class

o setX() : used to set x coordinates of image

o setY(): used to set y coordinates of image

o setFitWidth(): used to set width of image

o setFitHeight(): used to set height of image
Image class and ImageView class is available in:

o import javafx.scene.image.lmage;

o import javafx.scene.image.lImageView

Example:

import javafx.application.Application;
import javafx.scene.Scene;

import javafx.stage.Stage;

import javafx.scene.Group;

import javafx.scene.image.lmage;
import javafx.scene.image.lmageView;
import java.io.*;

public class A extends Application

{

public void start(Stage s)throws Exception

{
FileInputStream f=new FilelnputStream(“E:\\images\\1.jpg");

Image i=new Image(f);
ImageView v=new ImageView(i);
v.setX(200.0);

v.setY(150.0);
v.setFitWidth(400.0);
v.setFitHeight(300.0);

Group g=new Group(v);

Scene s1=new Scene(g,200,250);
s.setScene(s1);

s.show();

Q-7 Explain Event handling in javafx
Ans:

e Injavafx applications, an event is a change in the state of an object
triggered by some action such as clicking the button, scrolling the page
etc. The package used for event handling is:

import javafx.event.Event;
import javafx.event.EventHandler;
e An eventis occurred whenever user interacts with application nodes.

e There are2 types of events:

1) Foreground Events: The events which require user interaction with GUI
application such as button click etc

2) Background Events: The events which does not require user’s interaction
with application. These events are mainly occurred due to operating
system interrupts, failure, operation completion etc.

Every event has 3 components:

1) Event Source: The node or the controls which generate the event
Example: Button

2) Event Target: The node or the controls on which event occurred
Example: Scene, Window

3) Type: It indicates type of event
Example: Button click event

Event Delivery Process:

Stage
scens |
 Group |
Submit Reset TextField

1) Route Construction:
e An event dispatch chain is created in order to determine the default
route of the event, whenever it is generated
e The event dispatch chain contains the path from stage to Node in which
the event is generated

2) Event Capturing Phase:
e Once the event dispatch chain is created, the event is dispatched from
source node of event.
e Allthe nodes are traversed by the event from top to bottom
e If the event filter is registered with any of the nodes, it will be executed.
e If any of the nodes are not registered with event filter then the event is
transferred to target node. The target node processes the event.

3) Event Bubbling:

e Event bubbling can be defined as a phase of Event propagation in which
if an event occurs on a particular element will propagate or bubble up to
the ancestor or the parent elements in the DOM hierarchy.

e Once the event is processed by target node or by any of the registered
filter, the event traverses all the nodes again from bottom to stage
node.

4) Event Handlers and Filters:
e |t contains the application logic to process an event. Node can be
registered to more than one event filter.

Event Classes in javafx:

1) Action Event:

e |nJavaFX, the ActionEvent class, a subclass of Event, represents actions
like button clicks and key presses, and is used to handle events in your
GUI. The package used for ActionEvent class is import
javafx.event.ActionEvent.

e Action Event class is used in conjunction with event handlers like
setOnAction() for buttons to define what should happen when specific
action occurs.

Example:

import javafx.application.Application;
import javafx.scene.Scene;

import javafx.stage.Stage;

import javafx.Scene.Control.Button;
import javafx.scene.layout.GridPane;
import javafx.event.ActionEvent;
import javafx.event.EventHandler;
import javafx.Scene.Control.Label;

public class A extends Application

{
public void start(Stage ps)

{
Button b=new Button(“Ok”);
GridPane g=new GirdPane();
Label I=new Label();
EventHandler<ActionEvent> e=new EventHandler<ActionEvent>(){
public void handle(ActionEvent el)
{
l.setText(“Hello”);
}
2
b.setOnAction(e);
g.addRow(0,b);
g.addRow(0,l);
Scene s1=new Scene(g,200,250);
s.setScene(s1);
s.show();

}
}

2) Mouse Event:
e InJavaFX, the MouseEvent class belongs to following package:
import javafx.scene.input.MouseEvent
e Mouse Event class represents events triggered by mouse interactions like
clicking, dragging, entering, and exiting a node. You can use this class to
handle these events and react accordingly in your application.
e Following are the methods of MouseEvent class
1) MousePressed()
2) MouseReleased()
3) MouseDragged()
4) MouseClicked()
5) MouseEntered()
6) MouseExited()

Example:

import javafx.application.Application;
import javafx.scene.Scene;

import javafx.stage.Stage;

import javafx.scene.layout.GridPane;
import javafx.event.MouseEvent;
import javafx.event.EventHandler;
import javafx.Scene.Control.Label;

public class A extends Application

{
public void start(Stage ps)

{
GridPane g=new GirdPane();
Label I=new Label();

EventHandler<MouseEvent> el=new EventHandler<MouseEvent>(){
public void handle(MouseEvent el)
{

l.setText(“Mouse Pressed”);
}
2
EventHandler<MouseEvent> e2=new EventHandler<MouseEvent>(){
public void handle(MouseEvent e2)
{

l.setText(“Mouse Released”);
}
2
EventHandler<MouseEvent> e3=new EventHandler<MouseEvent>(){
public void handle(MouseEvent e3)
{

l.setText(“Mouse Clicked”);
}
|7

EventHandler<MouseEvent> e4=new EventHandler<MouseEvent>(){
public void handle(MouseEvent e4)
{
l.setText(“Mouse Entered”);
}
2

EventHandler<MouseEvent> e5=new EventHandler<MouseEvent>(){
public void handle(MouseEvent e5)
{

l.setText(“Mouse Exited”);
}
|7
EventHandler<MouseEvent> e6=new EventHandler<MouseEvent>(){
public void handle(MouseEvent e6)
{

l.setText(“Mouse Dragged”);
}
2
g.getChidren().addAll(l);
Scene s1=new Scene(g,200,250);
sl.setOnMousePressed(el);
sl.setOnMouseReleased(e2);
sl.setOnMouseClicked(e3);
sl.setOnMouseEntered(e4);
sl.setOnMouseExited(e5);
sl.setOnMouseDragged(e6);
ps.setScene(s1);
ps.show();

}
}

3) Key Event:

In JavaFX, the KeyeEvent class belongs to following package:

import javafx.scene.input.KeyEvent
e An event which indicates that a keystroke occurred in a Node . This event
is generated when a key is pressed, released, or typed. Depending on the
type of the event it is passed to onKeyPressed , onKeyTyped or
onKeyReleased function.
e Following are the methods of MouseEvent class
1) KeyPressed()
2) KeyReleased()
3) KeyTyped()

Example:

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.stage.Stage;
import javafx.scene.layout.GridPane;
import javafx.event.KeyEvent;
import javafx.event.EventHandler;
import javafx.Scene.Control.Label;
public class A extends Application
{

public void start(Stage ps)

{

GridPane g=new GirdPane();
Label I=new Label();

EventHandler<KeyEvent> el=new EventHandler<KeyEvent>(){
public void handle(KeyEvent el)
{

l.setText(“Key Pressed”);
}
|7
EventHandler<KeyEvent> e2=new EventHandler<KeyEvent>(){
public void handle(KeyEvent e2)
{

l.setText(“Key Released”);
}
2
EventHandler<KeyEvent> e3=new EventHandler<KeyEvent>(){
public void handle(KeyEvent e3)
{

l.setText(“Key Typed”);
}
2

g.getChidren().addAll(l);

Scene s1=new Scene(g,200,250);
sl.setOnKeyPressed(el);
sl.setOnKeyReleased(e2);
sl.setOnKeyTyped(e3);
ps.setScene(sl);

ps.show();

}
}

Q-8 Write a short note on nested and inner class in javafx

Ans:

In Javafx , nested classes and inner classes are common ways to
organize your code and improve the readability and structure of your
application.

The classes are defined within another class, but they differ in how they
are structured and how they can access members of the enclosing class.

Types of Nested and Inner Classes:

1. Static Nested Class: A nested class that is marked as static. It can exist

independently of an instance of the enclosing class and doesn't have
access to the instance variables of the enclosing class.

. Non-static Inner Class: A nested class that is not marked as static. It has

access to all the members (including private members) of the enclosing
class.

. Local Class: A class defined within a method or a block of code, usually

to provide a specific functionality to that method or block. Local classes
can access local variables and parameters within the method they are
defined.

Anonymous Inner Class: A class defined and instantiated in a single
expression, usually to handle a specific action like event handling.

Example: Static Nested Class

import javafx.application.Application;
import javafx.scene.Scene;

import javafx.stage.Stage;

import javafx.scene.control.Button;
import javafx.scene.layout.FlowPane;

public class A extends Application
{
public void start(Stage s)
{
FlowPane f=new FlowPane();
B bl=new B();
bl.print();
Scene s1=new Scene(f,200,250);
s.setScene(sl);
s.show();

static class B

{
public void print()

{

System.out.printin("hello");

}

Example: Non-Static Nested Class

import javafx.application.Application;
import javafx.scene.Scene;

import javafx.stage.Stage;

import javafx.scene.control.Button;
import javafx.scene.layout.FlowPane;

public class A extends Application

{

private String s="hello how are you”;
public void start(Stage s)

{
FlowPane f=new FlowPane();
B bl=new B();
bl.print();
Scene s1=new Scene(f,200,250);
s.setScene(sl);
s.show();
}
class B
{
public void print()
{
System.out.printin(s);
}

Example: Local Nested Class

import javafx.application.Application;
import javafx.scene.Scene;

import javafx.stage.Stage;

import javafx.scene.control.Button;
import javafx.scene.layout.FlowPane;

public class A extends Application

{
public void start(Stage s)

{

FlowPane f=new FlowPane();
class B
{
public void print()
{
System.out.printin(“hello”);
}
}

B bl=new B();

bl.print();

Scene s1=new Scene(f,200,250);
s.setScene(s1);

s.show();

Example: Annonymous Nested class

import javafx.application.Application;
import javafx.scene.Scene;

import javafx.stage.Stage;

import javafx.scene.control.Button;
import javafx.event.ActionEvent;
import javafx.event.EventHandler;
import javafx.scene.layout.FlowPane;

public class A extends Application

{
public void start(Stage s)

{

Button b=new Button("ok");
FlowPane f=new FlowPane();

b.setOnAction(new EventHandler<ActionEvent>(){
public void handle(ActionEvent e)

{

System.out.printIn("button clicked");

}

1,
f.getChildren().addAll(b);

Scene s1=new Scene(f,200,240);
s.setScene(s1);
s.show();

}
}

e In the above example, the btn.setOnAction() method takes an
EventHandler<ActionEvent>. Instead of defining a separate class for the
event handler, an anonymous inner class is used.

e The handle method is overridden to define the behavior when the button
is clicked.

Q-9 Write a short note on Animation
Ans:

e Animations are used in an application to add certain special visual effects
on elements like images, text, drawings, etc. You can specify the entry and
exit effects on a text, fading an image in and out etc

e |n JavaFX, a node can be animated by changing its property over time.
JavaFX provides a package named javafx.animation.This package contains
classes that are used to animate the nodes. Animation is the base class of
all these classes.

Fade Transition:

e In JavaFX, the fade transition is used to transition a node's opacity from
a starting value to an ending value over a specified duration. This can
be done using the FadeTransition class belonging to the javafx.
Animation package.

Example:

import javafx.application.Application;
import javafx.scene.Scene;

import javafx.stage.Stage;

import javafx.scene.layout.FlowPane;
import javafx.scene.shape.Circle;

import javafx.animation.FadeTransition;
import javafx.scene.paint.Color;

import javafx.util.Duration;

public class A extends Application

{
public void start(Stage s)

{
Circle c=new Circle();
c.setRadius(50.0);
c.setFill(Color.RED);
Flowpane f=new FlowPane();
FadeTransition f1=new FadeTransition(Duration.millis(1000));
fl.setNode(c);
fl.setFromValue(1.0);
fl.setToValue(0.3);
fl.setCycleCount(50);
fl.setAutoReverse(false);
f1.play();
f.getChildren().addAll(c);
Scene sl=new Scene(f,200,250);
s.setScene(sl);
s.show();

h

1

2) Fill Transition:

Fill transition is a type of transition that changes the color of a JavaFX node
during a specified period. This transition is commonly used in applications
to conduct quizzes: where the option turns "green" if the answer is correct
and "red" otherwise

Example:

import javafx.application.Application;
import javafx.scene.Scene;

import javafx.stage.Stage;

import javafx.scene.layout.FlowPane;
import javafx.scene.shape.Circle;
import javafx.animation.FillTransition;
import javafx.scene.paint.Color;
import javafx.util.Duration;

public class A extends Application

{

public void start(Stage s)
{

Circle c=new Circle();
c.setRadius(50.0);

Flowpane f=new FlowPane();
FillTransition f1=new FillTransition(Duration.millis(1000));
f1.setShape(c);
fl1.setFromValue(Color.BLUE);
fl.setToValue(Color.GREEN);
f1.setCycleCount(50);
f1.setAutoReverse(false);
f1.play();

f.getChildren().addAll(c);

Scene s1=new Scene(f,200,250);
s.setScene(sl);

s.show();

}

}

3) Rotate Transition:

e Rotate Transition in JavaFX is applied using the RotateTransition class in
the javafx.animation package. This is done by specifying the starting
value, the ending value and the duration of the transition.

e Rotate transition is used to deal with an object's position by retaining its
shape and properties.

import javafx.application.Application;
import javafx.scene.Scene;

import javafx.stage.Stage;

import javafx.scene.layout.FlowPane;
import javafx.scene.shape.Polygon;
import javafx.animation.RotateTransition;
import javafx.scene.paint.Color;

import javafx.util.Duration;

public class A extends Application

{
public void start(Stage s)

{
Polygon p=new Polygon();
p.getPoints().addAll(new Double[]{400.0,300.0,500.0,200.0,600.0,300.0});
Flowpane f=new FlowPane();
RotateTransition f1=new Rotate Transition(Duration.millis(1000));
fl.setNode(c);
f1.setByAngle(360);
fl.setCycleCount(50);
fl.setAutoReverse(false);
f1.play();
f.getChildren().addAll(p);
Scene sl=new Scene(f,200,250);
s.setScene(sl);
s.show();
}
}

4) Scale Transition:

Scaling refers to increasing or decreasing the size of an object. In
computer graphics, by applying the scale transition on an object (or
image), you can either increase or decrease its size, for a specified
duration.

Example:

import javafx.application.Application;
import javafx.scene.Scene;

import javafx.stage.Stage;

import javafx.scene.layout.FlowPane;
import javafx.scene.shape.Circle;

import javafx.animation.ScaleTransition;
import javafx.scene.paint.Color;

import javafx.util.Duration;

import javafx.scene.Group;

public class A extends Application

{

public void start(Stage s)
{

Circle c=new Circle();
c.setRadius(50.0);
c.setCenterX(500.0);
c.setCenterY(200.0);
c.setFill(Color.RED);
Group g=new Group(c);

ScaleTransition fl=new ScaleTransition(Duration.millis(1000));
fl.setNode(c);

fl.setByX(3.5);

fl.setByY(3.5);

fl.setCycleCount(50);

fl.setAutoReverse(false);

f1.play();

Scene sl=new Scene(g,200,250);

s.setScene(sl);

s.show();

}

}

5) Stroke Transition:

e Stroke transition is used to change the stroke color of a shape.

e A shape in JavaFX can consist of three types of strokes: inside, outside
and centered; with different properties applied to it.

e JavaFX offers stroke transition using the StrokeTransition class which
belongs to the javafx.animation package.

Example:

import javafx.application.Application;
import javafx.scene.Scene;

import javafx.stage.Stage;

import javafx.scene.layout.FlowPane;
import javafx.scene.shape.Circle;

import javafx.animation.StrokeTransition;
import javafx.scene.paint.Color;

import javafx.util.Duration;

import javafx.scene.Group;

public class A extends Application

{
public void start(Stage s)

{
Circle c=new Circle();
c.setRadius(50.0);
c.setCenterX(500.0);
c.setCenterY(200.0);
c.setFill(Color.RED);
c.setStrokeWidth(10.0);
Group g=new Group(c);

StrokeTransition fl=new StrokeTransition(Duration.millis(1000));
fl.setShape(c);
fl.setFromValue(Color.BLACK);
fl.setToValue(Color.GREEN);
f1.setCycleCount(50);
fl.setAutoReverse(true);
f1.play();
Scene sl=new Scene(g,200,250);
s.setScene(sl);
s.show();

}
}

6) TranslateTransition:

e The Translate transition simply moves an object from one location to
another on an application. This is usually done by specifying the new
coordinate points or the distance this object needs to be moved to.

e Example:

import javafx.application.Application;
import javafx.scene.Scene;

import javafx.stage.Stage;

import javafx.scene.layout.FlowPane;
import javafx.scene.shape.Circle;

import javafx.animation.TranslateTransition;
import javafx.scene.paint.Color;

import javafx.util.Duration;

import javafx.scene.Group;

public class A extends Application

{
public void start(Stage s)

{
Circle c=new Circle();
c.setRadius(50.0);
c.setCenterX(500.0);
c.setCenterY(200.0);
c.setFill(Color.RED);
Group g=new Group(c);

TranslateTransition fl=new TranslateTransition(Duration.millis(1000));
fl.setNode(c);
f1.setByX(600.0);
f1.setCycleCount(50);
fl.setAutoReverse(false);
f1.play();
Scene s1=new Scene(g,200,250);
s.setScene(sl);
s.show();

}
}

7) Sequential Transition:

e Sequential transition is applied on a JavaFX node when you want to apply
multiple transitions on a JavaFX node one after the other.

e SequentialTransition class is used to play multiple transitions on a
JavaFX node in a sequential order.

Example:

import javafx.application.Application;
import javafx.scene.Scene;

import javafx.stage.Stage;

import javafx.scene.layout.FlowPane;
import javafx.scene.shape.Circle;

import javafx.animation.TranslateTransition;
import javafx.scene.paint.Color;

import javafx.util.Duration;

import javafx.scene.Group;

import javafx.animation.SequentialTransition;
import javafx.animation.FadeTransition;

public class A extends Application
{
public void start(Stage s)
{
Circle c=new Circle();
c.setRadius(50.0);
c.setCenterX(500.0);
c.setCenterY(200.0);
c.setFill(Color.RED);
FadeTransition ft=new FadeTransition(Duration.millis(1000));
ft.setNode(c);
ft.setFromValue(1.0);
ft.setToValue(0.3);
ft.setCycleCount(50);
ft.setAutoReverse(false);
TranslateTransition f1=new TranslateTransition(Duration.millis(1000));
fl.setNode(c);
f1.setByX(600.0);
fl.setCycleCount(50);
fl.setAutoReverse(false);
SequentialTransition st=new SequentialTransition(c, ft,f1);
st.play();
Group g=new Group(c);
Scene s1=new Scene(g,200,250);
s.setScene(sl);
s.show();
}
}

8) Pause Transition:

e Pause transition is a type of transition offered by JavaFX, which pauses
the animation for a while before resuming another transition in a
sequential order.

Example:

import javafx.application.Application;
import javafx.scene.Scene;

import javafx.stage.Stage;

import javafx.scene.layout.FlowPane;
import javafx.scene.shape.Circle;

import javafx.animation.TranslateTransition;
import javafx.scene.paint.Color;

import javafx.util.Duration;

import javafx.scene.Group;

import javafx.animation.SequentialTransition;
import javafx.animation.FadeTransition;
import javafx.animation.PauseTransition;
public class A extends Application

{
public void start(Stage s)

{
Circle c=new Circle();
c.setRadius(50.0);
c.setCenterX(500.0);
c.setCenterY(200.0);
c.setFill(Color.RED);
FadeTransition ft=new FadeTransition(Duration.millis(1000));
ft.setNode(c);
ft.setFromValue(1.0);
ft.setToValue(0.3);
ft.setCycleCount(50);
ft.setAutoReverse(false);
TranslateTransition fl=new TranslateTransition(Duration.millis(1000));
fl.setNode(c);
f1.setByX(600.0);
f1.setCycleCount(50);
fl.setAutoReverse(false);
PauseTransition pt=new PauseTransition();
pt.setDuration(Duration.millis(1000));
SequentialTransition st=new SequentialTransition(c, ft,pt,f1);
st.play();
Group g=new Group(c);
Scene sl=new Scene(g,200,250);
s.setScene(sl);
s.show();

}

9) Parallel Transition:

e Parallel Transition used to play multiple transitions parallelly on a JavaFX
node.

e Javafxallows you to apply multiple transitions on a node. This can be done
by applying one transition at a time (called sequential transitions) or
applying multiple transitions at a time (called parallel transitions).

import javafx.application.Application;
import javafx.scene.Scene;

import javafx.stage.Stage;

import javafx.scene.layout.FlowPane;
import javafx.scene.shape.Circle;

import javafx.animation.TranslateTransition;
import javafx.scene.paint.Color;

import javafx.util.Duration;

import javafx.scene.Group;

import javafx.animation.ParallelTransition;
import javafx.animation.FadeTransition;
import javafx.animation.PauseTransition;
public class A extends Application

{
public void start(Stage s)

{
Circle c=new Circle();
c.setRadius(50.0);
c.setCenterX(500.0);
c.setCenterY(200.0);
c.setFill(Color.RED);
FadeTransition ft=new FadeTransition(Duration.millis(1000));
ft.setNode(c);
ft.setFromValue(1.0);
ft.setToValue(0.3);
ft.setCycleCount(50);
ft.setAutoReverse(false);
TranslateTransition fl1=new TranslateTransition(Duration.millis(1000));
fl.setNode(c);
f1.setByX(600.0);
f1.setCycleCount(50);
fl.setAutoReverse(false);
ParallelTransition st=new ParallelTransition(c, ft,f1);
st.play();
Group g=new Group(c);
Scene s1=new Scene(g,200,250);
s.setScene(sl);
s.show();
}
}

Q-10 Write a short note on Video and Audio or Multimedia

Ans:

e The JavaFX media support, meaning JavaFX video and audio support, is
provided by the JavaFX media classes Media, MediaPlayer, MediaView
and AudioClip.

® |nJavaFX, the Media, MediaPlayer, and MediaView classes work together to provide a
robust mechanism for playing media files such as audio and video.

e The Media class represents a media file (either audio or video) and
contains the details needed to load and play that file.

e he MediaPlayer class is responsible for controlling the playback of the
media represented by the Media object. It allows you to start, pause,
stop, and adjust various properties like volume, rate, and looping.

e The MediaView class is used to display the video content of a
MediaPlayer.

e m.toURI(): Converts the object m (likely a File) to a URI.

e .toURL(): Converts the URI to a URL. This is valid for a URI object, but it’s

not always necessary for creating a Media object in JavaFX.

.toString(): Converts the URL to a String.

Example:

import javafx.application.Application;
import javafx.scene.Scene;

import javafx.stage.Stage;

import javafx.scene.layout.FlowPane;
import javafx.scene.media.Media;

import javafx.scene.media.MediaPlayer;
import javafx.scene.media.MediaView;
import java.io.File;

import java.net.MalformedURLException;

public class A extends Application

{
public void start(Stage s)throws MalformedURLException

{
File m=new File("C:/Users/HP/Downloads/2.mp4");
Media m1 = new Media(m.toURI().toURL().toString());
MediaPlayer m2 = new MediaPlayer(m1);
MediaView mv = new MediaView(m?2);

FlowPane f=new FlowPane();
f.getChildren().addAll(mv);
Scene s1=new Scene(f,200,250);
s.setScene(sl);

s.show();

m2.play();

}

}

Q-11 Write a short note on Listener for observable object
Ans:

e InJavaFX, you can create listeners for changes in observable objects
using the ChangelListener

e These listeners are particularly useful for responding to changes in
properties or collections that are wrapped in Observable objects.

Change Listener:

e A Changelistener is used when you need to listen to changes in a single
value, such as a property of an object. It's commonly used for properties
like StringProperty, IntegerProperty, BooleanProperty, etc.

e The Changelistener interface has the following method:

void changed(ObservableValue<? extends T> observable, T
oldValue, T newValue);

Example:

import javafx.application.Application;

import javafx.scene.Scene;

import javafx.stage.Stage;

import javafx.scene.layout.FlowPane;

import javafx.beans.value.Changelistener;

import javafx.beans.value.ObservableValue;

import javafx.beans.property.IntegerProperty;
import javafx.beans.property.SimpleintegerProperty;

public class A extends Application
{
public void start(Stage s)
{
IntegerProperty n = new SimplelntegerProperty(10);
n.addListener(new ChangelListener<Number>() {

public void changed(ObservableValue<? extends Number> observable,
Number oldValue, Number newValue) {
System.out.printin("Old value: " + oldValue + ", New value: " + newValue);
}
1

FlowPane f=new FlowPane();
Scene sl=new Scene(f,200,250);
s.setScene(sl);

s.show();

}

}

