
SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

1

.

MSCIT SEM-2 REACTJS

Shree H.N.Shukla college2

vaishali nagar

Near Amrapali Under Bridge,

Raiya road

Rajkot

Ph No:-0281 2440478

Shree H.N.Shukla college3

vaishali nagar

Near Amrapali Under Bridge,

Raiya road

Rajkot

Ph No:-0281 2440478

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

2

Unit :4

Memo, Refs,Props andContext
 Memo

 Introduction to Refs: Refs, Refs with Class

Components, Forwarding Refs and Portals

 Components: Higher Order Components

 Props Again!: Rendering Props and Context

 HTTP: HTTP and React, GET and React, POST and React.

 Memo

In React, the memo function is a higher-order component (HOC) that you

can use to memoize functional components. Memoization is a technique to
optimize rendering performance by preventing unnecessary re-renders of

components. When a component is wrapped with memo, React will only re-

render the component if its props have changed.

Here's how you can use memo in React:

import React, { memo } from 'react';

// Functional component that doesn't use memo

const MyComponent = ({ prop1, prop2 }) => {

 console.log('Rendering MyComponent');

 return (

 <div>

 <p>Prop 1: {prop1}</p>

 <p>Prop 2: {prop2}</p>

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

3

 </div>

);

};

// Wrapping MyComponent with memo

const MemoizedComponent = memo(MyComponent);

// Usage

const ParentComponent = () => {

 const [prop1, setProp1] = React.useState('Value 1');

 const [prop2, setProp2] = React.useState('Value 2');

 return (

 <div>

 <MemoizedComponent prop1={prop1} prop2={prop2} />

 <button onClick={() => setProp1('New Value 1')}>Change Prop

1</button>

 <button onClick={() => setProp2('New Value 2')}>Change Prop

2</button>

 </div>

);

};

In React, the memo function is a higher-order component (HOC) that you
can use to memoize functional components. Memoization is a technique to

optimize rendering performance by preventing unnecessary re-renders of

components. When a component is wrapped with memo, React will only re-
render the component if its props have changed.

Here's how you can use memo in React:

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

4

Javascript
import React, { memo } from 'react';

// Functional component that doesn't use memo

const MyComponent = ({ prop1, prop2 }) => {

 console.log('Rendering MyComponent');

 return (

 <div>

 <p>Prop 1: {prop1}</p>

 <p>Prop 2: {prop2}</p>

 </div>

);

};

// Wrapping MyComponent with memo

const MemoizedComponent = memo(MyComponent);

// Usage

const ParentComponent = () => {

 const [prop1, setProp1] = React.useState('Value 1');

 const [prop2, setProp2] = React.useState('Value 2');

 return (

 <div>

 <MemoizedComponent prop1={prop1} prop2={prop2} />

 <button onClick={() => setProp1('New Value 1')}>Change Prop

1</button>

 <button onClick={() => setProp2('New Value 2')}>Change Prop

2</button>

 </div>

);

};

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

5

In this example:

MyComponent is a functional component that receives prop1 and prop2 as

props.

MemoizedComponent is created by wrapping MyComponent with the memo
function. This memoizes MyComponent and ensures that it only re-renders if its

props change.

In the ParentComponent, MemoizedComponent is used and passed prop1 and
prop2. There are buttons that update the state, causing the props to change.

However, you'll notice that even when you click the buttons, the console log

inside MyComponent only logs once, showing that it's not re-rendering on every
state change due to memoization.

Memoization can significantly improve the performance of your React

application, especially when dealing with complex components or large lists
where unnecessary re-renders can occur. However, it's essential to use

memoization judiciously, as it can also introduce complexity and potential bugs

if used incorrectly.

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

6

 Introduction to Refs: Refs, Refs with Class

Components, Forwarding Refs and Portals

Refs in React are a feature that allows you to access and interact with DOM elements or

React components directly. They provide a way to reference a specific element or

component imperatively rather than declaratively. Refs are commonly used for managing

focus, triggering imperative animations, integrating with third-party DOM libraries, and

accessing DOM measurements.

There are several aspects of working with refs in React:

1. Refs with DOM Elements:
You can create a ref using React.createRef() and attach it to a DOM element in a

component. This allows you to directly interact with the underlying DOM node.

Javascript Example
import React, { Component } from 'react';

class MyComponent extends Component {

 constructor(props) {

 super(props);

 this.myRef = React.createRef();

 }

 render() {

 return <div ref={this.myRef}>Hello World</div>;

 }

}

2. Refs with Class Components:

In class components, you can also use callback refs, which provide more flexibility,

especially when dealing with multiple elements or dynamically created elements.

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

7

Javascript Example

class MyComponent extends React.Component {

 constructor(props) {

 super(props);

 this.myRef = null;

 }

 setRef = (ref) => {

 this.myRef = ref;

 };

 render() {

 return <div ref={this.setRef}>Hello World</div>;

 }

}

3. Forwarding Refs:
Forwarding refs allows components to pass refs through to their children. This is useful

when you're building a reusable component that needs to access the underlying DOM node

or component instance.

Javascript Example

const FancyButton = React.forwardRef((props, ref) => (

 <button ref={ref} className="FancyButton">

 {props.children}

 </button>

));

// Now you can use FancyButton and pass a ref to it

const ref = React.createRef();

<FancyButton ref={ref}>Click me</FancyButton>;

Portals:
Portals provide a way to render children into a DOM node that exists outside the DOM

hierarchy of the parent component. This is useful for scenarios like modals, tooltips, and

popovers, where you want to render content outside the normal DOM flow.

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

8

Javascript Example

import React from 'react';

import ReactDOM from 'react-dom';

const modalRoot = document.getElementById('modal-root');

class Modal extends React.Component {

 constructor(props) {

 super(props);

 this.el = document.createElement('div');

 }

 componentDidMount() {

 modalRoot.appendChild(this.el);

 }

 componentWillUnmount() {

 modalRoot.removeChild(this.el);

 }

 render() {

 return ReactDOM.createPortal(this.props.children, this.el);

 }

}

// Usage

<Modal>

 <div>Modal Content</div>

</Modal>;

These are some of the key aspects of using refs in React, including working with DOM

elements, class components, forwarding refs, and portals. Refs are a powerful tool in React,

but they should be used sparingly and judiciously, as direct DOM manipulation can bypass

React's declarative programming model and lead to harder-to-maintain code.

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

9

 Components: Higher Order Components
In React.js, Higher Order Components (HOCs) are a powerful pattern used for code reuse,

abstraction, and separation of concerns. They are functions that take a component and

return a new component with extended or modified functionality. HOCs allow you to

enhance components with additional props, state, or behavior without modifying the

original component itself.

Here's a basic example of a Higher Order Component in React.js:

Example

import React from 'react';

// Define a Higher Order Component

const withLogger = (WrappedComponent) => {

 // Define a new component

 class WithLogger extends React.Component {

 componentDidMount() {

 console.log(`Component ${WrappedComponent.name} mounted`);

 }

 render() {

 // Render the original component with any props passed to it

 return <WrappedComponent {...this.props} />;

 }

 }

 return WithLogger;

};

// Define a regular component

class MyComponent extends React.Component {

 render() {

 return <div>Hello, World!</div>;

 }

}

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

10

// Enhance MyComponent with withLogger HOC

const MyComponentWithLogger = withLogger(MyComponent);

// Usage

ReactDOM.render(<MyComponentWithLogger/>, document.getElementById('root'));

In this example:

withLogger is a Higher Order Component that takes a component WrappedComponent as an

argument.

Inside withLogger, a new component WithLogger is defined, which adds logging

functionality to the lifecycle method componentDidMount.

WithLogger renders the original WrappedComponent with all its props passed down.

MyComponent is a regular component.

MyComponentWithLogger is the result of enhancing MyComponent with the withLogger

HOC.

Higher Order Components are widely used in React.js for tasks like code reusability, state

management, and abstraction of complex logic. They enable developers to compose

components in a modular and flexible way. However, with the introduction of React Hooks,

some patterns and use cases traditionally handled by HOCs can now be achieved using

Hooks like useEffect and useState.

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

11

 Props Again!: Rendering Props and

Context

Rendering Props and Context are two powerful techniques in React.js for passing data from a

parent component to its descendants. Let's discuss each one:

Rendering Props:

Rendering Props is a pattern where a component accepts a function as a prop, which it then calls

to render content. This pattern allows for greater flexibility and reusability, as it enables

components to render content based on the logic provided by the parent component.

Here's an example of how Rendering Props can be used:

import React from 'react';

// Parent component

class ParentComponent extends React.Component {

 render() {

 return (

 <div>

 {/* Passing a function as a prop */}

 <ChildComponent render={(name) => <div>Hello, {name}!</div>} />

 </div>

);

 }

}

// Child component

class ChildComponent extends React.Component {

 render() {

 // Calling the function passed as a prop

 return <div>{this.props.render("World")}</div>;

 }

}

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

12

// Usage

ReactDOM.render(<ParentComponent />, document.getElementById('root'));

In this example, ParentComponent passes a function as the render prop to ChildComponent.

ChildComponent then calls this function with the argument "World" to render the content.

Context:
Context provides a way to pass data through the component tree without having to pass props

down manually at every level. It's particularly useful for passing data that is needed by many

components at different levels of the component tree.

Here's a basic example of using Context:

import React from 'react';

// Create a context

const MyContext = React.createContext();

// Parent component that provides the context value

class ParentComponent extends React.Component {

 render() {

 return (

 <MyContext.Provider value="World">

 <ChildComponent />

 </MyContext.Provider>

);

 }

}

// Child component that consumes the context value

class ChildComponent extends React.Component {

 static contextType = MyContext;

 render() {

 return <div>Hello, {this.context}!</div>;

 }

}

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

13

// Usage

ReactDOM.render(<ParentComponent />, document.getElementById('root'));

In this example, ParentComponent provides the context value "World" using

MyContext.Provider. ChildComponent consumes this context value using this.context.

Rendering Props and Context are both powerful techniques for passing data in React.js

applications, and the choice between them depends on the specific use case and requirements

of your application.

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

14

 HTTP: HTTP and React, GET and

React, POST and React.

In React.js, you can perform HTTP requests, such as GET and POST, using various

methods and libraries. Two popular libraries for making HTTP requests in React are

Axios and the built-in Fetch API. Let's explore how you can use these libraries to

perform GET and POST requests in a React application.

GET Request with Axios:

Axios is a promise-based HTTP client for the browser and Node.js. To perform a GET

request in React using Axios, you typically install Axios via npm or yarn and then use it

in your components.

First, install Axios:

npm install axios

Then, you can make a GET request in a React component like this:

import React, { useState, useEffect } from 'react';

import axios from 'axios';

function App() {

 const [data, setData] = useState(null);

 useEffect(() => {

 axios.get('https://api.example.com/data')

 .then(response => {

 setData(response.data);

 })

 .catch(error => {

 console.error('Error fetching data:', error);

 });

 }, []);

 return (

 <div>

 {data ? (

 <div>Data: {JSON.stringify(data)}</div>

) : (

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

15

 <div>Loading...</div>

)}

 </div>

);

}

export default App;

In React.js, you can perform HTTP requests, such as GET and POST, using various

methods and libraries. Two popular libraries for making HTTP requests in React are

Axios and the built-in Fetch API. Let's explore how you can use these libraries to

perform GET and POST requests in a React application.

GET Request with Axios:
Axios is a promise-based HTTP client for the browser and Node.js. To perform a GET

request in React using Axios, you typically install Axios via npm or yarn and then use it

in your components.

First, install Axios:

npm install axios

Then, you can make a GET request in a React component like this:

javascript

import React, { useState, useEffect } from 'react';

import axios from 'axios';

function App() {

 const [data, setData] = useState(null);

 useEffect(() => {

 axios.get('https://api.example.com/data')

 .then(response => {

 setData(response.data);

 })

 .catch(error => {

 console.error('Error fetching data:', error);

 });

 }, []);

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

16

 return (

 <div>

 {data ? (

 <div>Data: {JSON.stringify(data)}</div>

) : (

 <div>Loading...</div>

)}

 </div>

);

}

export default App;

POST Request with Fetch API:
The Fetch API is built into modern browsers and provides an interface for fetching

resources across the network. You can use it to perform POST requests in React.

Here's an example of making a POST request with the Fetch API in a React component:

import React, { useState } from 'react';

function App() {

 const [responseData, setResponseData] = useState(null);

 const postData = async () => {

 try {

 const response = await fetch('https://api.example.com/postData', {

 method: 'POST',

 headers: {

 'Content-Type': 'application/json'

 },

 body: JSON.stringify({ key: 'value' }) // Replace with your data

 });

 const data = await response.json();

 setResponseData(data);

 } catch (error) {

 console.error('Error posting data:', error);

 }

 };

 return (

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

17

 <div>

 <button onClick={postData}>Send POST Request</button>

 {responseData && (

 <div>Response: {JSON.stringify(responseData)}</div>

)}

 </div>

);

}

export default App;

In React.js, you can perform HTTP requests, such as GET and POST, using various

methods and libraries. Two popular libraries for making HTTP requests in React are

Axios and the built-in Fetch API. Let's explore how you can use these libraries to

perform GET and POST requests in a React application.

GET Request with Axios:

Axios is a promise-based HTTP client for the browser and Node.js. To perform a GET

request in React using Axios, you typically install Axios via npm or yarn and then use it

in your components.

First, install Axios:

bash

npm install axios

Then, you can make a GET request in a React component like this:

javascript

import React, { useState, useEffect } from 'react';

import axios from 'axios';

function App() {

 const [data, setData] = useState(null);

 useEffect(() => {

 axios.get('https://api.example.com/data')

 .then(response => {

 setData(response.data);

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

18

 })

 .catch(error => {

 console.error('Error fetching data:', error);

 });

 }, []);

 return (

 <div>

 {data ? (

 <div>Data: {JSON.stringify(data)}</div>

) : (

 <div>Loading...</div>

)}

 </div>

);

}

export default App;

POST Request with Fetch API:

The Fetch API is built into modern browsers and provides an interface for fetching

resources across the network. You can use it to perform POST requests in React.

Here's an example of making a POST request with the Fetch API in a React component:

javascript
import React, { useState } from 'react';

function App() {

 const [responseData, setResponseData] = useState(null);

 const postData = async () => {

 try {

 const response = await fetch('https://api.example.com/postData', {

 method: 'POST',

 headers: {

 'Content-Type': 'application/json'

 },

 body: JSON.stringify({ key: 'value' }) // Replace with your data

 });

 const data = await response.json();

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

19

 setResponseData(data);

 } catch (error) {

 console.error('Error posting data:', error);

 }

 };

 return (

 <div>

 <button onClick={postData}>Send POST Request</button>

 {responseData && (

 <div>Response: {JSON.stringify(responseData)}</div>

)}

 </div>

);

}

export default App;

 In these examples, axios.get and fetch are used to make GET and

POSTrequests,respectively. Upon successful responses, the retrieved data is stored in

React state (data or responseData) and then displayed in the component. Additionally,

error handling is implemented to handle any network or API errors that may occur

during the request.

