

Shree H. N. Shukla Institute of Pharmaceutical Education and Research, Rajkot

B. Pharm Semester-VI

Subject Name: Medicinal Chemistry

Subject Code: BP601TP

Prepared by:-Ms. Foram J. Vagadia

Tetracycline

Tetracyclines is a group of antibotic that include tetracycline.

Tetracyclines are obtained by fermentation from Streptomyces spp. Or by chemical transformation of natural products.

They are derivatives of an octahydro- naphthacene, a hydrocarbon system that comprises four annulated six membre rings.

Structure of Tetracycline

- The stereochemistry of the tetracycline is very complex. carbon atom 4,4a,5,5a,6 and 12a, are potentially chiral depending on substitution.
- ➤ Oxytetracycline and Doxycycline posses 5alpha-hydroxy substituent have six chiral carbon and others have five chiral carbon.
- > These are amphoteric compounds, forming salts with either acids or bases.
- ➤ It exists mainly as zwitter ions in neutral solutions.
- ➤ They are yellow in colour, The HCL salts are used for oral adminstration and usually given in the form of capsule to mask the bitter taste.

"Oxytetracycline£© $R_1 = -OH$ $R_2 = -OH$ $R_3 = -CH_3$ $R_4 = -H$

"Chlotetracycline£© $R_1 = -H$ $R_2 = -OH$ $R_3 = -CH_3$ $R_4 = -CI$

"Tetracycline£© $R_1 = -H$ $R_2 = -OH$ $R_3 = -CH_3$ $R_4 = -H$

Tetracycline pharmacophore and numbering

Positions at the "bottom" of the molecule (10, 11, 1) and most of ring A (positions 2, 3, and 4) represent the invariant pharmacophore region of the molecule, where modifications are not tolerated without loss of antibiotic activity.

Mechanism of Action

- ➤ Tetracyclines are specific inhibitors of bacterial protein synthesis. They bind to the 30S ribosomal subunit and thereby prevent the binding of aminoacyl tRNA to the mRNA ribosome complex.
- ➤ Tetracyclines also inhibit protein synthesis in the host, but are less likely to reach the concentration required because eukaryotic cells do not have a tetracycline uptake mechanism.

SAR of tetracyclines

6-methyl-4-(dimethylamino)-3,6,10,12,12a pentahydroxy-1,4,4a,5,5a,6,11,12a-octahydro- 2- naphthacenecarboxamide.

Structural Activity Relationship:

SAR OF TETRACYCLINES

Electron donating (or) electron withdrawing groups at c7 increased

more potent but carcinogenic compounds, =CH₂ at c₆ increases the Antibacterial activity Ex: Methacycline).

Presence Of-N(CH3)2 group at C, Tetracyclines exists Ziwitter ion Which can be posible to distribute in The body.Removal of this group loss of activity.

Antibacterial activity Elimination of 6-OH group

Replacement of -No₂ group Gives

Substitution with -OH Produce water soluble derivatives which can be administered orally.

Substitution of -N(CH₂), at 7

available.

Causes increase lipophilicity And more stable to aci

Epimerization at c. and dehydration at 5a

increase the activity Ex: Minocycline. Little information,

results loss of activity. (any modification at C₃ loss of activity.)

'D' ring should be always aromatic Changes in this ring Leads to biological inactivation of the molecule. Inviolate zone is essential

48 В 12 a 12 OH OH

The keto-enol tatomerism Between c, and c, are very CONH² activity.

Additional glycyl amino substitution at the 9th Position leads to the new Class of antibiotics the glycylcyclines.

EX: Tigecycline.(Tygacil)

The linearly fused tetracyclic nucleus is most important for the antibiotic activity.

Conversion of corboxamide group to nitriles cause a 20 fold loss of activity.