Shree H.N. Shukla Group of College
M.Sc. SEMESTER 4
Sub. Code: CMT-4001
Core Sub. 1 : Linear Algebra
Question Bank

(1) Let V is a n - dimentional vector space over a field F , then prove that $A_{F}(V)$ and F_{n} are isomorphic as algebras over F.
(2) Let $T, S \in A_{F}(V)$.If S is regular , then show that T and $S T S^{-1}$ have the same minimal polynomial.
(3) If n_{1} is the index of nilpotence of a nilpotent $\mathrm{T} \in \mathrm{A}_{\mathrm{F}}(\mathrm{V})$ and if $v \in V$ is such that $T^{n_{1}-1}(\mathrm{v}) \neq 0$, then prove that $\left\{\mathrm{v}, \mathrm{T}(\mathrm{v}), \ldots, T^{n_{1}-1}(\mathrm{v})\right\}$ is linearly independent over F.
(4) Prove that any $T \in A_{F}(V)$ satisfies its characteristic polynomial.
(5) Let $A \in \mathbb{C}_{n}$ be Hermitian. Show that any characteristic root of A is real.
(6) Let $\mathrm{A} \in F_{\mathrm{n}}$.show that $\operatorname{det}(\mathrm{A})=\operatorname{det}\left(\mathrm{A}^{\prime}\right)$.
(7) Let $\mathrm{A} \in F_{\mathrm{n}}$ and suppose that K is the splitting field of minimal polynomial of A over F.show that there is an invertible matrix $\mathrm{C} \in K_{\mathrm{n}}$ such that CAC^{-1} is in Jordan form.
(8) Let $\mathrm{n} \geq 1$. Show that the mapping $\mathrm{f}: F_{\mathrm{n}} \rightarrow F_{\mathrm{n}}$ defined by $\mathrm{f}(\mathrm{A})=\mathrm{A}^{\prime}$ is an adjoint of F_{n}.
(9) Let $T \in \mathrm{~A}_{\mathrm{F}}(\mathrm{V})$.If V is cyclic relative to T , then prove that there exist a basis B of V over F such that the matrix of T in B is $C(p(x))$, where $p(x)$ is the minimal polynomial of T over F .
(10) Let $T_{1}, T_{2} \in A_{F}(V)$ and they both have same invariants.Prove that they are similar .
(11) Let $A \in F_{n}$. Prove that the interchanging two rows of A change the sign of its determinant.
(12) Let $\operatorname{tr}\left(\mathrm{T}^{\mathrm{k}}\right)=0, \forall \mathrm{k} \in \mathbb{N}$. Prove that T is nilpotent.
(13) State and prove Jacobson lemma.

Shree H.N. Shukla Group of College M.Sc. SEMESTER 4
Sub. Code: CMT-4001
Core Sub. 1 : Linear Algebra

(14) Prove that the determinant of triangular matrix is equal to the product of its all the entries of the main diagonal .
(15) Solve by Cramer' s rule :
$x_{1}+2 x_{2}+3 x_{3}=-5$,
$2 x_{1}+x_{2}+x_{3}=-7$ and
$x_{1}+x_{2}+x_{3}=0$.
(16) If $\mathrm{T} \in \mathrm{A}_{\mathrm{F}}(\mathrm{V})$ has all its characteristic roots in F , then prove that there is a basis of V in which tha matrix of T is triangular .
(17) If $T \in A_{F}(V)$, then prove that $\operatorname{tr}(T)$ is the sum of the characteristic roots of T (using each characteristic root as often as its multiplicity).
(18) Let $(\mathrm{V},\langle \rangle)$ be a finite dimensional inner product space over \mathbb{C}. Let $T \in A_{F}(V)$.Then given $v \in V$, prove that there exist an element $w \in V$, depending on v and T such that $\langle T(u), v\rangle=\langle u, w\rangle$, for all $v \in V$.
(19) Let (V, \rangle) be a finite dimensional inner product space over \mathbb{C}. Let $T, S \in A_{C}(V)$.Prove that $(S T)^{*}=T * S^{*}$.
(20) Let $A, B \in F_{n}$. Prove that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.
(21) Let F be a field of characteristic 0.If $T, S \in A_{F}(V)$ are such that ST-TS commutes with S , then prove that ST -TS is nilpotent.
(22) Prove that any $A \in F_{n}$ satisfies its secular equation.
(23) Let V be a finite dimensional vector space over a field F and let $\mathrm{T} \in$ $\mathrm{A}_{\mathrm{F}}(\mathrm{V})$. Prove that T is invertible if and only if the constant term of the minimal polynomial for T over F is nonzero .
(24) Let $(\mathrm{V},\langle \rangle)$ be a finite dimensional inner product space over \mathbb{C}. If $\mathrm{N} \in$ A_{C} is normal ,then prove that there exist an orthonormal basis of V consisting of characteristic vectors of N , in which the matrix of N is diagonal

Shree H.N. Shukla Group of College
 M.Sc. SEMESTER 4
 Sub. Code: CMT-4001
 Core Sub. 1 : Linear Algebra

(25) Let $\mathrm{f}: \mathrm{V} \times \mathrm{V} \rightarrow \mathrm{F}$ be a bilinear form on an n -dimentional vector space V over F .If B , B' are any two basis of V over F ,then prove that there exist an invertible matrix $C \in F_{n}$ such that $[f]_{B^{\prime}}=C[f]_{B} C^{\prime}$.

