

Shree H.N. Shukla Group of College

M.Sc. SEMESTER 4 Sub. Code: CMT-4001 Core Sub.1 : Linear Algebra Question Bank

- (1) Let V is a n- dimentional vector space over a field F , then prove that $A_F(V)$ and F_n are isomorphic as algebras over F.
- (2) Let $T,S \in A_F(V)$. If S is regular, then show that T and STS⁻¹ have the same minimal polynomial.
- (3) If n_1 is the index of nilpotence of a nilpotent $T \in A_F(V)$ and if $v \in V$ is such that $T^{n_1-1}(v) \neq 0$, then prove that $\{v, T(v), ..., T^{n_1-1}(v)\}$ is linearly independent over F.
- (4) Prove that any $T \in A_F(V)$ satisfies its characteristic polynomial.
- (5) Let $A \in \mathbb{C}_n$ be Hermitian .Show that any characteristic root of A is real.
- (6) Let $A \in F_n$ show that det(A) = det(A').
- (7) Let $A \in F_n$ and suppose that K is the splitting field of minimal polynomial of A over F.show that there is an invertible matrix $C \in K_n$ such that CAC^{-1} is in Jordan form.
- (8) Let $n \ge 1$. Show that the mapping f: $F_n \to F_n$ defined by f(A) = A' is an adjoint of F_{n} .
- (9) Let $T \in A_F(V)$. If V is cyclic relative to T, then prove that there exist a basis B of V over F such that the matrix of T in B is C(p(x)), where p(x) is the minimal polynomial of T over F.

(10) Let $T_1, T_2 \in A_F(V)$ and they both have same invariants. Prove that they are similar .

(11) Let $A \in F_n$. Prove that the interchanging two rows of A change the sign of its determinant.

(12) Let $tr(T^k) = 0$, $\forall k \in \mathbb{N}$. Prove that T is nilpotent.

(13) State and prove Jacobson lemma.

Shree H.N. Shukla Group of College M.Sc. SEMESTER 4 Sub. Code: CMT-4001

Core Sub.1 : Linear Algebra

- (14) Prove that the determinant of triangular matrix is equal to the product of its all the entries of the main diagonal .
- (15) Solve by Cramer's rule : $x_1+2x_2+3x_3 = -5$, $2x_1+x_2+x_3 = -7$ and $x_1+x_2+x_3 = 0$.
- (16) If $T \in A_F(V)$ has all its characteristic roots in F, then prove that there is a basis of V in which tha matrix of T is triangular.
- (17) If $T \in A_F(V)$, then prove that tr(T) is the sum of the characteristic roots of T(using each characteristic root as often as its multiplicity).
- (18) Let (V, <>) be a finite dimensional inner product space over \mathbb{C} .Let $T\in A_F(V)$.Then given $v\in V$, prove that there exist an element $w\in V$, depending on v and T such that <T(u), v> = < u, w >, for all $v \in V$.
- (19) Let (V, <>) be a finite dimensional inner product space over \mathbb{C} .Let $T,S\in A_C(V)$.Prove that $(ST)^* = T^*S^*$.
- (20) Let $A, B \in F_n$. Prove that tr(AB)=tr(BA).
- (21) Let F be a field of characteristic 0.If T,S $\in A_F(V)$ are such that ST-TS commutes with S, then prove that ST-TS is nilpotent.
- (22) Prove that any $A \in F_n$ satisfies its secular equation.
- (23) Let V be a finite dimensional vector space over a field F and let $T \in A_F(V)$. Prove that T is invertible if and only if the constant term of the minimal polynomial for T over F is nonzero.
- (24) Let (V, <>) be a finite dimensional inner product space over C. If N∈ A_C is normal ,then prove that there exist an orthonormal basis of V consisting of characteristic vectors of N, in which the matrix of N is diagonal

Shree H.N. Shukla Group of College M.Sc. SEMESTER 4 Sub. Code: CMT-4001 Core Sub.1 : Linear Algebra

(25) Let f: V x V \rightarrow F be a bilinear form on an n-dimentional vector space V over F .If B, B' are any two basis of V over F ,then prove that there exist an invertible matrix C \in F_n such that [f]_{B'} = C [f]_BC'.