

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 1 | P a g e

Website: www. hnsgroupofcolleges.org

Email : hnsinfo@hnshukla.com

BCA SEM 3 C++

http://www.hnshukla.com/

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 2 | P a g e

Sr No. Topic Details

1 Principles of
object
oriented
programming
Tokens,
expressions
and control
statements

Procedure – oriented programming
Object oriented programming paradigm
Basic concepts of object oriented
Programming
Benefits of object oriented programming
Application of object oriented
programming
What is c++?
Application of c++
Input/output operators
Structure of c++ program
Introduction of namespace
Tokens :
keywords, identifiers, basic data types,
user- defined types, derived data types,
symbolic constants, type compatibility,
declaration of variables, dynamic
initialization of variables, reference
variables
Operators in C++:
scope resolution operator, member
referencing operator, memory
management operator, manipulators,
type cast operator.
Expression :
Expression and their types, special
assignment operator, implicit
conversions, operator precedence
Control structures

Conditional control structure :-

 simple if, if…else , nested if else,
switch etc.

Looping control structure:-

 for, while , do…while

 Functions in
C++

The main function
Function prototype
Call by reference
Return by reference
Inline function
Default arguments
Const arguments

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 3 | P a g e

CH -1 Principles of object oriented programming
tokens, expressions and control
statements

Topic: Procedure-Oriented Programming (POP)

Trailer: (Only for Understanding)

 function pe kaise focus kare?

 Kaise pura program function me divide kare?

 Data ko kaise manage kare?
Details : (for Exam Content)

 Conventional programming using high level languages such as COBOL,
FORTRAN and C, is commonly known as procedure-oriented
programming (POP).

 In the procedure-oriented approach, the problem is viewed as a
sequence of things to be done such as reading, calculating and printing.

 A number of functions are written to complete these tasks.
 The primary focus is on functions. A typical program structure for

procedural programming is shown in fig.

Procedure-oriented programming basically consists of writing of list of
instructions for the computer to follow
 This instructions groups known as functions.
 We normally use a flow chart to organize these actions and represent

the flow of control from one action to another.
 In a multi –function program, many important data items are placed as

global so that they may be accessed by all the functions.
 Each function may have its own local data.

Main Program

Function 1 Function 2 Function 3

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 4 | P a g e

Learning Outcome: (Summary)

 Procedure means functions and procedure oriented programming

means set of function.

1 word Question Answer

Sr No. Question Answer

1. POP Stands for? procedure-oriented

programming

Topic: Object -Oriented Programming (OOP) Or

Trailer: (Only for Understanding)
 what is object?

 What is object oriented programming and why we need?

Details: (for Exam Content)

 Object Oriented programming (OOP) is a programming paradigm that
relies on the concept of classes and objects.

 It is used to structure a software program into simple, reusable pieces
of code blueprints (usually called classes), which are used to create
individual instances of objects.

 Object Oriented Programming is a programming in which we design and
develop our application or program based of object. Objects are
instances (variables) of class.

Global Data

Function 1 Function 2 Function 3

Local Variable Local Variable

Local Variable

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 5 | P a g e

 Object oriented programming does not allow data to flow freely around
the system. It binds data more closely to the functions that operate on
it, and protects it from accidental modifications from outside functions.

Learning Outcome: (Summary)

 In this topic we learn with the use of object and class we can reuse
our block of code easily & reduce our line of code.

1 word Question Answer

Sr No. Question Answer

1. OOP Stands for? Object-oriented

programming

Topic: Basic Concept of OOP

Trailer: (Only for Understanding)

 How many concept of OOP? And what is the meaning of all
the concept.

Details: (for Exam Content)

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 6 | P a g e

1. Class :

 Classes are an expanded version of structures. Structure can contain
multiple variables.

 Classes can contain multiple variables, even more, classes can also
contain functions as class member.

 Variables available in class are called Data Members.
 Functions available in class are called Member Functions.

2. Object :

 Class is a user-defined data type and object is a variable of class
type.

 Object is used to access class members.

 Ex Of Class & Object
 class MyClass { // The class

 public: // Access specifier
 int myNum; // Attribute (int variable)
 string myString; // Attribute (string variable)
};

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 7 | P a g e

 int main() {
 MyClass myObj; // Create an object of MyClass
 // Access attributes and set values
 myObj.myNum = 15;
 myObj.myString = "Some text";

}

3. Inheritance :

 Inheritance means access the properties and features of one class into
another class.

 The class who is going to provide its features to another class will be
called base class and the class who is using the properties and features

of another class will be called derived class.

4. Polymorphism :

 Polymorphism means more than one function with same name, with
different working. It can be static or dynamic.

 In static polymorphism memory will be allocated at compile time. In
dynamic polymorphism memory will be allocated at runtime.

 Both function overloading and operator overloading are an examples of
static polymorphism.

 Virtual function is an example of dynamic polymorphism.

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 8 | P a g e

5. Data Abstraction :

 The basic idea of data abstraction is to visible only the necessary
information, unnecessary information will be hidden from the outside
world.

 This can be done by making class members as private members of class.
 Private members can be accessed only within the same class where they

are declared.

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 9 | P a g e

6. Encapsulation :

 Encapsulation is a process of wrapping data members and member
functions in a single unit called class.

 Using the method of encapsulation, the programmer cannot directly
access the data.

 Data is only accessible through the object of the class.

Learning Outcome: (Summary)

 In this topic we learn meaning of class, object ,abstraction,

polymorphism, inheritance, encapsulation.

1 word Question Answer

Sr No. Question Answer

1. _______ are an expanded version of

structures. Structure can contain

multiple variables.

Class

2. __________ is used to access class

members.

Object

3. _________ access the properties and

features of one class into another

class.

 Inheritance

4. _______ more than one function with

same name, with different working. It

can be static or dynamic.

Polymorphism

5. _____________is to visible only the

necessary information, unnecessary

data abstraction

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 10 | P a g e

information will be hidden from the

outside world.

6. ____________ is a process of

wrapping data members and member

functions in a single unit called class

Encapsulation

Topic: Benefits of OOP's

Trailer: (Only for Understanding)

 How to reduce line of code
 What is benefits of object oriented programming?

Details: (for Exam Content)

 Through inheritance, we can eliminate redundant code and extend the

use of existing classes which is not possible in procedure oriented
approach.

 We can build programs from the standard working modules that
communicate with one another, rather than having to start writing the
code from scratch which happens procedure oriented approach. This
leads to saving of development time and higher productivity.

 The principle of data hiding helps the programmer to build secure
programs that cannot be invaded by code in other parts of the program.

 It is possible to have multiple instances of object to co-exist without any
interference.

 It is possible to map objects in the problem domain to those in the
program.

 It is easy to partition the work in a project based on objects.
 The data-centered design approach enables us to capture more details

of a model in implementable from.
 Object oriented systems can be easily upgraded from small to large

systems.
 Message passing techniques for communication between objects makes

the interface descriptions with external systems much simpler.
 Software complexity can be easily managed.

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 11 | P a g e

Topic :Object Oriented vs Procedure Oriented Programming

Procedure Oriented Programming Object Oriented Programming

In POP, program is divided into
small parts called functions.

OOP, program is divided into parts
called objects.

In POP, Importance is not given to
data but to functions as well as
sequence of actions to be done.

In OOP, Importance is given to the data
rather than procedures or functions
because it works as a real world.

POP follows Top Down approach. OOP follows Bottom Up approach.

POP does not have any access
specifier.

OOP has access specifiers named Public,
Private, Protected, etc.

In POP, Data can move freely from
function to function in the system.

In OOP, objects can move and
communicate with each other through
member functions.

To add new data and function in
POP is not so easy.

OOP provides an easy way to add new
data and function.

In POP, Most function uses Global
data for sharing that can be
accessed freely from function to
function.

In OOP, data can not move easily from
function to function,it can be kept
public or private so we can control the
access of data.

POP does not have any proper way
for hiding data so it is less secure.

OOP provides Data Hiding so provides
more security.

In POP, Overloading is not
possible.

In OOP, overloading is possible in the
form of Function Overloading and
Operator Overloading.

Example of POP are : C, VB,
FORTRAN, Pascal.

Example of OOP are : C++, JAVA,
VB.NET, C#.NET.

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 12 | P a g e

Topic: Application of OOP & C++

The promising areas for application of oop include:
1. Client-Server Systems
2. Object-Oriented Databases
3. Real-Time System Design
4. Simulation And Modelling System
5. AI Expert Systems
6. Hypertext, hypermedia and expertext
7. Neural networks and parallel programming
8. CAM/CAD systems.

 Real-World Applications of C++

1. Games
2. Graphics User Interface
3. Web Browswes
4. Advance Computations and Graphics
5. Database Software
6. Operating Systems
7. Enter prose Software

Topic: What is c++? And explain features of C++.
Trailer: (Only for Understanding)

 In this topic we will learn when was the c++ language
developed?

 How many versions of C++?
Details: (for Exam Content)

 Over the years, computer programs have become larger and more
complex.

 Even though C is an excellent programming language, it has its limits. In
C, once a program exceeds from thousands lines of code, it becomes so
complex that it is difficult to maintain as a totality.

 The purpose of C++ is to allow this barrier to be broken. The essence of
C++ is to allow the programmer to comprehend and manage larger,
more complex programs.

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 13 | P a g e

 C++ began as an expanded version of C.

 The C++ were first invented by Bjarne Stroustrup in 1979 at Bell
Laboratories in Murray Hill, New Jersey. This new language was initially
called "C with Classes".

C++ Features
 C++ is object oriented programming language. It provides a lot

of features that are given below.

1) Simple

 C++ is a simple language in the sense that it provides structured
approach (to break the problem into parts), rich set of library functions,
data types etc.

2) Machine Independent or Portable

 Unlike assembly language, c programs can be executed in many
machines with little bit or no change. But it is not platform-
independent.

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 14 | P a g e

3) Mid-level programming language

 C++ is also used to do low level programming. It is used to develop
system applications such as kernel, driver etc. It also supports the
feature of high level language. That is why it is known as mid-level
language.

4) Structured programming language

 C++ is a structured programming language in the sense that we can
break the program into parts using functions. So, it is easy to
understand and modify.

5) Rich Library

 C++ provides a lot of inbuilt functions that makes the development fast.

6) Memory Management

 It supports the feature of dynamic memory allocation. In C++ language,
we can free the allocated memory at any time by calling the free()
function.

7) Speed

 The compilation and execution time of C++ language is fast.

8) Pointer

 C++ provides the feature of pointers. We can directly interact with the
memory by using the pointers. We can use pointers for memory,
structures, functions, array etc.

9) Recursion

 In C++, we can call the function within the function. It provides code
reusability for every function.

10) Extensible

 C++ language is extensible because it can easily adopt new features.

11) Object Oriented

C++ is object oriented programming language. OOPs makes development and

maintenance easier where as in Procedure-oriented programming language it is not

easy to manage if code grows as project size grows.

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 15 | P a g e

12) Compiler based

C++ is a compiler based programming language, it means without compilation no

C++ program can be executed. First we need to compile our program using compiler

and then we can execute our program.

1 word Question Answer

Sr No. Question Answer

1. C++ developed at Bell Laboratories

2. C++ was developed in

which year?

1979

3. C++ was developed by? Bjarne Stroustrup

4. When c++ developed - C++

was initially called?

C with Classes

Topic: Input/Output operator
Trailer: (Only for Understanding)

 What is input operator? & what is the name of input operator?

 What is output operator? & what is the name of output operator?

 How to take input from user?

Details: (for Exam Content)

 In C++, input and output (I/O) operators are used to take input and
display output.

 The operator used for taking the input is known as the extraction or
get from operator (>>), while the operator used for displaying the
output is known as the insertion or put to operator (<<).

 Input Operator

 The input operator, commonly known as the extraction operator (>>),
is used with the standard input stream, cin. As stated earlier, cin treats
data as a stream of characters. These characters flow from cin to the
program through the input operator. The input operator works on two
operands, namely, the c in stream on its left and a variable on its right.

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 16 | P a g e

Thus, the input operator takes (extracts) the value through cin and
stores it in the variable.

 To understand the concept of an input operator, consider this example.

int main ()

{

int a;

cin>>a;

a = a+1;

return 0;

}

 In this example, the statement cin>> a takes an input from the user and
stores it in the variable a.

 Output Operator

 The output operator, commonly known as the insertion operator (<<),
is used. The standard output stream cout Like cin, cout also treats data
as a stream of characters. These characters flow from the program to
cout through the output operator. The output operator works on two
operands, namely, the cout stream on its left and the expression to be
displayed on its right. The output operator directs (inserts) the value to
cout.

 To understand the concept of output operator, consider this example.

 #include<iostream>

 int main ()

 {

 int a;

 cin>>a;

 a=a+1;

 cout<<a;

 return 0;

 }

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 17 | P a g e

 This example is similar to Example 1. The only difference is that the
value of the variable a is displayed through the instruction cout << a .

Learning Outcome: (Summary)
 In this topic we learn input and output operator. Program

of c++ for print the output of screen & take input from user.

1 word Question Answer

Sr No. Question Answer

1. Give the Name & Symbol of

input operator.

Name: expression

Symbol: >>

2. Give the Name & Symbol of

Output operator.

Name: insertion

Symbol: <<

3. Which object is used for

input operator.

Cin – standard input stream

4. Which object is used for

output operator.

Cout - standard output stream

Topic: Structure of a C+ + Program

Trailer: (Only for Understanding)

 What is the structure of C++?

 Which flow follow for run the C++ program?

 How many block in structure of C++ program?
Details: (for Exam Content)

 Programs are a sequence of instructions or statements. These
statements form the structure of a C++ program. C++ program
structure is divided into various sections, namely, headers, class
definition, member functions definitions and main function.

http://ecomputernotes.com/cpp/introduction-to-oop/structure-of-a-cpp

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 18 | P a g e

 Note that C++ provides the flexibility of writing a program with or
without a class and its member functions definitions. A simple C++
program (without a class) includes comments, headers, namespace,
main() and input/output statements.

 Comments are a vital element of a program that is used to increase the
readability of a program and to describe its functioning. Comments are
not executable statements and hence, do not increase the size of a file.

 C++ supports two comment styles: single line comment and multiline
comment. Single line comments are used to define line-by-line
descriptions. Double slash (//) is used to represent single line
comments. To understand the concept of single line comment,
consider this statement.

 / / An example to demonstrate single line comment It can also be
written as

 / / An example to demonstrate

 / / single line comment

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 19 | P a g e

 Multiline comments are used to define multiple lines descriptions and
are represented as / * * /. For example, consider this statement.

 /* An example to demonstrate

 multiline comment */

 Generally, multiline comments are not used in C++ as they require
more space on the line. However, they are useful within the program
statements where single line comments cannot be used.

 Headers: Generally, a program includes various programming elements
like built-in functions, classes, keywords, constants, operators, etc.,
that are already defined in the standard C++ library. In order to use
such pre-defined elements in a program, an appropriate header must
be included in the program. The standard headers contain
the information like prototype, definition and return type of library
functions, data type of constants, etc. As a result, programmers do not
need to explicitly declare (or define) the predefined programming
elements.

 Standard headers are specified in a program through the preprocessor
directive" #include. In Figure, the iostream header is used. When the
compiler processes the instruction #inc1ude<iostream>, it includes the
contents of iostream in the program. This enables the programmer to
use standard input, output and error facilities that are provided only
through the standard streams defined in <iostream>. These standard
streams process data as a stream of characters, that is, data is read and
displayed in a continuous flow. The standard streams defined in
<iostream> are listed here.

 cin (pronounced "see in") : It is the standard input stream that is
associated with the standard input device (keyboard) and is used to
take the input from users.

 cout (pronounced "see out") : It is the standard output stream that is
associated with the standard output device (monitor) and is used to
display the output to users.

 Namespace: Since its creation, C++ has gone through many changes by
the C++ Standards Committee. One of the new features added to this
language is namespace. A namespace permits grouping of various
entities like classes, objects, functions and various C++ tokens, etc.,

http://ecomputernotes.com/fundamental/information-technology/what-do-you-mean-by-data-and-information
http://ecomputernotes.com/java/data-type-variable-and-array/explain-data-types-in-java
http://ecomputernotes.com/fundamental/input-output-and-memory/list-various-input-and-output-devices

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 20 | P a g e

under a single name. Different users can create separate namespaces
and thus can use similar names of the entities. This avoids compile-
time error that may exist due to identical-name conflicts.

 The C++ Standards Committee has rearranged the entities of the
standard library under a namespace called std. In Figure, the statement
using namespace std informs the compiler to include all the entities
present in the namespace std. The entities of a namespace can be
accessed in different ways which are listed here.

 By specifying the using directive

 using namespace std;

 cout<<"Hello World";

 By specifying the full member name

 std: :cout<<"Hello World";

 By specifying the using declaration

 using std:: cout;

 cout<<"Hello World";

 As soon as the new-style header is included, its contents are included
in the std namespace. Thus, all the modern C++ compilers support
these statements.

 #include<iostream>

 using namespace std;

 However, some old compilers may not support these statements. In
that case, the statements are replaced by this single statement.

 #include<iostream.h>

 Main Function: The main () is a startup function that starts the
execution of a c++ program. All C++ statements that need to be
executed are written within main (). The compiler executes all the
instructions written within the opening and closing curly braces' {}' that
enclose the body of main (). Once all the instructions in main () are

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 21 | P a g e

executed, the control passes out of main (), terminating the entire
program and returning a value to the operating system.

 By default, main () in C++ returns an int value to the operating system.
Therefore, main () should end with the return 0 statement. A return
value zero indicates success and a non-zero value indicates failure or
error.

Learning Outcome: (Summary)
 In this topic we learn comments, namespace and main

function.

1 word Question Answer

Sr No. Question Answer

1. C++ program structure is divided into

How many sections?

Four

2. C++ supports How many types of

comment?

Two

3. Single line comment specified by? //

4. Multiline comment specified by? /* */

5. A __________ permits grouping of

various entities like classes, objects,

functions and various C++ tokens.

Namespace

6. C++ Starts execution of program from

which function?

 Main()

Topic: What is Namespace?
Trailer: (Only for Understanding)

 What is Namespace? How to include namespace?

Details: (for Exam Content)

 Consider following C++ program.

 // A program to demonstrate need of namespace

int main()

http://ecomputernotes.com/fundamental/disk-operating-system/what-is-operating-system

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 22 | P a g e

{

 int value;

 value = 0;

 double value; // Error here

 value = 0.0;

}

 Output :

 Compiler Error:

 'value' has a previous declaration as 'int value'

 In each scope, a name can only represent one entity. So, there cannot
be two variables with the same name in the same scope. Using
namespaces, we can create two variables or member functions having
the same name.

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 23 | P a g e

 Output:

 500

// Here we can see that more than one variables

// are being used without reporting any error.

// That is because they are declared in the

// different namespaces and scopes.

#include <iostream>

using namespace std;

 // Variable created inside namespace

namespace first

{

 int val = 500;

}

 // Global variable

int val = 100;

int main()

{

 // Local variable

 int val = 200;

 // These variables can be accessed from

 // outside the namespace using the scope

 // operator ::

 cout << first::val << '\n';

 return 0;

}

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 24 | P a g e

 Definition and Creation:

 Namespaces allow us to group named entities that otherwise would
have global scope into limited scopes, giving them namespace scope.
This allows organizing the elements of programs into different logical
scopes referred to by names.

 Namespace is a feature added in C++ and not present in C.

 A namespace is a declarative section that provides a scope to the
identifiers (names of the types, function, variables etc) inside it.

 Multiple namespace blocks with the same name are allowed. All
declarations within those blocks are declared in the named scope.

Learning Outcome: We learn namespace allow group name entities

which we can use in any program of c++ and easily use the namespace
code.

1 word Question Answer

Sr No. Question Answer

1. Which operator is used to signify the

namespace?

 scope operator

2. What is the use of Namespace? To structure a

program into logical

units

3. What is the general syntax for

accessing the namespace variable?

namespace::operato

r

Topic: Tokens in C++

Trailer: (Only for Understanding)

 we will learn what is tokens and how we can use in the program.

 A small unit which is usefull in program is a tokens like variable name,
keywords, data types etc.

Details: (for Exam Content)

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 25 | P a g e

 Tokens is the smallest individual unit in C++ language. In fact, every
unit that makes a sentence in C++ is a Token. C++ has ten types of
Tokens as given below.

1) Keywords
2) Identifiers
3) Basic data types
4) User-defined types
5) Derived data types
6) Symbolic constants
7) Type compatibility
8) Declaration of variables
9) Dynamic initialization of variables
10) Reference variables

1) Keywords:

 Keywords are those words who has special meaning for compiler. We
can't use keywords as variable name.

 C++ has 32 Keywords as follows:

Keywords

Auto Double int struct

Break Else long switch

Case enum register typedef

Char extern return union

Const float short unsigned

Continue For signed void

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 26 | P a g e

Default Goto sizeof volatile

Do If static while

2) Identifiers

 Identifiers are fundamental building blocks of a program and are used
as the general terminology for the names given to different parts of
program viz. variables, functions array,structures etc.

3) Basic data types

Type Typical Bit Width Typical Range

Char 1byte -127 to 127 or 0 to 255

unsigned char 1byte 0 to 255

signed char 1byte -127 to 127

Int 4bytes -2147483648 to 2147483647

unsigned int 4bytes 0 to 4294967295

signed int 4bytes -2147483648 to 2147483647

short int 2bytes -32768 to 32767

unsigned short int Range 0 to 65,535

signed short int Range -32768 to 32767

long int 4bytes -2,147,483,648 to 2,147,483,647

signed long int 4bytes same as long int

unsigned long int 4bytes 0 to 4,294,967,295

Float 4bytes +/- 3.4e +/- 38 (~7 digits)

Double 8bytes +/- 1.7e +/- 308 (~15 digits)

long double 8bytes +/- 1.7e +/- 308 (~15 digits)

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 27 | P a g e

4) User-defined types

 The data types that are defined by the user are called the derived
datatype or user-defined derived data type.
These types include:

1.) Class

2.) Structure

3.) Union

4.) Enumeration

5.) Typedef defined DataType

Class:

 The building block of C++ that leads to Object-Oriented programming is
a Class. It is a user-defined data type, which holds its own data
members and member functions, which can be accessed and used by
creating an instance of that class. A class is like a blueprint for an
object.

 Syntax:

Srtucture:

 A structure is a user defined data type in C/C++. A structure creates a
data type that can be used to group items of possibly different types
into a single type.

Syntax:
struct address {

 char name[50];

 char street[100];

 char city[50];

https://www.geeksforgeeks.org/c-classes-and-objects/
https://www.geeksforgeeks.org/structures-c/
https://www.geeksforgeeks.org/union-c/
https://www.geeksforgeeks.org/enumeration-enum-c/

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 28 | P a g e

 char state[20];

 int pin;

};

Union:

 Like Structures, union is a user defined data type. In union, all members
share the same memory location. For example in the following C
program, both x and y share the same location. If we change x, we can
see the changes being reflected in y.

Enumeration:
 Enumeration (or enum) is a user defined data type in C. It is mainly used to assign

names to integral constants, the names make a program easy to read and maintain.

 Syntax:
 enum State {Working = 1, Failed = 0};

Typedef :

 C++ allows you to define explicitly new data type names by using the
keyword typedef. Using typedef does not actually create a new data
class, rather it defines a name for an existing type. This can increase the
portability(the ability of a program to be used across different types of
machines; i.e., mini, mainframe, micro, etc; without much changes into
the code)of a program as only the typedef statements would have to
be changed. Using typedef one can also aid in self-documenting code
by allowing descriptive names for the standard data types.

 Syntax:
typedef type name;

 where type is any C++ data type and name is the new name for this data
type.
This defines another name for the standard type of C++.

 Example:
// C++ program to demonstrate typedef
#include <iostream>
using namespace std;

// After this line BYTE can be used
// in place of unsigned char
typedef unsigned char BYTE;

int main()

https://www.geeksforgeeks.org/union-c/
http://quiz.geeksforgeeks.org/structures-c/
https://www.geeksforgeeks.org/enumeration-enum-c/

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 29 | P a g e

{
 BYTE b1, b2;
 b1 = 'c';
 cout << " " << b1;
 return 0;
}

 Output:
C

5) Derived data types
 The data-types that are derived from the primitive or built-in datatypes

are referred to as Derived Data Types. These can be of four types
namely:

1.) Function
2.) Array
3.) Pointers

 Let’s briefly understand each of the following derived datatypes:
1. Function:

 A function is a block of code or program-segment that is defined to
perform a specific well-defined task. A function is generally defined to
save the user from writing the same lines of code again and again for
the same input. All the lines of code are put together inside a single
function and this can be called anywhere required. main() is a default
function that is defined in every program of C++.

 Syntax:
FunctionType FunctionName(parameters)

2. Array:

 An array is a collection of items stored at continuous memory locations.
The idea of array is to represent many instances in one variable.

https://www.geeksforgeeks.org/functions-in-c/
https://www.geeksforgeeks.org/arrays-in-c-cpp/
https://www.geeksforgeeks.org/pointers-c-examples/
https://www.geeksforgeeks.org/arrays-in-c-cpp/

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 30 | P a g e

 Syntax:
DataType ArrayName[size_of_array];

3. Pointers:

 Pointers are symbolic representation of addresses. They enable
programs to simulate call-by-reference as well as to create and
manipulate dynamic data structures. It’s general declaration in C/C++
has the format:

 Syntax:
datatype *var_name;

6) Symbolic constants
 Any value declared as a const can not be modified by the program in

any way.

 Syntax: const variable-name=value;
Ex: #include<iostream.h>
 #include<conio.h>
 #include<iomanip.h>
 Void main()
 {
 Const i=10;
 Cout<<i;
 I=i+1; //generate an error because of constant value can’t modify
 getch();
 }

7) Type compatibility
 C++ is very strict with regard to type compatibility as compared to C.

Type compatibility is very close to automatic or implicit type
conversion.

 The type compatibility is being able to use two types together without
modification and being able to substitute one for the other without
modification.

 Implicit Type Conversion Also known as ‘automatic type conversion’.

 Done by the compiler on its own, without any external trigger from the
user.

 Generally takes place when in an expression more than one data type is
present. In such condition type conversion (type promotion) takes
place to avoid lose of data.

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 31 | P a g e

 All the data types of the variables are upgraded to the data type of the
variable with largest data type.

 bool -> char -> short int -> int ->

 unsigned int -> long -> unsigned ->

 long long -> float -> double -> long double

 It is possible for implicit conversions to lose information, signs can be
lost (when signed is implicitly converted to unsigned), and overflow can
occur (when long long is implicitly converted to float).
Example of Type Implicit Conversion:
#include <iostream>
using namespace std;

int main()
{
 int x = 10; // integer x
 char y = 'a'; // character c

 // y implicitly converted to int. ASCII
 // value of 'a' is 97
 x = x + y;

 // x is implicitly converted to float
 float z = x + 1.0;

 cout << "x = " << x << endl
 << "y = " << y << endl
 << "z = " << z << endl;

 return 0;
}
Output:
x = 107
y = a
z = 108

 Explicit Type Conversion:

 This process is also called type casting and it is user-defined. Here the
user can typecast the result to make it of a particular data type.

 In C++, it can be done by two ways:

 Converting by assignment: This is done by explicitly defining the

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 32 | P a g e

required type in front of the expression in parenthesis. This can be also
considered as forceful casting.

 Syntax:

 (type) expression
Example:
// C++ program to demonstrate
// explicit type casting

#include <iostream>
using namespace std;

int main()
{
 double x = 1.2;

 // Explicit conversion from double to int
 int sum = (int)x + 1;

 cout << "Sum = " << sum;

 return 0;
}
Output:
Sum = 2

 Advantages of Type Conversion:

 This is done to take advantage of certain features of type
hierarchies or type representations.

 It helps to compute expressions containing variables of
different data types.

8) Declaration of variables
 Variables are used to store values. variable name is the name of

memory location where value is stored. It must be alphanumeric, only
underscore is allowed in a variable name. It is composed of letters,
digits and only underscore. It must begin with alphabet or underscore.
It can not be begin with numeric.

 Declaration of Variable

 Declaration will allocate memory for specified variable with garbage

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 33 | P a g e

value.

 Syntax :
 Data-Type Variable-name;

 Examples :
 int a;
 float b;
 char c;

 Initialization means assigning value to declared variable. Every value
will overwrite the previous value.

 Examples :
 a = 10;
 b = 4.5;
 c = 'a';

 Character value must be enclosed with single quotes.
 a = 4.5;

 if we assign decimal value to integer variable, it will accept only integer
portion of value. In the above example variable a will accept 4 only.

9) Dynamic initialization of variables
 Here, the variable is assigned a value at the run time. The value of this

variable can be altered every time the program is being run.

10) Reference variables
 Think of a variable name as a label attached to the variable's location in

memory. You can then think of a reference as a second label attached
to that memory location. Therefore, you can access the contents of the
variable through either the original variable name or the reference. For
example, suppose we have the following example −

int i = 17;

 We can declare reference variables for i as follows.
int& r = i;

 Read the & in these declarations as reference. Thus, read the first
declaration as "r is an integer reference initialized to i" and read the
second declaration as "s is a double reference initialized to d."

Learning Outcome: (Summary)

 keywords is the word with the special meaning.

 Identifier is identify the variable, structure, function etc.

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 34 | P a g e

 Data types is used for which type of data we can store in
variable.

 User define data type means enumeration , typedef.

 Derived data type means function, array, pointers.

 Type conversion means change the data type of variable.

 Dynamic initialization means we can store the data at run
time.

1 word Question Answer

Sr No. Question Answer

1. C++ provides various types of
…………………… that includes keywords,
identifiers, constants, strings and
operators.

Tokens

2. …………………. refer to the names of
variables, functions, arrays, classes
etc. created by programmer.

Identifiers

3. ………………….. are explicitly reserved
identifiers and cannot be used as
names for the program variables or
other user defined program elements.

Keywords

4. In C++, ………………….. refer to fixed
values that do not change during the
execution of a program.

Constants

5. C++ provides an additional use of
…………………….., for declaration of
generic pointers

Void

6. In the case of ……………………… in C++,
we can not modify the address that
the pointer is initialized.

constant pointer

7. ………………… are widely used in C++ for
memory management and to achieve
polymorphism.

Pointers

8. C++ permits initialization of the
variables at run time which is referred
to as ………………. initialization.

Dynamic

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 35 | P a g e

9. …………………….. used in C++ provides
an alias (alternative name) for a
previously defined variables.

Reference

10. A reference variable must be
initialized at the time of ………………

declaration

Topic: What is Operators? Explain types of Operators.

Trailer: (Only for Understanding)

 Operator means which is operate something.

 For ex: we want to perform addition then we have to use +
“Plus” operator which operate addition.

 We have many types of operator which provide different
different facility for operations.

Details: (for Exam Content)

 An operator is a symbol that tells the compiler to perform specific

mathematical or logical calculations on operands(variables).

 Scope Resolution Operator

 C++ is also a Block-Structured Language. The Scope of a variable
extends from the point of its Declaration till the end of the code block,
containing the declarations. A Variable declared inside a code block is
said to be local to that code block. ::(Scope Resolution Operator)
Operator allows access to the global version of a Variable.
1) Global Scope Resolution Operator :

Let us see an program Example illustrating the use of Scope Resolution

Operator

 (::) used with the Gloal Variable is given below :

#include <iostream>
using namespace std;

int Sum = 10;

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 36 | P a g e

int main ()
{
 int Sum = 50;
 cout << "Value of local Sum variable in the main function = " << Sum ;
 cout << "\nValue of Sum using Scope Resolution Operator = " << ::Sum ;
 return 0 ;
}

2) Class Scope Resolution Operator :
In the below example we are using Scope Resolution Operator to define
the class functions outside the class :

#include <iostream>
using namespace std;

class Scope_Resolution_Operator
{
 public :
 void Display();
};
void Scope_Resolution_Operator :: Display()
{
 cout << "We are in the Display Function." ;
}
int main ()
{
 Scope_Resolution_Operator Scopeobj;
 Scopeobj.Display();
 return 0 ;
}

 Member Dereferencing Operators

 Once a class is defined, its members can be accessed using two
Operators :-
1) (.) Dot Operator, And
2) (->)Arrow Operator

While (.) Dot Operator takes class or struct type Variable as Operand, (-

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 37 | P a g e

>) Arrow Operator takes a Pointer or Reference Variable as its Operand.

Let us see an simple example of using (.) Dot operator to make access to
the members defination of structure Student :

#include <iostream>
using namespace std;

struct Student{
 string name , state;
 int rollno , houseno;
};
int main ()
{
 Student amit;
 amit.name = "Amit" ;
 amit.rollno = 26 ;
 amit.houseno = 24 ;
 amit.state = "Delhi" ;

 cout << "Name of the Student is = " << amit.name ;
 cout << "\nRoll no of the Student is = " << amit.rollno ;
 cout << "\nHouse of the Student is = " << amit.houseno ;
 cout << "\nState of the Student is = " << amit.state ;
 return 0 ;
}

 Let us see an simple example of using (->) Arrow operator to make
access to the members defination of structure Student :

#include <iostream>
using namespace std;

struct Student{
 string name , state;
 int rollno , houseno;
};
int main ()
{
 Student amit;

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 38 | P a g e

 Student *amitptr;
 // Here, *amitptr points to the object of Structure Student i.e amit

 amitptr = &amit;
 // Here, amitptr is equal to the address of the object amit

 amitptr -> name = "Amit" ;
 amitptr -> rollno = 26 ;
 amitptr -> houseno = 24 ;
 amitptr -> state = "Delhi" ;

 cout << "Name of the Student is = " << amit.name ;
 cout << "\nRoll no of the Student is = " << amit.rollno ;
 cout << "\nHouse of the Student is = " << amit.houseno ;
 cout << "\nState of the Student is = " << amit.state ;
 return 0 ;
}

 Memory Management Operators
C++ also define two Unary Operators :-
1) New, and
2) Delete.

 New and Delete Operators performs the task of allocating and
freeing the memory. Since, these Operators manipulates
memory on the Free Store, They are also known as Free Store
Operators.

 A Data Object created inside a block with New Operator will
remain in existence Until it is explicitly destroyed using Delete
Operator.

 When An Object Is No Longer Needed, It Is Destroyed To Release
The Memory Space For Reuse by another variables by using
Delete Operator.

 The General Syntax of using New Operator is :
Pointer_variable = New Data_type(Value);
Let us see an simple example of using new operator :

#include <iostream>

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 39 | P a g e

using namespace std;

int main ()
{
 int *pointer;
 pointer = new int;
 // Now new operator dynamically allocates the
memory space to the pointer variable

 *pointer = 12;

 cout << *pointer ;
 return 0 ;
}

 The General Syntax of using Delete Operator is :
Delete Pointer_variable;

Let us see an simple example of using delete operator :

#include <iostream>
using namespace std;

int main ()
{
 int *pointer;
 pointer = new int;
 *pointer = 12;

 cout << *pointer ;
 // This returns the value 12 instead of the address
value of pointer

 delete pointer;
 // delete operator deallocates the memory space of
pointer and now pointer variable does not contain any
value

 cout << "\n" << *pointer ;

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 40 | P a g e

 // Now this will return the memory address of the
pointer

 return 0 ;
}

 These operators are used to format the data display. Some of the
manipulators are as follows :

 1) endl manipulator -

 endl manipulator when used causes a linefeed. endl is a
manipulator which is manipulating the actual nature of program by
printing the next specified code in the next new line. endl does not
get any parameters.
For Example :-

#include<iostream>
using namespace std;

int main ()
{
 cout << "This is text of first line" << endl;
 cout << "This is text display in second line";
 // If you try to print this without endl the both lines
will come in oneline.

 return 0;
}

2. setw() manipulator -

 setw(value) is a manipulator which sets the width before the character
or can say that gives the number of space set in the parameter before
the text is displayed.

 We can also fill the setted space by some character by the manipulator
"setfill('character or value').

 This manipulator takes the parameter which is a int datatype. To use
this manipulator you must add "#include<iomanip>".

 This manipulator will only allow one character after its declaration.

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 41 | P a g e

For Example :-

#include <iostream>
#include <iomanip>
using namespace std;

int main ()
{
 int a = 10; // value to be putten in setw must be declared
in a variable first

 cout << setw(a) << "Setw" << endl;
 cout << setw(a) << setfill('#') << "Setfill";

 return 0;
}

 3. hex manipulator -

 hex is a manipulator which manipulates the written expression and
print the hexadecimal value of that expression. hex manipulator also
does not take any parameters.
For Example :-

#include<iostream>
//#include <iomanip>
using namespace std;

int main ()
{

 cout << hex << 50 << endl;
 cout << hex << 100 << endl;
 cout << hex << 150 << endl;
 cout << hex << 200;
 // All values will be printed in their hexadecimal
values by hex manipulator

 return 0;

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 42 | P a g e

}

Learning Outcome: (Summary)
 In this topic we learn global scope resolution operation with this

operator we can use the global data in any where in the program.
 We learn memory management operator which is manage the

memory for storing our data.
 We learn manipulators which is used for designing purpose.

1 word Question Answer

Sr No. Question Answer

1. Which operator is having the right to

left associativity in the following?

Type cast

2. Which operator is having the highest

precedence?

Postfix

3. What is this operator called ?:? Conditional

4. What is the use of dynamic_cast

operator?

it converts virtual

base class to derived

class

5. _____ is a manipulator which

manipulates the written expression

and print the hexadecimal value of

that expression.

Hex

6. ________ is a manipulator which sets

the width before the character or can

say that gives the number of space

set in the parameter before the text

is displayed.

Setw

7. _______ manipulator when used

causes a linefeed.

Endl

8. ___________Opeartors performs the

task of allocating and freeing the

memory.

New and Delete

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 43 | P a g e

Topic: Expression and its Types

Trailer: (Only for Understanding)
 Expression means to express something for ex: res= A + B is express

the addition and this will store the addition in the res variable.

Details: (for Exam Content)
 Expression: An expression is a combination of operators, constants and

variables. An expression may consist of one or more operands, and zero
or more operators to produce a value.

Types of Expressions:

Expressions may be of the following types:

https://media.geeksforgeeks.org/wp-content/uploads/20190801163131/What-is-an-Expression_-3.jpg

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 44 | P a g e

 Constant expressions: Constant Expressions consists of only constant
values. A constant value is one that doesn’t change.
Examples:

5, 10 + 5 / 6.0, 'x’

 Integral expressions: Integral Expressions are those which produce
integer results after implementing all the automatic and explicit type
conversions.
Examples:

x, x * y, x + int(5.0)

where x and y are integer variables.

 Floating expressions: Float Expressions are which produce floating point
results after implementing all the automatic and explicit type
conversions.
Examples:
x + y, 10.75
where x and y are floating point variables.

 Relational expressions: Relational Expressions yield results of type bool
which takes a value true or false. When arithmetic expressions are used
on either side of a relational operator, they will be evaluated first and
then the results compared. Relational expressions are also known as

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 45 | P a g e

Boolean expressions.
Examples:
x <= y, x + y > 2

 Logical expressions: Logical Expressions combine two or more relational
expressions and produces bool type results.
Examples:
 x > y && x == 10, x == 10 || y == 5

 Pointer expressions: Pointer Expressions produce address values.
Examples:
&x, ptr, ptr++
where x is a variable and ptr is a pointer.

 Bitwise expressions: Bitwise Expressions are used to manipulate data at
bit level. They are basically used for testing or shifting bits.
Examples:
x << 3
shifts three bit position to left
y >> 1
shifts one bit position to right.
Shift operators are often used for multiplication and division by powers
of two.

Learning Outcome: (Summary)
 In this topic we learn expression. An expression is a combination

of operators, constants and variables.

Topic: Conditional Structure

 C++ has the following conditional statements:
o Use if to specify a block of code to be executed, if a specified

condition is true
o Use else to specify a block of code to be executed, if the same

condition is false
o Use else if to specify a new condition to test, if the first condition

is false
o Use switch to specify many alternative blocks of code to be

executed
The if Statement

 Use the if statement to specify a block of C++ code to be executed if a
condition is true.

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 46 | P a g e

 Syntax
if (condition) {
 // block of code to be executed if the condition is true
}
The else Statement

 Use the else statement to specify a block of code to be executed if the
condition is false.

 Syntax
if (condition) {
 // block of code to be executed if the condition is true
} else {
 // block of code to be executed if the condition is false
}
The else if Statement

 Use the else if statement to specify a new condition if the first condition
is false.

 Syntax
if (condition1) {
 // block of code to be executed if condition1 is true
} else if (condition2) {
 // block of code to be executed if the condition1 is false and condition2
is true
} else {
 // block of code to be executed if the condition1 is false and condition2
is false
}
C++ Switch Statements

 Use the switch statement to select one of many code blocks to be
executed.

 Syntax
switch(expression)
{
 case x:
 // code block
 break;
 case y:
 // code block
 break;
 default:

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 47 | P a g e

 // code block
}

Topic: Looping Structure

Trailer: (Only for Understanding)
 If we want to execute some line of code for multiple time

than we don’t write this code for multiple time we can use
the loop for that.

Details: (for Exam Content)
 A Loop is defined as a block of processing steps repeated a certain no of

times.

 For Loop:

 The For loop statement is used to repeat a statement or a block of
statement specified number of times.

 Syntax:
For(initialization; condition; updation)
{

Body of loop
}

 According to the above syntax the initialization part is initialized the
variable.

 The condition part tested the loop variable if the condition is true, the
body of the loop get executed else the loop is terminated and the next
statement after the loop executed.

 In the updation part increments or decrements the loop variable. After
testing condition update part is executed.

 The condition is check again and the whole process is repeated till the
condition will false.

 While

 The while loop is used when the no of iterations to be performed are not
known in advance.

 The statement in the loop is executed if the test condition is true and the
execution continuous as long as it remains true.

o Syntax:
While(condition)

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 48 | P a g e

{
Body of the loop

}

 According to the above syntax first execute the condition, if condition is
true execute the body of loop, else loop will terminate.

 Do….While

 Sometimes it is required to execute the body of the loop at least once
even if the test expression execute false during the first iteration.

 This requires testing termination expression at the end of loop rather
than beginning.

 For that do….while loop is used where the test condition is at the
bottom of the loop.

 This means that the program always execute the statements at least
once.

 Syntax:
Do
{

Body of the loop
} while (condition);

 According to the syntax first execute the body of the loop and at last
execute the condition and if condition is true then repeat body of loop
once again, else control come out from the loop.

Learning Outcome: (Summary)
 With loop we can easily execute the block of code multiple

time.
 While loop is entry control loop because this will check the

condition first than after will execute the code.
 Do – while loop is exit control loop because this will execute

the code first than after check the condition.

1 word Question Answer

Sr No. Question Answer

1. How many loops are there in C++ 3

2. Give the correct syntax of for loop? for(initialization;condition;

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 49 | P a g e

increment/decrement)

3. Give the name of entry control loop While

4. Give the name of exit control loop Do…while

Topic: Explain the main Function.

Trailer: (Only for Understanding)

 This function is the main function for C++. And in this topic we will

learn the syntax of the main function.

Details: (for Exam Content)

 The execution of each and every c++ program is start from the main()
function. It is the entry point of a program execution.

 The general format of main() function is as follow.

 Syntax:

 Return type main([int argc, char *argv[],[char ** envp]])

 {
o Body of the main function

 }

 According to the above format the return type of the main() function
must be either void or int.

 Here, return type specifies the status of the program termination.

 The main() function can also takes arguments from command prompt to.
It is known as command line arguments.

 argc specifies the total number at argument. It is the argument counter.
Its value is always positive.

 Argv represents the argument vector(array). It holds pointer to the
argument passed from the command line.

 argv[] is one kind of an array so it holds the data in following manner:
o argv[0] = pointer to the name of the executable program.
o Argv[1], argv[2]….. argv[n] = pointers to argument strings

 envp represents an environment parameter. It is optional.

o For example
#include<iostream.h>

#include<conio.h>

int main(int argc, char *argv[])

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 50 | P a g e

{

int i;

cout<<endl<<"Total arguments="<<argc;

cout<<endl<<"Program name is="<<argv[0];

cout<<endl<<"Other Arguments are";

for(i=1;i<argc;i++)

{

cout<<endl<<argv[i];

}

getch();

return(0);

}

 run the above program from dos shell and enter following arguments:
o C:\TC\BIN\SOURCE> ARGS.EXE I like c++ very much.

Learning Outcome: (Summary)

 With the main function we can pass the argument to the

main function and first argument is the program name by

default.

1 word Question Answer

Sr No. Question Answer

1. How many arguments in main

function?

3

2. Give the syntax of main function. Return type main([int argc,

char *argv[],[char **

envp]])

Topic: Explain the call by reference.

Trailer: (Only for Understanding)

 Call by reference means we can call the function by its reference

means address of variable.

Details: (for Exam Content)

 A reference as its name, is like alias.

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 51 | P a g e

 It refer to the same entity. A variable and its reference are tightly
attached with each other.

 So, change in one it will also change in the other. When call any function
by its reference any modifications made through the formal pointer
parameter is also reflected in the actual parameter.

 It has functionality of pass-by-pointer and the syntax of call-by-value.

 In the function declaration parameter are to be received by reference
must be preceded by the & operator and arguments or parameters pass
same as call by value.

 However any modification in the variable in function body directly
reflected to the actual parameter.

o Ex.
 Void swapref(int &x, int &y);

o In above ex we can see that the reference of the variable will
passed in the function parameters.

o When we want to call this type of function we can call same as
call by value functions. Like swapref(x,y).

Learning Outcome: (Summary)

 With the call by reference we can directly change the

value of variable in the user define function because we

use the reference of variable.

 In general case we can not change the value of variable

permanently.

1 word Question Answer

Sr No. Question Answer

1. In the call by value function

declaration parameter are to be

received by __________.

reference

2. In the call by value function which

symbol is used for pass reference?

&

Topic: Explain the return by reference.

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 52 | P a g e

Trailer: (Only for Understanding)

 Return by reference means we return the reference means

address of variable.
Details : (for Exam Content)

 We can pass a reference to a parameter same we can also return a
reference from a function.

 A function that returns a reference variable is actually an alias for the
referred variable.

 Here. A function can be called on the receiving side of an assignment.

 For ex.

 Int & max(int &x,int &y)

 In above ex you can see that the return type of function is int reference.

Learning Outcome: (Summary)

 In this type of function we can return the reference

means address of variable means our value of variable is

permanently change.

1 word Question Answer

Sr No. Question Answer
1. In return by reference function

we have to return _________.
Reference

Topic: Explain the inline function.

Trailer: (Only for Understanding)

 Inline function means the code of function is in the line at the time

of function calling.

Details: (for Exam Content)

 C++ provides an inline functions to reduce the function call
overhead. Inline function is a function that is expanded in line when it is

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 53 | P a g e

called. When the inline function is called whole code of the inline
function gets inserted or substituted at the point of inline function call.

 When we call the function, control of program jumps to the code of the
function, the CPU stores memory address of the instruction and copies
arguments onto the stack, and finally transfers control to the specified
function.

 CPU executes the function code, stores the return value in memory
location or register and returns control to the calling function.

 If we call function 5 times, then the control of the program jumps to the
set of instruction 5 times and perform same task to store argument in
stock and return value to register again and again.

 C++ provides a solution to overcome such a problem. For that declare a
function with the keyword inline. It is known as inline function.

 Here, the compiler does not create a one copy of real function, but
copies the code where the function call have been made.

 If the function is called 5 times, the code of the function copied into the
calling function each of the 5 times.

 It will improve the speed at the program but increase the size of
executable program.

 The inline functions are defined as follow.

 Syntax:
 Inline returntype functionname()
 {

 //function body
 }

 According to above format the keyword inline is placed with function
header at the time of function definition and also with function
prototype.

 Some of the situation where inline function may not work are:
o If a loop, switch or goto exists.
o If returns statement exists but function not return a value.
o If a function contains static variables.
o If inline functions are recursive.

Learning Outcome: (Summary)

 Inline function is a function that is expanded in line when it is

called. It will easy for the compiler.

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 54 | P a g e

1 word Question Answer

Sr No. Question Answer

1. Name the function whose definition

can be substituted at a place where

its function call is made _________

inline function

2. loop, switch or goto exists in inline

function the function will work or not.

No

3. If returns statement exists but

function not return a value exists in

inline function the function will work

or not.

No

4. If a function contains static variables

in inline function the function will

work or not.

No

5. inline functions are recursive or not no

Topic: Explain default Argument.

Trailer: (Only for Understanding)

 We can provide default values for function parameters. If a function
with default arguments is called without passing arguments, then
the default parameters are used.

Details: (for Exam Content)
 In c it a function is defined to receive 3 arguments, so whenever call a

function need to pass value those 3 arguments to the function.

 It assigns a garbage value for argument for the last argument.

 In c++ functions have an ability to define default values for arguments
that are not passed when the function is call.

 The default arguments can be specified by following the arguments is
name with = default value in the function argument list.

 The default value must be specified from right-to-left specify a value to a
particular argument in the middle of an argument list is not possible.

 A function can be declare with a default argument as follows:
o Int sum(int x=5, int y=10, int z=15);

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 55 | P a g e

o Int sum(int x, int y=10, int z=15);
o Int sum(int x, int y, int z=15);

 Here, default arguments are specified from left to right.

 If specifies default argument value of any argument then also pass value
for it, the new passed value is consider as a value of argument instead of
default argument.

Learning Outcome: (Summary)

 Functions have an ability to define default values for arguments that are

not passed when the function is call.

1 word Question Answer

Sr No. Question Answer

1. the arguments is name with = default
value in the which type of function
argument list ?

Default argument

function

2. The default value must be specified
from?

left-to-right

3. If specifies default argument value of
any argument then also pass value for
it, which value is consider as a value of
argument?

new passed value

Topic: Explain Const argument.

Trailer: (Only for Understanding)

 When you put "const" in front of a parameter, it means that it cannot be
modified in the function.

Details: (for Exam Content)
 The keyword const specifies that the value of variable will not change

throughout the program.

 If anyone attempt to after the value of variable defined with this
qualifier an error can be created.

 A function can also take an argument as a const. which is specifies no
any modification on the value.

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 56 | P a g e

Learning Outcome: (Summary)

 Const Arguments means value of arguments can not change.

1 word Question Answer

Sr No. Question Answer
1. A function can also take an argument

as a ________ which is specifies no

any modification on the value.

const

Topic: Explain function overloading.

Trailer: (Only for Understanding)

 In c language we can not declare the multiple function with the same

name but in c++ we can do this with Function overloading.

Details: (for Exam Content)

 Overloading refers to the use of a same thing for different purpose.

 It is the polymorphism feature of a object oriented concept.

 Function overloading or function polymorphism is a concept that allows
multiple functions to use the same name with different number of
argument and types of argument.

 In c language that can not possible to make any function with same
name while in c++ it can be possible with function overloading or
function name overloading.

 For ex:
o Char * copy(char *);
o int copy(int,int);
o Float copy(int);

 Here, the above three function use the same function name copy() but
work with different data types.

 Here, return type doesn’t mean.
 int copy(int,int);
 Void copy(int,int);

 As shown in above two functions, it can not work,it will create
ambiguity.

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 57 | P a g e

 Return type does not differentiate any function.

 When any function is called, the selection of the particular function is
made from given forms at function and it done through the process of
argument matching.

 The actual argument of the function call gets matched with the formal
argument of each forms of the function.

 One of the following choice will occur when a call for the overloaded
function is made.

 A match

 No match

 Ambiguous match

 Match

 Here, the compiler first tries to find exact match in which types of
arguments are the same, and use that function.

 No match

 A no match occurs when the actual argument cannot be match with an
argument of the defined function and will cause the error message.

 Ambiguous match

 If an exact match is not found. C++ compiler tries to match the
arguments by two ways.

 A match through promotion.

 For ex:
o Void ff(int);
o Void ff(char *);

 Here, if function called as ff(‘a’) . if is not exact match but ‘a’ is of type
char.

 It is promoted to type int after no exact match is found.

 The other promotion such as.

 Float to double

 Enumeration to int

 Char to int

 A match by standard conversion.

 Here, compiler tries to use the built-in conversion to the actual
argument and then uses the function whose match is unique.

 For ex:

 Void ff(char *c);

 Void ff(double d);

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 58 | P a g e

 Void ff(void);

 If any function called as

 ff(10); // Matches ff(double)

 ff(“a”);// match ff(char *)

 If the conversion have multiple matches, then the compiler will generate
an error message.

Learning Outcome: (Summary)
 With the function overloading we can use same function name multiple

time with different argument list.

1 word Question Answer

Sr No. Question Answer

1. ____________ is a concept that

allows multiple functions to use the

same name with different number of

argument and types of argument.

Function overloading

or function

polymorphism

2. How many choice will occur when a

call for the overloaded function is

made?

3

Question Bank

1 Marks

1. What is Procedure Oriented Programming? (jan-2021)
2. What is C++? (jan-2021)
3. What is a reference variable? (jan-2021)
4. What is a symbolic constant? (jan-2021)
5. What is main function? (jan-2021)
6. What is namespace? (jan-2021)
7. What is derived data- type? (jan-2021)
8. What is Keywords? (dec-2018)
9. C++ is an “object oriented” programming language created by _____. (dec-2018)
10. Give name and symbol of input operator. (dec-2018)
11. Write how to declare user define function. (dec-2018)
12. C++ language was developed by ________. (oct-2017)
13. Define the term Data Encapsulation. (oct-2017)

 (Affiliated to Saurashtra University & Gujarat Technological University)

CS - 14 : C++ and Object Oriented Programming 59 | P a g e

14. ADT stands for _______. (oct-2017)
15. Define the term Data Abstraction. (oct-2017)

2 Marks

1. What is reference variable? Explain with example. (oct-2017)
2. What is inline function? Explain with example. (oct-2017)
3. Explain memory management operator. (dec-2018) (jan-2021)

3 Marks

1. Explain scope resolution operator with suitable ex. (oct-2017) (dec-2018) (jan-2021)
2. Differentiate: OOP vs POP. (oct-2017)
3. Explain inline function with example. (dec-2018)
4. Explain function overloading. (dec-2018)
5. What is call by reference? Explain in details. (jan-2021)
6. What is Function Prototype? Explain in detail. (jan-2021)

5 Marks

1. List out operators available in C++. Explain memory management operators with
syntax & Ex. (oct-2017)

2. Explain function overloading with suitable ex. (oct-2017)
3. Explain data type in details. (dec-2018)
4. What is OOP? Explain basic concept of OOP. (dec-2018)
5. What is Conditional Structure? Explain any ine in details. (jan-2021)
6. What is Looping Control Structure? Explain any one in detail. (jan-2021)

(Affiliated to Saurashtra University & Gujarat Technological University)

1 | P a g e

COMPUTER FUNDAMENTAL
BCA & BSC IT SEM 1

 Shree H.N.Shukla College

Campus,

 Street No. 2, Vaishali Nagar,

 Nr. Amrapali Railway Crossing,

 Raiya Road, Rajkot.

 Ph. (0281)2440478, 2472590

Shree H.N.Shukla College

 Street No. 3, Vaishali Nagar,

 Nr. Amrapali Railway Crossing,

 Raiya Road, Rajkot.

 Ph. (0281)2471645

(Affiliated to Saurashtra University & Gujarat Technological University)

2 | P a g e

CH -2 classes and objects, constructor and destructor

Topic: Explain structure in detail.

 A structure combines logically related data items into a single unit.
 It is a user define data types.
 It can be used to create a variables, which can be used in the same way as variables

of standard data types.
 Syntax:

struct structure name
{
 Data type member1;
 Data type member2;

};

 According to syntax the structure declaration starts with struct keyword with structure
name.

 The data type of each variable is specified in the individual member declaration.
 The closing bracket is terminated with a semicolon.
Ex:
 Write a c++ program for enter the student roll no and name from user using structure.
#include<iostream.h>
#include<conio.h>
struct std
{
 int no;
 char name[40];
 void input()
 {
 cout<<"Enter no:";
 cin>>no;
 cout<<"Enter name:";
 cin>>name;
 }
 void display()
 {
 cout<<endl<<"No is:"<<no;
 cout<<"\n Name is:"<<name;
 }
};
void main()
{
 clrscr();
 std s1;

(Affiliated to Saurashtra University & Gujarat Technological University)

3 | P a g e

 s1.input();
 s1.display();
 getch();
}

1 word Question Answer

Sr No. Question Answer

1. A _________ combines logically related
data items into a single unit.

Structure

2. Structure is _________ data type. User define

Topic: Explain Access Specifiers.
 Access specifiers define how the members (attributes and methods) of a class can be

accessed.
 The public keyword is an access specifier.
 the members are public - which means that they can be accessed and modified from

outside the code.
 In C++, there are three access specifiers:

1. public - members are accessible from outside the class.
2. private - members cannot be accessed (or viewed) from outside the class.
3. protected - members cannot be accessed from outside the class, however, they can
be accessed in inherited classes. You will learn more about Inheritance later.

Topic: Explain class in detail.

 A class is an entity which binds the data and its associated functions together defining
variables of class data type is known as a class instance and such a variables are called
objects.

 Syntax:
class classname
{
 private:
 variable declaration;
 function declaration;

 public:

 variable declaration;

https://www.w3schools.com/cpp/cpp_inheritance.asp

(Affiliated to Saurashtra University & Gujarat Technological University)

4 | P a g e

 function declaration;

 };

 According to syntax, the keyword class indicates that the name which follows
class_name.

 The body at the class is enclosed within the bracket and closing bracket is terminated
with the semicolon.

 The body of class having declaration of variable and function, known as members.
 Variables of class is known as data member and function known as member function.
 The member specifies the visibility mode either private or public.
 The private members are accessible only inside the class or their own, class’s member.
 The public members accessible inside the class and also outside the class also.
 By default all the class members in class are private.
 It hides the data from externals. So, data hiding is the key features of the OOP.

 Creating object:
 A class specification only declares the structure of the object.
 To use the members of the class need of instance of class.
 Class_name object list;
 In above syntax class_name is the name of the class and object list contains the different

object name.
 Ex:

Data d1;

 Data d1,d2,d3;

 Objects can also be created by placing their name immediately after the closing bracket
of the class.

 Ex:
Class Data
{

}d1,d2,d3;

 Defining a member functions:
 A member functions of the class can be defined in any of the following two methods:

1. Inside the class specification
2. Out side the class specification

1. Inside the class specification
 When specify the member function inside the class it follows the same syntax as a

normal function definition .
 But here the function definition is enclosed within the body of the class.

(Affiliated to Saurashtra University & Gujarat Technological University)

5 | P a g e

 Member functions defined insides a class are considered as inline functions by default.
2. Outside the class specification

 The function defined outside the class specification have the same syntax as normal
functions.

 Only the difference is that a member function specifying with a ‘identity-label’ to
inform the compiler, the class to which the function belongs by using the scope
resolution operator (::).

 Syntax:
Class class_name
{
 Return_type member_function(arguments);
 };

 Return_type class_name :: member_function(srguments)

 {

 //Function Body

 }

 As shown in above syntax the label class_name informs the compiler that the member
function belongs to the class_name.

 Ex:
 Write a c++ program for enter the student roll no and name from user using class and its

member function.
#include<iostream.h>

#include<conio.h>

#include<stdio.h>

class std

{

 int no;

 char name[40];

 public:

 void input()

 {

 cout<<"Enter no:";

 cin>>no;

(Affiliated to Saurashtra University & Gujarat Technological University)

6 | P a g e

 cout<<"Enter name:";

 gets(name);

 }

 void display()

 {

 cout<<endl<<"No is:"<<no;

 cout<<"\n Name is:"<<name;

 }

};

void main()

{

 clrscr();

 std s1;

 s1.input();

 s1.display();

 getch();

}

 Write a c++ program for member function with arguments.

#include<iostream.h>
#include<conio.h>
#include<stdio.h>
#include<string.h>
class data
{
 int no;
 char name[20];
 public:
 void input(int,char *);
 void output();
};
void data::input(int n,char nm[])

(Affiliated to Saurashtra University & Gujarat Technological University)

7 | P a g e

{
 no=n;
 strcpy(name,nm);
}
void data::output()
{
 cout<<"\n number is:"<<no;
 cout<<"\n Name is :"<<name;
}
int main()
{
 int no;
 char name[20];
 data d1;
 clrscr();
 cout<<"Enter the number: ";
 cin>>no;
 cout<<"Enter the Name: ";
 gets(name);
 d1.input(no,name);
 d1.output();
 getch();
 return 0;
}

 Write a c++ program for nesting of member function.
#include<iostream.h>
#include<conio.h>
class number
{
 int no1,no2;
 public:
 void input();
 void output();
 int add();
};
void number::input()
{
 cout<<"\n Enter any two Numbers: ";
 cin>>no1>>no2;
}
int number::add()
{
 return(no1+no2);

(Affiliated to Saurashtra University & Gujarat Technological University)

8 | P a g e

}
void number::output()
{
 cout<<endl<<"No1 is: "<<no1;
 cout<<endl<<"No2 is: "<<no2;
 cout<<endl<<"Addition of two number is: "<<add();
}
void main()
{
 clrscr();
 number n1;
 n1.input();
 n1.output();
 getch();
}
 Write a c++ program from access the private member function.
#include<iostream.h>
#include<conio.h>
#include<stdio.h>
class std
{
 int no;
 char name[50];
 void input()
 {
 cout<<"\n Enter number:";
 cin>>no;
 }
 public:
 void display();
}s1;
void std::display()
{
 input();
 cout<<"\n Square of number is: "<<no*no;
}
void main()
{
 clrscr();
 std s2;
 s1.display();
 s2.display();
 getch();
}

(Affiliated to Saurashtra University & Gujarat Technological University)

9 | P a g e

1 word Question Answer

Sr No. Question Answer

1. Data members and member functions of a
class in C++ program are by default

Private

2. The classes in c++ are used to manipulate
___________ .

data and functions

3. Variables of class is known as _________
and function known as _________.

data member, member

function

4. The ________members are accessible only
inside the class or their own, class’s
member.

Private

5. The ________ members accessible inside
the class and also outside the class also.

Public

Topic: How to make outside function inline?
 An inline function is working as a macro, any call to this function in program is replaced

by the function calling itself.
 In c++ all the member functions that are defined within the class specification is inline

by default.
 member function declare outside the class specification can be made inline by

prefixing inline keyword to its definition.
 Write a c++ program for inline outside member function.
#include<iostream.h>
#include<conio.h>
class number
{
 int no1,no2;
 public:
 void input(int,int);
 void output();
};
inline void number::input(int n1,int n2)
{
 no1=n1;

(Affiliated to Saurashtra University & Gujarat Technological University)

10 | P a g e

 no2=n2;
}
inline void number::output()
{
 cout<<endl<<"No1 is: "<<no1;
 cout<<endl<<"No2 is: "<<no2;
}
void main()
{
 clrscr();
 number n1,n2;
 n1.input(10,20);
 n2.input(20,30);
 cout<<"The Numbers are: ";
 n1.output();
 n2.output();
 cout<<endl<<”Size of operator 1 is: “<<sizeof(n1);
 cout<<endl<<”Size of operator 2 is: “<<sizeof(n2);
 getch();
}

1 word Question Answer

Sr No. Question Answer

1. An _________function is working as a

macro, any call to this function in program

is replaced by the function calling itself.

Inline

2. Member function declare outside the class
specification can be made inline by prefixing
________ keyword to its definition .

inline

Topic: Explain array within a class.

 An array is derived data type. Array is a group of related data items of same type which

share a common name. The array can also be used as a member variable.

 Write a c++ program for array with in a class.
#include<iostream.h>

(Affiliated to Saurashtra University & Gujarat Technological University)

11 | P a g e

#include<conio.h>

class sum

{

 int no[10];

 int s;

 public:

 void input();

 void output();

};

void sum::input()

{

 for(int i=0;i<10;i++)

 {

 cout<<"\n Enter the value of no ["<<i+1<<"]: ";

 cin>>no[i];

 }

}

void sum::output()

{

 int tot=0;

 for(int i=0;i<10;i++)

 {

 tot=tot+no[i];

 }

 cout<<"\n Total of all Number is: "<<tot;

}

(Affiliated to Saurashtra University & Gujarat Technological University)

12 | P a g e

void main()

{

 sum s1;

 clrscr();

 s1.input();

 s1.output();

 getch();

}

1 word Question Answer

Sr No. Question Answer

1. An array is ________ data type Derived

2. ________is a group of related data items of

same type which share a common name

Array

Topic: Explain Memory allocation for objects.
 The object is a variable of class. A class contain both member variable and member

function.
 An object occupies number of bytes in a memory.
 The member function are created and placed in memory only one when, they are

defined in the class declaration because all the objects belonging to that class use the
same member functions. When the objects are created.

 The data members are placed in memory when each object is defined because all
object have the separate data member and allocate separate memory of each data
member for each object.

 The sizeof operator is used to find out size of standard data type.
 The size of any class object can also be find using it.

1 word Question Answer

Sr No. Question Answer

(Affiliated to Saurashtra University & Gujarat Technological University)

13 | P a g e

1. The ______ operator is used to find out size

of standard data type
Sizeof

Topic: Explain Static data Member.

 Sometimes situation occurs when need one or more common data member, which are
accessible to all the objects of the class.

 Syntax:
Class Class_Name
{
 Static data_type Data_member;
};
 According to syntax, the static data member can be created by static keyword .
 It is initialized during its definition outside all the member functions.
 The static data member is stored separately rather than as a part of an object.
 it is associated with the class itself, rather than with any class object.
 It is also known as class variable.
 Like:

Datatype class_name :: Datamember= value;

 Consider following characteristics of static data member as follows:
1. Only one copy of that member is created for the entire class and is shared by all

objects of that class . Al l the changes made to that member at same memory
location. So when display the value of that always get last value.

2. When first object of class is created it is initialized to zero bydefault.
3. It is visible only within the class, but its life is entire the program.

 Write a c++ program for static data member.
#include<iostream.h>
#include<conio.h>
class test
{
 static int count;
 int num;
 public:
 void setdata(int n)
 {
 num=n;
 ++count;
 }
 void display()
 {
 cout<<endl<<"Value of number: "<<num;
 cout<<endl<<"Value of static variable: "<<count;

(Affiliated to Saurashtra University & Gujarat Technological University)

14 | P a g e

 }
};
int test::count;
void main()
{
 clrscr();
 test t1,t2,t3;
 t1.display();
 t1.setdata(10);
 t1.display();
 t2.setdata(20);
 t2.display();
 t3.setdata(30);
 t3.display();
 getch();
}

1 word Question Answer

Sr No. Question Answer

1. The static data member can be created by

_______ keyword.
Static

2. The static data member is stored separately
rather than as a part of an________ .

Object

Topic: Explain Static member Function.

 Same as static member variable, class can also have static member function.
 Consider following points about static member function.

1. Only one copy of static member function exists for all instance of class.
2. A static member function can access only static data member.
3. A static member function can be called using the class_name instead of its object.

Such as:

 Class_name :: Function_name

 Write a c++ program for static member function.
#include<iostream.h>

#include<conio.h>

(Affiliated to Saurashtra University & Gujarat Technological University)

15 | P a g e

class test

{

 static int count;

 int num;

 public:

 void setdata(int n)

 {

 num=n;

 ++count;

 }

 static void display()

 {

 cout<<endl<<"Value of static variable: "<<count;

 }

 void dispnum()

 {

 cout<<endl<<"Value of number is: "<<num;

 }

};

int test::count;

void main()

{

 clrscr();

 test t1,t2,t3;

 test::display();

 t1.setdata(10);

(Affiliated to Saurashtra University & Gujarat Technological University)

16 | P a g e

 test::display();

 t1.dispnum();

 t2.setdata(20);

 test::display();

 t2.dispnum();

 t3.setdata(30);

 test::display();

 t3.dispnum();

 getch();

}

1 word Question Answer

Sr No. Question Answer

1. A static member function can access only
_______ data member.

Static

Topic: Explain array of objects.

 An array is a group of same data type and stored in adjacent memory location.
 As an array of any other standard data type, the array of class object can also be

created.
 It is known as an array of objects.
 Consider the following format to create array of object:

Class class_name

{

 Private:

 Variable declaration;

 Function declaration;

 Public:

(Affiliated to Saurashtra University & Gujarat Technological University)

17 | P a g e

 Variable declaration;

 Function declaration;

 };

 Class_name object[size];

 Here, size defines the size of the array of class object.
 Write a c++ program for static member function.

#include<iostream.h>
#include<conio.h>
#include<stdio.h>
class std
{
 int rlno;
 char stnm[30];
 public:
 void input()
 {
 cout<<"Enter rono:";
 cin>>rlno;
 cout<<"Enter Std name:";
 gets(stnm);
 }
 void output()
 {
 cout<<"\n Rollno is: "<<rlno;
 cout<<"\n Name is: "<<stnm;
 }
};
void main()
{
 clrscr();
 std s[3];
 for(int i=0;i<3;i++)
 {
 s[i].input();
 }
 for(i=0;i<3;i++)
 s[i].output();
 getch();
}

Topic: Explain object as function argument.

(Affiliated to Saurashtra University & Gujarat Technological University)

18 | P a g e

 Like any other data type, an object can be passed as an argument to a function.
 This can be achieved by following ways:

1. Pass – by – value
2. Pass - by – reference
3. Pass – by – pointer

1. Pass – by – value
 In the case of pass – by – value a copy of object is passed to the function.
 It modification made to the object inside function is not reflected to the object

that is used to call the function.
 Write a c++ program for passing the object by value.

//Write a c++ program for pass argument object by value.....

#include<iostream.h>

#include<conio.h>

class calc

{

 int no1,no2;

 public:

 void input(int n1,int n2)

 {

 no1=n1;

 no2=n2;

 }

 void output()

 {

 cout<<endl<<"No1= "<<no1;

 cout<<endl<<"No2= "<<no2;

 }

 void add(calc c1,calc c2)

 {

 no1=c1.no1+c2.no1;

(Affiliated to Saurashtra University & Gujarat Technological University)

19 | P a g e

 no2=c1.no2+c2.no2;

 }

};

int main()

{

 clrscr();

 calc c1,c2,c3;

 c1.input(5,10);

 c2.input(20,30);

 c1.output();

 c2.output();

 c3.add(c1,c2);

 cout<<endl<<"Addition of two object is: ";

 c3.output();

 getch();

 return 0;

}

2. Pass – by – reference
 In the case of pass – by – reference any changes made to the object inside the

function is reflected in the actual object.
 Here, object is passed same as pass by value but received in the function body

with its reference.

3. Pass – by – pointer
 In the case of pass – by – pointer an address of object passed to function.
 Any changes made in value of object function it will also affect the original value.
 The member of object passed by pointer is accessed using the operator.

(Affiliated to Saurashtra University & Gujarat Technological University)

20 | P a g e

1 word Question Answer

Sr No. Question Answer

1. An _______ can be passed as an argument

to a function.
Object

Topic: Explain returning object from function.

 Similar to sending objects as arguments to the function, it is also possible to return
object from the function.

 Write a c++ program for returning object from function.
#include<iostream.h>
#include<conio.h>
class a
{
 int x,y,z;
 public:
 void input()
 {
 cout<<endl<<"Enter Three Value..";
 cin>>x>>y>>z;
 }
 void output()
 {
 cout<<endl<<"x: "<<x<<"\ty: "<<y<<"\tz: "<<z;
 }
 a add(a a1)
 {
 a a2;
 a2.x=a1.x+a1.y+a1.z;
 return a2;
 }
};
void main()
{
 a a1,a2;
 clrscr();
 a1.input();
 a1.output();
 a2=a2.add(a1);
 a2.output();

(Affiliated to Saurashtra University & Gujarat Technological University)

21 | P a g e

 getch();
}

Topic: Explain friend function.

 As the object oriented concept the private member of class can not be accessed from
outside the class.

 However, under certain situations, sometimes requirement to use a common function
with two classes.

 In c++ this is achieved by using the concept of friends. It permits a function of another
class to access different class’s private members.

 The friendly function must be prefixed by keyword friend.
 The function calling is same as ordinary function without scope of class.
 A function calling is same as normal function without the dot(.) operator.
 The special characteristics of a friend function are as follows:

1. It is not declared as a member of any class. So the scope of friend function is not
limited to the class in which it has been declared as a friend.

2. It can only be invoked like a normal function without the help of any object because
it is not in the scope of class.

3. It can access the private members of a class using object name and dot(.) operator.
4. It can be declared either in the public or private section without affecting its

accessibility.
5. It has the objects as arguments.

 Format of friend function.
Class sample
{
 Int x,y;
 Public:
 friend void add();//declaration of friend function

 };

//definition of friend function like normal function

 Void add()

 {

 //body of function;

 }

 int main()

(Affiliated to Saurashtra University & Gujarat Technological University)

22 | P a g e

 {
 sample obj;
 add(obj);
 }

 Write a c++ program for friend function.
//write a c++ program for friend function.....
#include<iostream.h>
#include<conio.h>
class data2;
class data1
{
 int x;
 public:
 void input()
 {
 cout<<endl<<"Enter Value of x:";
 cin>>x;
 }
 void output()
 {
 cout<<endl<<"Value of x is: "<<x;
 }
 friend int max(data1,data2);
};
class data2
{
 int y;
 public:
 void input()
 {
 cout<<endl<<"Enter value of y:";
 cin>>y;
 }
 void output()
 {
 cout<<endl<<"Value of y is: "<<y;
 }
 friend int max(data1,data2);
};
int max(data1 d1,data2 d2)
{
 if(d1.x>d2.y)
 {

(Affiliated to Saurashtra University & Gujarat Technological University)

23 | P a g e

 return (d1.x);
 }
 else
 {
 return (d2.y);
 }
}
int main()
{
 clrscr();
 data1 d1;
 data2 d2;
 d1.input();
 d2.input();
 d1.output();
 d2.output();
 cout<<endl<<"Maximum value is: "<<max(d1,d2);
 getch();
 return(0);
}

1 word Question Answer

Sr No. Question Answer

1. ________ permits a function of another

class to access different class’s private

members.

Friend function

2. The friendly function must be prefixed by
keyword_______.

Friend

3. _______ can only be invoked like a normal
function without the help of any object
because it is not in the scope of class

Friend function

Topic: Explain const member function.

(Affiliated to Saurashtra University & Gujarat Technological University)

24 | P a g e

 If the member function of a class access the class data member without modifying them,
then declare such function as const (constant) function.

 syntax :
return type function name(argument)const.
 According to above syntax the keyword const is placed at the end of function header, at

the time of declaring its prototype and its definition.
 The compiler will generate an error message if function try to change the data values.
 Write a c++ program for const member function.
//write a c++ program for const function.....
#include<iostream.h>
#include<conio.h>
class data
{
 int i;
 public:
 void set(int x)
 {
 i=x;
 }
 void change()const
 {
 //i=30;
 cout<<endl<<"you can not change the value of const function:";
 }
 void show()
 {
 cout<<endl<<"i: "<<i;
 }
};
void main()
{
 clrscr();
 data d;
 d.set(10);
 d.show();
 d.change();
 d.show();
 getch();
}

Topic: Explain pointer to member function.

 pointer variable holds the address of another variable.
 It is also possible to take the address of member of a class and assign it to a pointer.

(Affiliated to Saurashtra University & Gujarat Technological University)

25 | P a g e

 The address of a member can be obtained with using the address of operator (&) to a
class member name.

 C++ provides special operator pointer to member (:: *) with the class_name to declare a
class member pointer.

 For ex:
class sample
{
 int x;
 public:
 Void display();
 };

 Pointer to member can be created as follows:
int sample :: *p=&sample :: x;

 Here, the p is pointer to member and the portion sample :: * means “pointer-to-
member of sample class” and the portion &sample :: x means “address of the x
member of class sample”.

 int *p=&x;
 here, this statement is invalid.
 It indicate pointer of normal variable.
 The x is not only int variable but a member variable of class sample.
 The scope resolution operator must be attached to both the pointer and the member.
 A pointer can be used to access the member variable x is as follow.

sample s;
cout<<s.*p; //display value of x
cout<<s.x; //display value of x

 The dereferencing operator(->*) is used to access a member when use pointer to both
object and member.

 The dereferencing operator(.*) is used when the object use only member pointer.
 For ex:

sample *s;
s=&x;
cout<<s->*p;
cout<<s->x;

 The pointer member function can be invoked using the dereferencing operators in the
main() as follows:

(object name.*pointer_to_member function)(value);
(pointer-to-object ->*pointer-to-member function)(value);
 Wrire a c++ program for pointer to member function.
//write a c++ program for pointer to class member....
#include<iostream.h>
#include<conio.h>
class data
{

(Affiliated to Saurashtra University & Gujarat Technological University)

26 | P a g e

 int a,b;
 public:
 void setdata(int x,int y)
 {
 a=x;
 b=y;
 }
 friend int add(data);
};
int add(data d1)
{
 //*p1=&a;
 int data::*p1=&data::a;
 int data::*p2=&data::b;
 //data d1;
 data *tmp=&d1;
 int sum;
 //sum=d1.a+d1.b;
 //sum=d1.*p1+d1.*p2;
 //sum=tmp->*p1+tmp->*p2;
 //sum=tmp->a+tmp->b;
 sum=d1.*p1+tmp->*p2;
 return(sum);
}
void main()
{
 clrscr();
 data d;
 d.setdata(5,10);
 cout<<endl<<"Addition of two number is: "<<add(d);
 getch();
}

1 word Question Answer

Sr No. Question Answer

1. pointer variable holds the ________ of

another variable.
Address

2. The _________ operator must be attached
to both the pointer and the member.

scope resolution

(Affiliated to Saurashtra University & Gujarat Technological University)

27 | P a g e

3. The __________ is used to access a
member when use pointer to both object
and member.

dereferencing

operator(->*)

4. The _________ is used when the object use
only member pointer.

dereferencing

operator(.*)

Topic: Explain nested class and local class.

 When specifies any class inside another class, then its known as nested class.
 For ex:
class outer
{
 class inner
 {

 };
 inner obj;
 public:

};
 As shown in above ex the class outer has one class inside it called inner.
 It will create an object of class inner and all member function of class outer can access

member variable of inner class by its object.
 It is also possible to access the class outside the other class, but then use the inner class

with the scope of outer such as outer :: inner.
 When classes defined and used inside function block then it is known as local class.
 For ex:
void demo()
{
 class inner
 {

(Affiliated to Saurashtra University & Gujarat Technological University)

28 | P a g e

 };

 Inner obj;

 };

 Here, the function sample can has a class_name inner local class can use global.
 Variables and static variable declared inside the function but cannot use automatic local

variables.
 .
 The function demo can not access the private member of a local class.

 Write a c++ program for nested class.
#include<iostream.h>
#include<conio.h>
class A
{
 public:
 class B
 {
 private:
 int num;
 public:
 void getdata(int n)
 {
 num = n;
 }
 void putdata()
 {
 cout<<"The number is "<<num;
 }
 };
};
int main()
{
 clrscr();
 cout<<"Nested classes in C++"<< endl;
 A :: B obj;
 obj.getdata(9);
 obj.putdata();
 getch();
 return 0;
}

(Affiliated to Saurashtra University & Gujarat Technological University)

29 | P a g e

 Write a c++ program for local class.
#include<iostream.h>
#include<conio.h>
void demo()
{
 class inner
 {
 int x;
 public:
 void set(int y)
 {
 x=y;
 }
 void disp()
 {
 cout<<"Value of x is: "<<x;
 }
 };
 inner obj;
 obj.set(10);
 obj.disp();
}
void main()
{
 clrscr();
 demo();
 getch();

}

1 word Question Answer

Sr No. Question Answer

1. When specifies any class inside another

class, then its known as ______class.
nested

2. When classes defined and used inside
function block then it is known as
_________ class.

Local

3. Local class can not have ________ data
members

static

(Affiliated to Saurashtra University & Gujarat Technological University)

30 | P a g e

Topic: What is Constructor?

 There is a need to initialize the value of data member before accessing it.
 Normally member function are used to initialize value of variable.
 For Ex:

Obj.input(10)
 Here, member function input() passes the initialize value as arguments these values are

assigned to the private data member of object obj.
 C++ provides a special member function called the constructor that enables an object to

be initialized when it is created.
 A constructor is different than other member function of the class it has the same name

as its class without return type even not void.
 Similar to other member function the constructor can be defined either within, or

outside the body of a class.
 It can access an data member like all other member function.
 It must be declared in public part.
 Syntax:

class class_name
{
 private:
 data member;
 public:
 class_name() //constructor
 {

 }
 Other member functions;
};

 Here, constructor is defined in a class body by the name of class in public section.
 Constructor defining outside of class
 Ex:

class class_name
{
 private:
 data members;
 public:
 classname(); //constructor declaration
};
classname :: classname()
{
 //body of constructor

(Affiliated to Saurashtra University & Gujarat Technological University)

31 | P a g e

 }

 Here, constructor is defined outside the class with the scope of class.
 The constructor of a class is the first member function to be executed automatically when

object of class is created.
 It is executed every time an object is created it can be used to assign initial, value to the

data members of the object.

1 word Question Answer

Sr No. Question Answer

1. C++ provides a special member function

called the constructor that enables an

________to be initialized when it is created.

Object

2. A ___________is different than other

member function of the class it has the

same name as its class without return type

even not void.

Constructor

3. The __________of a class is the first
member function to be executed
automatically when object of class is
created.

constructor

Topic:Give the Characteristics of Constructor?

 It has the same name as a class name.
 It is executed automatically whenever the class object is created.
 It does not have any return type not even void.
 It has also default argument as other functions.
 It is normally used to initialize the data member of a class.
 It is also used to allocate resources such as memory, to dynamic data members of a

class.
 The address at constructor cannot be referred.
 It cannot be virtual.
 It cannot be inherited, through derived class call the base class constructor.

(Affiliated to Saurashtra University & Gujarat Technological University)

32 | P a g e

 It makes use of new and delete operator as implicit call when memory allocation is
required.

1 word Question Answer

Sr No. Question Answer

1. ______ has the same name as a class
name.

Constructor

2. _______ is executed automatically
whenever the class object is created.

Constructor

Topic:What Default Constructor?

 The default constructor is a special member function with no arguments which initialize
the data members.

 The default constructor accepts no parameters.
 For ex the default constructor for class data is data() constructor.
 If no constructor is defined for a class then the compiler supplies the default

constructor.
 Write a c++ program for default constructor.
#include<conio.h>
#include<iostream.h>
class demo
{
 int x;
 public:
 demo()
 {
 cout<<"Demo for constructor....";
 x=10;
 }
 void disp()
 {
 cout<<endl<<"Value of x is: "<<x;
 }
};
void main()
{
 clrscr();
 demo d;
 d.disp();

(Affiliated to Saurashtra University & Gujarat Technological University)

33 | P a g e

 getch();
}

1 word Question Answer

Sr No. Question Answer

1. The ______is a special member function
with no arguments which initialize the data
members.

default constructor

2. The _______accepts no parameters. default constructor

Topic:What is Parameterized Constructor?

 The constructor with arguments is called parameterized constructors.
 It can be invoked same as a function argument by specifying arguments list in brackets.
 When the constructor is parameterized, must be provide appropriate argument to the

constructor.
 Syntax:
Class sample
{

 Public:
 sample(int x)
 {

 }

};
 sample s(5);

 or
sample s = sample(5);

 here, the constructor has a one argument which passed when object of class is created.
 The passing of initial values to the constructor can be done by two way.

1) Implicit call – sample s(5)
2) Explicit call – sample s = sample(5)

 Write a c++ program for parameterized constructor.
// Write a c++ program to find area of rectangle with parameterized constructor..
#include<iostream.h>
#include<conio.h>

(Affiliated to Saurashtra University & Gujarat Technological University)

34 | P a g e

class ABC
{
 private:
 int length,breadth,x;
 public:

 ABC (int a,int b)
 {
 length = a;
 breadth = b;
 }
 void area()
 {
 x = length * breadth;

 }
 void display()
 {
 cout << "Area = " << x << endl;
 }
};

int main()
{
 clrscr();
 int len,brth;
 cout<<endl<<"Enter length of rect: ";
 cin>>len;
 cout<<endl<<"Enter breadth of rect: ";
 cin>>brth;
 ABC obj(len,brth);
 obj.area();
 obj.display();
 getch();
 return 0;
 }

1 word Question Answer

Sr No. Question Answer

(Affiliated to Saurashtra University & Gujarat Technological University)

35 | P a g e

1. The constructor with arguments is
called_______.

parameterized

constructors

2. When the constructor is parameterized,
must be provide appropriate _______ to the
constructor.

argument

Topic: Explain multiple constructor in class.

 When the class has multiple constructors, is called constructor overloading.
 All the constructors have the same name as the class in which they belongs to. Same as

function overloading.
 Each constructor should be differ from their number of arguments and types of

arguments.

1 word Question Answer

Sr No. Question Answer

1. When the class has multiple constructors, is
called ________.

constructor
overloading

2. Each constructor should be differ from their
_______of arguments and _____of
arguments.

Number, types

 Topic: Explain constructor with default argument.

 It is possible to define constructors with arguments having default value same as any
other function in c++.

 If any arguments are passed during the creation of an object, the compiler selects the
suitable constructor with default argument.

 For ex: sample (int i,int j=0);
 Here in above constructor the default value of argument j is 0 when create an object.
 Sample s(10)
 It assigns the value 10 to i and 0 to y by default.
 When call the constructor with new value of j it will replaced by new value. Such as
 Sample s(10,20)
 Now the value of j is consider as 20.
 Write a c++ program for constructor with default argument.
#include<iostream.h>
#include<conio.h>

(Affiliated to Saurashtra University & Gujarat Technological University)

36 | P a g e

class demo
{
 int i,j;
 public:
 demo(int a,int b=10)
 {
 i=a;
 j=b;
 }
 void disp()
 {
 cout<<endl<<"Value of i is: "<<i;
 cout<<endl<<"Value of j is: "<<j;
 }
};
void main()
{
 int a;
 clrscr();
 cout<<endl<<"Enter value: ";
 cin>>a;
 demo d(a);
 d.disp();
 getch();
}

Topic: Explain copy constructor.

 A constructor can have argument of any data type.
 When constructor has object of its own class is called copy constructor.
 The object of own class must be passed as a reference parameter.
 For ex:
Class test
{

 public :
 test(test &obj)
 {

 }

(Affiliated to Saurashtra University & Gujarat Technological University)

37 | P a g e

};
 Such constructor having a reference to an instance of its own class as an argument is

known as copy constructor.
 A compiler copies all the members of the user define source object to the destination

object in the assignment statement.
 For ex:
 test t1(5),t2(10);
t1=t2;
 here the copy constructor will not invoke. It just assigns the value of t1 to t2, member

by member.
 This is the task of the overloaded assignment operator (=).
 Because both objects are predefined object.
 A copy constructor can be called like this way:
test t1(5);
test t2(t1);
 or
test t2=t1;
 Here, in both cases it will invoke copy constructor.
 The initialization of one object to another object is performed during object definition.
 The data member of t1 is copied to t2 member by member. It is the default action

performed by copy constructor.
 Write a c++ program for constructor with default argument.
#include<iostream.h>
#include<conio.h>
class demo
{
 int i,j;
 public:
 demo(int a,int b=10)
 {
 i=a;
 j=b;
 }
 void disp()
 {
 cout<<endl<<"Value of i is: "<<i;
 cout<<endl<<"Value of j is: "<<j;
 }
};
void main()
{
 int a;
 clrscr();
 cout<<endl<<"Enter value: ";

(Affiliated to Saurashtra University & Gujarat Technological University)

38 | P a g e

 cin>>a;
 demo d(a);
 d.disp();
 getch();
}

1 word Question Answer

Sr No. Question Answer

1. When constructor has object of its own
class is called_______ .

copy constructor

Topic: Explain Dynamic Initialization of Object.

 A class object can also be initializing at run time. It is known as dynamic initialization of
object.

 One advantage of dynamic initialization is that with the multiple constructors various
initialization techniques can be provided.

 Write a c++ program for dynamic initialization of object.
#include<iostream.h>
#include<conio.h>
class test
{
 int x;
 public:
 test(int a)
 {
 x=a;
 }
 int add()
 {
 return (x*x);
 }
 void disp()
 {
 cout<<endl<<"Value of x is: "<<x;
 }
};
void main()
{

(Affiliated to Saurashtra University & Gujarat Technological University)

39 | P a g e

 clrscr();
 int a;
 cout<<endl<<"Enter Value of a:";
 cin>>a;
 test obj1(a);
 obj1.disp();
 test obj2(obj1.add());
 cout<<endl<<"New Object after Square:";
 obj2.disp();
 getch();
}

1 word Question Answer

Sr No. Question Answer

1. A class object can also be initializing at run

time. It is known as_______.
dynamic initialization of

object

Topic: Explain Dynamic Constructor.

 A Constructor normally used for the management of memory allocation during runtime.
 It provides a way to allocate the right amount of memory during execution for each

object when the object’s data member size is not same.
 Allocation of memory to objects at the time of their construction is known as dynamic

constructor.
 The constructor which performs such memory allocation is called dynamic constructor.
 The dynamic memory allocation operator new is used to allocate memory dynamically.
 Write a c++ program for dynamic constructor.
#include<iostream.h>
#include<conio.h>
class sample
{
 int *no,size;
 public:
 sample(int s)
 {
 size=s;
 no=new int[size];
 }
 void input();
 void disp();

(Affiliated to Saurashtra University & Gujarat Technological University)

40 | P a g e

};
void sample::input()
{
 for(int i=0;i<size;i++)
 {
 cout<<endl<<"Enter Value for "<<i<<": ";
 cin>>no[i];
 }
}
void sample::disp()
{
 for(int i=0;i<size;i++)
 {
 cout<<endl<<no[i];
 }
}
void main()
{
 clrscr();
 int s;
 cout<<endl<<"Enter Size of Array: ";
 cin>>s;
 sample s1(s);
 s1.input();
 s1.disp();
 getch();
}

1 word Question Answer

Sr No. Question Answer

1. Allocation of memory to objects at the time

of their construction is known as________.
dynamic constructor

2. The dynamic memory allocation operator
______is used to allocate memory
dynamically.

New

(Affiliated to Saurashtra University & Gujarat Technological University)

41 | P a g e

Topic: What is Destructor?

 The constructor is called to initialize data member and allocate memory for object at the
time of creation.

 When an object is no longer needed it can be destroyed.
 Class can have special member function is called destructor.
 As similar to constructor it automatically gets call when object is destroyed.
 The destructor has the same name as the class but it specified with ~ complements.
 Syntax:

class clasname
{
 private:
 Member variable;
 public:

 ~classname()

 {

}

};

 Here, shown in above syntax destructor is defined same name with classname.
 Rules for defining destructor:
 The destructor function has same name as class but prefixed with tiled(~). It makes

difference of a constructor and destructor.
 It has no argument and no return type.
 Destructor is invoked automatically whenever an object goes out of scope.
 It is also declare in public section of class .
 Class can not have more than one destructor.
 Difference b’ween constructor and destructor.
 Arguments cannot be passed to destructor as constructor.
 Only one destructor can be declared for a given class while more than one constructor

can work in same class.
 Destructor can not be overloaded as constructor.
 Destructor can be virtual, while constructor can not be virtual.
 Write a c++ program for destructor....

#include<iostream.h>
#include<conio.h>
class demo
{

(Affiliated to Saurashtra University & Gujarat Technological University)

42 | P a g e

 public:
 demo()
 {
 cout<<endl<<"Constructor is called...";
 }
 ~demo()
 {
 cout<<endl<<"Destructor is called....";
 }
};
int main()
{
 clrscr();
 demo d;
 getch();
 return 0;
}

1 word Question Answer

Sr No. Question Answer

1. When an object is no longer needed it can
be destroyed. Class can have special
member function is called ________.

Destructor

2. The destructor function has same name as
class but prefixed with______.

tiled(~)

3. ________has no argument and no return
type.

Destructor

4. Destructor is invoked automatically
whenever an object_________.

goes out of scope

5. Destructor is also declare in ______section
of class .

Public

6. Class can not have _____destructor. more than one

Topic: What is MIL?

 MIL stands for Multiple Initialize list.

(Affiliated to Saurashtra University & Gujarat Technological University)

43 | P a g e

 Initialize List is used in initializing the data members of a class.
 The list of members to be initialized is indicated with constructor as a comma-separated

list followed by a colon.
 Syntax:

class Point
{

private:
 int x;
 int y;

public:
 Point(int i, int j):x(i), y(j) {}

 };

1 word Question Answer

Sr No. Question Answer

1. MIL stands for_______. Multiple Initialize list

(Affiliated to Saurashtra University & Gujarat Technological University)

Ch – 3 Operator overloading and type
conversion, Inheritance

Q -1 What is operator overloading?

 Operator overloading is an important concept in C++. It is a type of
polymorphism in which an operator is overloaded to give user defined meaning
to it.

 You can redefine or overload most of the built-in operators available in C++.
Thus, a programmer can use operators with user-defined types as well.

 Overloaded operator is used to perform operation on user-defined data type.
For example '+' operator can be overloaded to perform addition on various data
types, like for Integer, String(concatenation) etc.

 Operator Overloading Syntax:

 Return type specifies the type of value returned by the specified operation.
 Operator is the keyword. Operator should be preceded which want to be

overloaded.
 Operator function must be either member function or friend function.
 A difference between them is that a friend function will have only one argument

for unary operators and two for binary operators, while member function has no
argument for unary operator and one argument for binary operator.

 Arguments may be passed either by value or by reference.
 The operator can be classified into unary and binary operators based on number

of arguments on which they operate.
 C++ allow almost all operators to be overloaded but at least one operand must

be an instance of a class(object).

1 word Question Answer

(Affiliated to Saurashtra University & Gujarat Technological University)

Sr No. Question Answer

1. Operator function must be either _____
or_______.

member function, friend

function

2. ________ is a type of polymorphism. Operator overload

3. The operator can be classified into _____
and _______ operators.

Unary, binary

Q-2 Give the rules for operator overloading.

1) Overloaded operators must perform operation similar to those defined for basic
data types. Meaning of operator can not be change.

2) Only existing operator can be overloaded. New operator can not be created like $.
3) At least one operand should be class object.
4) Operator function can be either member function or friend function.
5) In case of member function, it will take no explicit argument and return no explicit

values for unary operator. It will take one explicit argument and may be return
explicit values for binary argument.

6) In case of friend function, it will take one explicit argument which is the reference of
the relevant class for unary operator, it will take two explicit argument for binary
operator.

7) When binary operators overloaded, through a member function, the left hand
operand must be an object of the relevant class.

8) There are some operators cannot be overloaded. They are listed as follow:
. member accessing operator.
.* pointer to member operator
:: scope resolution operator
?: conditional operator
Sizeof() sizeof operator

9) Some of the operators can not be overloaded by friend function but member
function can overloaded it. They are listed as follows:

= assignment operator
() function call operator
[] subscripting operator
 Class member access operator

10) Binary arithmetic operators such as +,-,*,/ must explicitly return a value. They must
not attempt to change their own arguments.

Q-3 Explain Unary Operator.

(Affiliated to Saurashtra University & Gujarat Technological University)

 Overloading without explicit arguments to an operator function is known as
unary operator overloading.

 The unary operators like unary +, unary -, increment and decrement operator.
 Syntax:

Returntype operator OP()
{
 //body of operator function

 }

 Where, function return type can be either from following : primitive, void, or
user defined operator is the keyword OP specifies the operator symbol to be
overloaded.

 For Ex:
Int operator – ();
Void operator ++ ();

1 word Question Answer

Sr No. Question Answer

1. Overloading without explicit arguments to
an operator function is known as _______.

unary operator

overloading

Q-4 Explain Binary operator.

 The concept of overloading unary operators applies also to the binary operator.
 Syntax:
Returntype operator OP(arg)
{
 //body of function
}
 Here the function takes the first object as an implicit operand and the second

operand must pass explicitly.
 The data members of first object are passed without using dot operator while

second argument members can be accessed using the object and dot operator.
 For Ex:
Void operator / (data d1)

1 word Question Answer

(Affiliated to Saurashtra University & Gujarat Technological University)

Sr No. Question Answer

1. In the binary operator the function takes
the first object as an _______ operand and
the second operand must pass________.

Implicit, explicitly

Q-5 Explain operator overloading with friend function.
 The operator function can also be used to overload operator.
 It provides a flexibility to use object of different class.
 The difference between a friend function and member function is that friend

function require the arguments to be passed explicitly to the operator function
while member function consider the first argument implicitly.

 Friend function can be used for both unary and binary operators.
 Syntax:
Friend returntype operator OP(arg1, arg2)
{
 //body of function
}
 According to above syntax the friend function must be prefixed with keyword

friend.
 The body of the friend function can be either inside class or outside the class.
 When the definition of friend function is outside class then it defined as normal

function and not prefixed with the friend keyword.
 It can return and data type wither or following: void, primitive or user defined.
 OP is the operator symbol to be overloaded and prefixed with operator keyword.
 For Ex:
Friend data operator + (data d1,data d2);

1 word Question Answer

Sr No. Question Answer

1. OP is the operator symbol to be overloaded
and prefixed with ________ keyword.

Operator

2. _______ function can be used for both
unary and binary operators.

Friend

Q-6 Explain this pointer (*this).

(Affiliated to Saurashtra University & Gujarat Technological University)

 Normally the member function of a class is invoked, by some object of the class.
 C++ has keyword this pointer to represent an object that invokes a member

function. Thus, member function of every object has access to a pointer named
this, which points to the object itself. It represented as *this.

 This pointer can be treated like any other pointer to an object.
 Using this pointer, any member function can find out the address of the object of

which it is a member.

1 word Question Answer

Sr No. Question Answer

1. C++ has keyword ______ pointer to
represent an object that invokes a member
function.

This

2. ________ pointer can be treated like any
other pointer to an object.

This

Q-7 Explain Type conversion.

 The assignment operator assigns the contents of a variable, the results of an
expression, or a constant to other variable.

 There are three types of data conversion
1) Basic type to class type
2) Class type to basic type
3) One type class to another class type

1) Basic type to class type
 To convert data from a basic type to user defined type.
 The conversion function should be defined in user defined object class in the

form of constructor.
 The constructor can take a single argument whose type is to be converted.
 The syntax:

Constructor (basic type)
{
 //body for conversion
}
 Where constructor specifies the same name as class in which it belongs.

(Affiliated to Saurashtra University & Gujarat Technological University)

 It has only one argument of basic type.
 Conversion from basic type to class type is possible in following two ways.
 1. Using Constructor
 2. Using Operator

1. Using Constructor

 We can use constructor to perform type conversion during the object creation.
 To achieve that we have implemented one constructor function which accepts
 one argument.

2. Using Operator Overloading

 We can also achieve type conversion by operator overloading. We can overload
assignment operator for this purpose.

 By using overloaded assignment operator we can perform the type conversion at
any place in program.

2) class type to basic type
 Constructor function does not support the operation of class to basic type.
 In case of user defined data type conversion.
 The operator function is defined as an overloaded basic data type which has no

any arguments.
 It returns converted data member object to basic data type.
 Syntax:
 Operator basictype ()
{
 //code for conversion
 }

 According to above syntax the operator is the keyword.
 Basic type specifies any primitive data type such as int, char, float double etc.

 The conversion function must satisfy the following conditions :-
 It must be a class member.
 It must not specify the return value even though it returns the value.
 It must not have any argument.

3) One class to another class type
 The c++ compiler does not support data conversion between object to two user

define classes.
 However the conversion of class type to basic type and basic type to class type

can be performed either by operator conversion function or constructor.
 Ex:

(Affiliated to Saurashtra University & Gujarat Technological University)

Classa obja;
Classb objb;
Obja=objb;

 Where obja is the object of classa and objb is the object classb.
 The class classa type is converted to the class classb and converted value is

assigned to the obja.
 In this type of conversion both the type that is source type and the destination

type are of class type. Means the source type is of class type and the destination
type is also of the class type. In other words, one class data type is converted into
the another class type.

 Conversion from one class to another class can be performed in following two
ways

1. Using constructor
2. Using type conversion function

1. Using constructor

 Following is the example to show how constructor is used for conversion from
one class type to another class type.

2. Using type conversion function

 Following is the example to show how type conversion is used for conversion
from one class type to another class type.

1 word Question Answer

Sr No. Question Answer

1. The conversion function should be defined
in user defined object class in the form
of________.

Constructor

2. Constructor function does not support the
operation of_________.

class to basic type

3. The c++ compiler does not support data
conversion between _______.

object to two user

define classes

(Affiliated to Saurashtra University & Gujarat Technological University)

Q-8 What is inheritance?
 Inheritance is the process of creating new classes, called derived classes, from

existing classes, which are often called base classes.
 The derived class inherits all the capabilities of the base class and it can also add

new features of its own. But here base class remain unchanged.

 As shown in above figure the base class has there features (A,B,C). The derived class has
three features of base class and adds its own features (D). The arrow represents the
direction of derivation.

 Here, its direction from the derived class towards the base class. It represents that
derived class access features of the base class not vice-versa.

 This inheritance mode is used mostly. In this the protected member of Base class
becomes protected members of Derived class and public becomes public.

 class derivedclass: public baseclass

Access specifier
in base class

Access specifier when
inherited publicly

Access specifier when
inherited privately

Access specifier when
inherited protectedly

Public Public Private Protected

Protected Protected Private Protected

Private Inaccessible Inaccessible Inaccessible

variable A

variable B

variable
C

variable D

variable A

variable B

variable
C

Derived
Class

(Affiliated to Saurashtra University & Gujarat Technological University)

 Derived class of Derived Classes: If we are inheriting a derived class using a public
inheritance as shown below

 class B : public A
 class C : public B
 then public and protected members of class A will be accessible in class C as public and

protected respectively.
 There are different types of inheritance:

1) Single Inheritance
2) Multiple Inheritance
3) Multilevel Inheritance
4) Hierarchical Inheritance
5) Hybrid (Virtual) Inheritance

1. Single Inheritance
 Single inheritance represents a form of inheritance when there is only one base class and

one derived class. For example, a class describes a Person:

2. Multiple Inheritance
 Multiple inheritance represents a kind of inheritance when a derived class inherits

properties of multiple classes. For example, there are three classes A, B and C and derived
class is D as shown below:

https://www.tutorialcup.com/cplusplus/inheritance.htm#single-inheritance
https://www.tutorialcup.com/cplusplus/inheritance.htm#multiple-inheritance
https://www.tutorialcup.com/cplusplus/inheritance.htm#multilevel-inheritance
https://www.tutorialcup.com/cplusplus/inheritance.htm#hierarchical-inheritance
https://www.tutorialcup.com/cplusplus/inheritance.htm#hybrid-inheritance
https://www.tutorialcup.com/cplusplus/inheritance.htm#single-inheritance

(Affiliated to Saurashtra University & Gujarat Technological University)

3. Multilevel Inheritance
 Multilevel inheritance represents a type of inheritance when a Derived class is a base class

for another class. In other words, deriving a class from a derived class is known as multi-
level inheritance. Simple multi-level inheritance is shown in below image where Class A is a
parent of Class B and Class B is a parent of Class C

4. Hierarchical Inheritance
 When there is a need to create multiple Derived classes that inherit properties of the same

Base class is known as Hierarchical inheritance

5.Hybrid Inheritance
 Combination of Multi-level and Hierarchical

inheritance will give you Hybrid inheritance.

A

B C

(Affiliated to Saurashtra University & Gujarat Technological University)

 Virtual Inheritance
 We can avoid Diamond problem easily with Virtual Inheritance. Child classes in this case

should inherit Grandparent class by using virtual inheritance:
 Constructor in derived class
 When a default or parameterized constructor of a derived class is called, the default

constructor of a base class is called automatically. As you create an object of a derived class,
first the default constructor of a base class is called after that constructor of a derived class
is called.

 When multiple inheritance is used, default constructors of base classes are called in the
order as they are in inheritance list. For example, when a constructor of derived class is
called:

 Destructor in derived class
 Deleting a derived class object using a pointer to a base class that has a non-virtual

destructor results in undefined behaviour. To correct this situation, the base class should be
defined with a virtual destructor. For example, following program results in undefined
behaviour.

(Affiliated to Saurashtra University & Gujarat Technological University)

 Making base class destructor virtual guarantees that the object of derived class is
destructed properly, i.e., both base class and derived class destructors are called.

1 word Question Answer

Sr No. Question Answer

1. ________is the process of creating new
classes, called derived classes, from existing
classes, which are often called base classes.

Inheritance

2. ________ inheritance represents a form of
inheritance when there is only one base
class and one derived class.

Single

3. ________inheritance represents a kind of
inheritance when a derived class inherits
properties of multiple classes.

Multiple

4. ________inheritance represents a type of
inheritance when a Derived class is a base
class for another class.

Multilevel

5. When there is a need to create multiple Derived
classes that inherit properties of the same Base
class is known as ________ inheritance.

Hierarchical

6. Combination of Multi-level and Hierarchical
inheritance will give you ________ inheritance.

Hybrid

Topic: Virtual base class

 Virtual base classes are used in virtual inheritance in a way of preventing multiple
“instances” of a given class appearing in an inheritance hierarchy when using multiple
inheritances.

 Need for Virtual Base Classes:
Consider the situation where we have one class A .This class is A is inherited by two other

(Affiliated to Saurashtra University & Gujarat Technological University)

classes B and C. Both these class are inherited into another in a new class D as shown in
figure below.

 As we can see from the figure that data members/function of class A are inherited twice to

class D.
 One through class B and second through class C. When any data / function member of

class A is accessed by an object of class D, ambiguity arises as to which data/function
member would be called?

 One inherited through B or the other inherited through C. This confuses compiler and it
displays error.

Example: To show the need of Virtual Base Class in C++

#include <iostream>
using namespace std;

class A {
public:

(Affiliated to Saurashtra University & Gujarat Technological University)

 void show()
 {
 cout << "Hello form A \n";
 }
};

class B : public A {
};

class C : public A {
};

class D : public B, public C {
};

int main()
{
 D object;
 object.show();
}

Compile Errors:

prog.cpp: In function 'int main()':

prog.cpp:29:9: error: request for member 'show' is ambiguous

 object.show();

 ^

prog.cpp:8:8: note: candidates are: void A::show()

 void show()

 ^

prog.cpp:8:8: note: void A::show()

 How to resolve this issue?
To resolve this ambiguity when class A is inherited in both class B and class C, it is declared
as virtual base class by placing a keyword virtual as :

 Syntax for Virtual Base Classes:

Syntax 1:

class B : virtual public A

(Affiliated to Saurashtra University & Gujarat Technological University)

{

};

Syntax 2:

class C : public virtual A

{

};

 Note: virtual can be written before or after the public. Now only one copy of
data/function member will be copied to class C and class B and class A becomes the
virtual base class.

 Virtual base classes offer a way to save space and avoid ambiguities in class
hierarchies that use multiple inheritances.

 When a base class is specified as a virtual base, it can act as an indirect base more
than once without duplication of its data members.

 A single copy of its data members is shared by all the base classes that use virtual
base.

1 word Question Answer

Sr No. Question Answer

1. _______ classes are used in virtual inheritance
in a way of preventing multiple “instances” of a
given class appearing in an inheritance
hierarchy when using multiple inheritances.

Virtual base

Topic: Abstract Classes

 Abstract classes act as expressions of general concepts from which more specific classes can
be derived. You cannot create an object of an abstract class type; however, you can use
pointers and references to abstract class types.

(Affiliated to Saurashtra University & Gujarat Technological University)

 A class that contains at least one pure virtual function is considered an abstract class.
Classes derived from the abstract class must implement the pure virtual function or they,
too, are abstract classes.

 Consider the example presented in Virtual Functions. The intent of class Account is to
provide general functionality, but objects of type Account are too general to be useful.
Therefore, Account is a good candidate for an abstract class:

// deriv_AbstractClasses.cpp

// compile with: /LD

class Account {

public:

 Account(double d); // Constructor.

 virtual double GetBalance(); // Obtain balance.

 virtual void PrintBalance() = 0; // Pure virtual function.

private:

 double _balance;

};

 The only difference between this declaration and the previous one is that Print Balance is
declared with the pure specifier (= 0).

Topic: Constructor in derived class

 The derived class need not have a constructor as long as the base class has no-argument
constructor.

 However, if the base class has constructors with arguments (one or more), then it is
mandatory for the derived class to have a constructor and pass the arguments to the base
class constructor.

 When an object of a base class is created, the constructor of the base class is executed first
and later the constructor of the derived class.

https://docs.microsoft.com/en-us/cpp/cpp/virtual-functions?view=vs-2019

(Affiliated to Saurashtra University & Gujarat Technological University)

1 word Question Answer

Sr No. Question Answer

1. You cannot create an object of an abstract
class type; however, you can use pointers
and references to _______ types.

abstract class

Topic: Containership

(Affiliated to Saurashtra University & Gujarat Technological University)

 We can create an object of one class into another and that object will be a member of the
class.

 This type of relationship between classes is known as containership or has_a relationship as
one class contain the object of another class.

 And the class which contains the object and members of another class in this kind of
relationship is called a container class.

 The object that is part of another object is called contained object, whereas object that
contains another object as its part or attribute is called container object.

 Difference between containership and inheritance
 Containership

-> When features of existing class are wanted inside your new class, but, not its interface
for eg->
1) computer system has a hard disk
2) car has an Engine, chassis, steering wheels.

 Inheritance
-> When you want to force the new type to be the same type as the base class.
for eg->
1)computer system is an electronic device
2)Car is a vehicle

1 word Question Answer

Sr No. Question Answer

1. class which contains the object and
members of another class in this kind of
relationship is called a _________.

container class

2. We can create an object of one class into
another and that object will be a member of the

class.This type of relationship between
classes is known as _________.

containership

(Affiliated to Saurashtra University & Gujarat Technological University)

Ch – 4 Pointer, Virtual functions and Polymorphism,
RTTI Console I/O operations

TOPIC: POINTER TO OBJECTS:

 A Variable That Holds an Address value is called a Pointer variable or simply pointer.

 We already discussed about pointer that's point to Simple data types likes int, char,
float etc. So similar to these type of data type, Objects can also have an address, so
there is also a pointer that can point to the address of an Object, This Pointer is
Known as This Pointer.

1 word Question Answer

Sr No. Question Answer

1. A Variable That Holds an Address value is called
a___________.

Pointer variable or simply

pointer

THIS POINTER:

 Every Object in C++ has access to its own address through an important pointer
called T h i s Pointer.

 The This Pointer is an implicit parameter to all member functions. Therefore, inside
a member function, this may be used to refer to the invoking object. Whenever a
member function is called, it is automatically passed an implicit arguments that is
This pointer to the invoking object (i.e. The object on which the function is invoked).

 The This pointer is passed as a hidden argument to all Nonstatic member
function calls and is available as a local variable within the body of all Nonstatic
functions. This Pointer is a constant pointer that holds the memory address of the
current object. This pointer is not available in static member functions as static
member functions can be called without any object (with class name).

(Affiliated to Saurashtra University & Gujarat Technological University)

1 word Question Answer

Sr No. Question Answer

1. Every Object in C++ has access to its own
address through an important pointer
called ________.

T h i s Pointer

TOPIC: VIRTUAL FUNCTION:

 A Virtual Function is a function that is declared as Virtual in a base class and
redefined in one or more derived classes.

 Thus, each derived class can have its own version of a Virtual Function.
If there is Member functions with same name in base class and derived class,
Virtual Functions gives Programmer Capability to call member function of different
class by a same function call depending upon different context.

 This feature in C++ Programming is known as Polymorphism which is one of the
important features of Object Oriented Programming.

 If a base Class and derived Class have same function and if we write code to access
that function using pointer of base class then, the function in the base class is
executed even, if the object of derived class is referenced with that pointer
variable.

 SYNTAX:
o Virtual returntype funname(args);

 Ex:
o Virtual void input();

(Affiliated to Saurashtra University & Gujarat Technological University)

TOPIC: PURE VIRTUAL FUNCTION:

 In C++ Programming, sometimes inheritance is used only for the better visualization
of data and we don't need to create any object of base class.

 For example: if we want to calculate area of different objects like Circle and Square
then, we can inherit these classes from a shape, because it helps to visualize the
problem but, we don't need to create any object of Shape.

 in such case, we can declare Shape as abstract class if we try to create object of a
Abstract class, compiler shows error.

 A pure Virtual function or abstract function in C++ is a virtual function for which we
don't have implementation, we only declare it.

 If Expression =0 is added to a virtual function then, that function is becomes pure
Virtual function.

 Syntax:
o Virtual returntype funname()=0;

Ex:
 Virtual void area()=0;

1 word Question Answer

Sr No. Question Answer

1. If Expression =0 is added to a virtual
function then, that function is becomes
_______.

Pure Virtual function

TOPIC: RULES FOR PURE VIRTUAL FUNCTION
1. When a virtual function in base class is created, there must be definition of the

virtual function in base class even it base class version of the function is never
actually called.

2. The virtual function must be members of some class.
3. They cannot be static member.
4. They can be a friend function to another class.
5. They are accessed using object pointers.
6. A base pointer can serve as a pointer to a derived object because it is type

compatible whereas the derived object pointer variable cannot serve as a pointer
to base objects.

7. Its prototype in base class and derived class must be same for the virtual function
to work properly.

8. The class cannot have virtual constructor.

(Affiliated to Saurashtra University & Gujarat Technological University)

9. When a base pointer points to derived class, incrementing or decrementing it will
not make it to point to the next object of derived class.

10. They should be declared in the public section of a class.

TOPIC: RTTI (RUN-TIME TYPE INFORMATION) IN C++

 In C++, RTTI (Run-time type information) is a mechanism that exposes information about
an object’s data type at runtime and is available only for the classes which have at least
one virtual function.

 It allows the type of an object to be determined during program execution.

Adding a virtual function to the base class B makes it working.

// CPP program to illustrate
// Run Time Type Identification
#include<iostream>
using namespace std;
class B { virtual void fun() {} };
class D: public B { };

int main()
{
 B *b = new D;
 D *d = dynamic_cast<D*>(b);
 if(d != NULL)
 cout << "works";
 else
 cout << "cannot cast B* to D*";
 getchar();
 return 0;
}

1 word Question Answer

Sr No. Question Answer

1. RTTI STANDS FOR? RUN-TIME TYPE

INFORMATION

(Affiliated to Saurashtra University & Gujarat Technological University)

TOPIC: C++ STREAM CLASSES
 In C++ there are number of stream classes for defining various streams related with

files and for doing input-output operations.
 All these classes are defined in the file iostream.h. Figure given below shows the

hierarchy of these classes.

1. ios class is topmost class in the stream classes hierarchy. It is the base class for istream,

ostream, and streambuf class.

2. istream and ostream serves the base classes for iostream class. The class istream is used

for input and ostream for the output.

3. Class ios is indirectly inherited to iostream class using istream and ostream.

4. The _withassign classes are provided with extra functionality for the assignment

operations that’s why _withassign classes.

1. The ios class: The ios class is responsible for providing all input and output facilities to all

other stream classes.

2. The istream class: This class is responsible for handling input stream. It provides number

of function for handling chars, strings and objects such as get, getline, read etc.

3. The ostream class: This class is responsible for handling output stream. It provides

number of function for handling chars, strings and objects such as write, put etc.

4. The iostream: This class is responsible for handling both input and output stream as

both istream class and ostream class is inherited into it. It provides function of both

http://www.geeksforgeeks.org/c-plus-plus/

(Affiliated to Saurashtra University & Gujarat Technological University)

istream class and ostream class for handling chars, strings and objects such as get,

getline, read, ignore, putback, put, write etc..

5. istream_withassign class: This class is variant of istream that allows object assigment.

The predefined object cin is an object of this class and thus may be reassigned at run

time to a different istream object.

6. ostream_withassign class: This class is variant of ostream that allows object assigment.

The predefined objects cout, cerr, clog are objects of this class and thus may be

reassigned at run time to a different ostream object.

7. Streambuf class: A stream buffer is an object in charge of performing the reading and

writing operations of the stream object it is associated with: the stream delegates all

such operations to its associated stream buffer object, which is an intermediary

between the stream and its controlled input and output sequences. All stream objects,

no matter whether buffered or unbuffered, have an associated stream buffer:

Some stream buffer types may then be set to either use an intermediate buffer or not.

1 word Question Answer

Sr No. Question Answer

1. The ______ is responsible for providing all
input and output facilities to all other
stream classes.

The ios class

2. _______ class is responsible for handling
input stream.

The istream class

3. _______ class is responsible for handling
output stream.

The ostream class

4. _______ class is responsible for handling
both input and output stream

The iostream class

5. _____ class is variant of istream that allows
object assigment.

istream_withassign class

6. ______ class is variant of ostream that
allows object assigment.

ostream_withassign

class

(Affiliated to Saurashtra University & Gujarat Technological University)

TOPIC: UNFORMATTED AND FORMATTED I/O OPERATIONS

UNFORMATTED I/O OPERATIONS

 The classes istream and ostream defines two member functions get() and put() respectively

to handle single character input/output operations.

1. get(char *)

2. put(void)

 Both of them can be used to fetch a character including blank space, tab or new-line

character.

cin.get(ch);

 while(ch != '\n')

 {

 cout<<ch;

 cin.get(ch);

 }

 Similarly, the function put(), a member of a stream class can be used to output a line of text

character by character.

cout.put ('g');

char ch;

cout.put(ch);

getline() and write()

 You can read and display lines of text more efficiently using the lie oriented input/output

functions. They are:

 getline()

 write()

 The getline() function reads the entire line of texts that ends with a newline character. The

general form of getline() is:

(Affiliated to Saurashtra University & Gujarat Technological University)

cin.getline (line, size);

 The write() function displays the entire line of text, and the general form of writing this

function is:

cout.write (line, size);

FORMATTED I/O OPERATIONS

Width()

 The default width of your output will be just enough space to print the number, character,

or string in the output buffer. You can change this by using width(). Because width() is a

member function, it must be invoked with a cout object.

 Ex:

cout << "Start :";

cout.width(25);

 cout << 123

precision()

 Sets the decimal precision to be used to format floating-point values on output operations.

 Behaves as if member precision were called with n as argument on the stream on which it

is inserted/extracted as a manipulator (it can be inserted/extracted on input streams or

output streams).

 Ex:

Float f=12.234556

cout.precision(3);

cout<<f;

fill()

 fill() function is a library function of algorithm header, it is used to assign a value to the all

elements within a given range of a container, it accepts iterators pointing to the starting

and ending position in the container and a value to be assigned to the elements within the

given range, and assigns the value.

(Affiliated to Saurashtra University & Gujarat Technological University)

 Ex:

Cout.fill(‘*’);

Cout.width(5);

Cout<<50;

Manipulators

 Manipulators are used along with the extraction >> and insertion << operators for
stream input and output formatting.

 According to the number of arguments to be supplied manipulators are categorized in
the following types.

1. Non-parameterized Manipulators
2. Parameterized Manipulators
 Non parameterized Manipulators do no take argument to control the formatting of

input/output where as parameterized manipulators take argument for formatting.
 The Following table shows different non parameterized manipulators.

Manipulator Effect produced

left sets ios::left flag of ios::adjustfield

right sets ios::right flag of ios::adjustfield

dec sets ios::dec flag of ios::adjustfield

hex sets ios::hex flag of ios::adjustfield

oct sets ios::oct flag of ios::adjustfield

endl output newline and flush

ends Insert null character - ouput ‘’ character

 Following table shows different parameterized manipulators

Manipulators Effect produced

(Affiliated to Saurashtra University & Gujarat Technological University)

setw(int n) equivalent to ios function width()

setprecision (int n) equivalent to ios function precision()

setfill(int c) equivalent to ios::function fill()

1 word Question Answer

Sr No. Question Answer

1. Which function is Sets the decimal precision to
be used to format floating-point values on
output operations?

precision()

2. _______ function is a library function of
algorithm header.

fill()

3. ________are used along with the extraction
>> and insertion << operators for stream
input and output formatting.

Manipulators

(Affiliated to Saurashtra University & Gujarat Technological University)

Ch – 5 Working with Files, Exception handling,
Introduction to Template STL

TOPIC: FILE HANDLING THROUGH C++ CLASSES

 In C++, files are mainly dealt by using three classes fstream, ifstream, ofstream available in

fstream headerfile.

ofstream: Stream class to write on files

ifstream: Stream class to read from files

fstream: Stream class to both read and write from/to files.

 Now the first step to open the particular file for read or write operation. We can open file

by

1. passing file name in constructor at the time of object creation

2. using the open method

For e.g.

 Open File by using constructor

ifstream (const char* filename, ios_base::openmode mode = ios_base::in);

ifstream fin(filename, openmode) by default openmode = ios::in

ifstream fin(“filename”);

 Open File by using open method

Calling of default constructor

ifstream fin;

 fin.open(filename, openmode)

fin.open(“filename”);

(Affiliated to Saurashtra University & Gujarat Technological University)

Modes :

MEMBER CONSTANT STANDS FOR ACCESS

in input

File open for reading: the internal stream

buffer supports input operations.

Out output

File open for writing: the internal stream

buffer supports output operations.

binary binary

Operations are performed in binary

mode rather than text.

Ate at end

The output position starts at the end of

the file.

App append

All output operations happen at the end

of the file, appending to its existing

contents.

Trunc truncate

Any contents that existed in the file

before it is open are discarded.

(Affiliated to Saurashtra University & Gujarat Technological University)

Default Open Modes :

Ifstream ios::in

Ofstream ios::out

Fstream ios::in | ios::out

1 word Question Answer

Sr No. Question Answer

1. ________ Stream class to write on files Ofstream

2. ________ Stream class to read from files

Ifstream

TOPIC: OPENING A FILE

 A file must be opened before you can read from it or write to it. Either ofstream or fstream

object may be used to open a file for writing. And ifstream object is used to open a file for

reading purpose only.

 Following is the standard syntax for open() function, which is a member of fstream,

ifstream, and ofstream objects.

 void open(const char *filename, ios::openmode mode);

 Here, the first argument specifies the name and location of the file to be opened and the

second argument of the open() member function defines the mode in which the file should

be opened.

 You can combine two or more of these values. For example if you want to open a file in

write mode and want to truncate it in case that already exists, following will be the syntax −

 ofstream outfile;

 outfile.open("file.dat", ios::out | ios::trunc);

(Affiliated to Saurashtra University & Gujarat Technological University)

 Similar way, you can open a file for reading and writing purpose as follows −

 fstream afile;

 afile.open("file.dat", ios::out | ios::in);

1 word Question Answer

Sr No. Question Answer

1. Either _______ or _______ object may be used
to open a file for writing.

Ofstream, fstream

2. ________ object is used to open a file for

reading purpose only.

Ifstream

TOPIC: CLOSING A FILE

 When a C++ program terminates it automatically flushes all the streams, release all the

allocated memory and close all the opened files. But it is always a good practice that a

programmer should close all the opened files before program termination.

 Following is the standard syntax for close() function, which is a member of fstream,

ifstream, and ofstream objects.

 void close();

1 word Question Answer

Sr No. Question Answer

1. C++ program terminates it automatically flushes
all the ________.

Streams

TOPIC: WRITING TO A FILE

 While doing C++ programming, you write information to a file from your program using the

stream insertion operator (<<) just as you use that operator to output information to the

(Affiliated to Saurashtra University & Gujarat Technological University)

screen. The only difference is that you use an ofstream or fstream object instead of the

cout object.

Reading from a File

 You read information from a file into your program using the stream extraction operator

(>>) just as you use that operator to input information from the keyboard. The only

difference is that you use an ifstream or fstream object instead of the cin object.

File Position Pointers

 we have a get pointer and a put pointer for getting (i.e. reading) data from a file and

putting(i.e. writing) data on the file respectively.

 seekg() is used to move the get pointer to a desired location with respect to a reference

point.

 Syntax: file_pointer.seekg (number of bytes ,Reference point);

 Example: fin.seekg(10,ios::beg);

 tellg() is used to know where the get pointer is in a file.

 Syntax: file_pointer.tellg();

 Example: int posn = fin.tellg();

 seekp() is used to move the put pointer to a desired location with respect to a reference

point.

 Syntax: file_pointer.seekp(number of bytes ,Reference point);

 Example: fout.seekp(10,ios::beg);

 tellp() is used to know where the put pointer is in a file.

 Syntax: file_pointer.tellp();

 Example: int posn=fout.tellp();

 The reference points are:

 ios::beg – from beginning of file

 ios::end – from end of file

 ios::cur – from current position in the file.

(Affiliated to Saurashtra University & Gujarat Technological University)

 In seekg() and seekp() if we put – sign in front of number of bytes then we can move

backwards.

1 word Question Answer

Sr No. Question Answer

1. ______ is used to move the get pointer to a

desired location with respect to a reference

point.

seekg()

2. ______is used to know where the get

pointer is in a file.

tellg()

3. _______is used to move the put pointer to

a desired location with respect to a

reference point.

seekp()

4. _______ is used to know where the put

pointer is in a file.

tellp()

TOPIC: SEQUENTIAL I/O OPERATIONS

 The file stream classes support a number of member functions for performing the input

and output operations on files.

 The functions get() and put() are capable of handling a single character at a time. The

function getline() lets you handle multiple characters at a time.

 Another pair of functions i.e., read() and write() are capable of reading and writing blocks

of binary data.

The get(), getline() and put() Functions

 The functions get() and put() are byte-oriented. That is, get() will read a byte of data and

put() will write a byte of data. The get() has many forms, but the most commonly used

version is shown here, along with put() :

 istream & get(char & ch) ;

 ostream & put(char ch) ;

(Affiliated to Saurashtra University & Gujarat Technological University)

 The get() function reads a single character from the associated stream and puts that value

in ch. It returns a reference to the stream. The put() writes the value of ch to the stream

and returns a reference to the stream.

The read() and write() Functions

 Another way of reading and writing blocks of binary data is to use C++'s read() and write()

functions. Their prototypes are :

 istream & read((char *) & buf, int sizeof(buf)) ;

 ostream & write((char *) & buf, int sizeof(buf)) ;

 The read() function reads sizeof(buf) (it can be any other integer value also) bytes from the

associated stream and puts them in the buffer pointed to by buf. The write() function

writes sizeof(buf) (it can be any other integer value also) bytes to the associated stream

from the buffer pointed to by buf.

 As you see, these functions take two arguments. The first is the address of variable buf, and

the second is the length of that variable in bytes. The address of the variable must be type

cast to typ

 e char * (i.e., a pointer to character type).

1) Write a c++ program for enter file name and copy one file content to another file.
#include<iostream.h>
#include<conio.h>
#include<fstream.h>
#include<stdio.h>
#include<stdlib.h>
void main()
{
 clrscr();
 ifstream fs;
 ofstream ft;
 char ch, fname1[20], fname2[20];
 cout<<"Enter source file name with extension (like files.txt) : ";
 gets(fname1);
 fs.open(fname1);
 if(!fs)
 {
 cout<<"Error in opening source file..!!";
 getch();

(Affiliated to Saurashtra University & Gujarat Technological University)

 exit(1);
 }
 cout<<"Enter target file name with extension (like filet.txt) : ";
 gets(fname2);
 ft.open(fname2);
 if(!ft)
 {
 cout<<"Error in opening target file..!!";
 fs.close();
 getch();
 exit(2);
 }
 while(fs.eof()==0)
 {
 fs>>ch;
 ft<<ch;
 }
 cout<<"File copied successfully..!!";
 fs.close();
 ft.close();
 getch();
}
2) Write a c++ program for enter the file name from command line argument and write the

content in that file.
#include<iostream.h>
#include<conio.h>
#include<fstream.h>
int main(int argc, char *argv[])
{
 int i;
 char ch[50];
 cout<<endl<<"Total arguments="<<argc;
 cout<<endl<<"Program name is="<<argv[0];
 ofstream out;
 out.open(argv[1],ios::out);
 out<<"This is demo file for Command line Arguments: ";
 out.close();
 getch();
 return(0);
}

how to run this file:
Step 1: open dos shell from file menu...
Step 2: set the path c:\turboc3\source folder with cd for enter directory and cd.. for came out

for last directory....
Step 3: give the file for run the program without extension and give the another text file name

(Affiliated to Saurashtra University & Gujarat Technological University)

for open and write the file....

Like c:\turboc3\source> cmdfile demo.txt
3) Write a c++ program for merge two file in third file.

/* C++ Program - Merge Two Files */

#include<iostream.h>

#include<conio.h>

#include<fstream.h>

#include<stdio.h>

#include<stdlib.h>

void main()

{

 clrscr();

 ifstream ifiles1, ifiles2;

 ofstream ifilet;

 char ch, fname1[20], fname2[20], fname3[30];

 cout<<"Enter first file name (with extension like file1.txt) : ";

 gets(fname1);

 cout<<"Enter second file name (with extension like file2.txt) : ";

 gets(fname2);

 cout<<"Enter name of file (with extension like file3.txt) which will store the contents of
the two files (fname1 and fname2) : ";

 gets(fname3);

 ifiles1.open(fname1);

 ifiles2.open(fname2);

 if(ifiles1==NULL || ifiles2==NULL)

 {

(Affiliated to Saurashtra University & Gujarat Technological University)

 perror("Error Message ");

 cout<<"Press any key to exit...\n";

 getch();

 exit(EXIT_FAILURE);

 }

 ifilet.open(fname3);

 if(!ifilet)

 {

 perror("Error Message ");

 cout<<"Press any key to exit...\n";

 getch();

 exit(EXIT_FAILURE);

 }

 while(ifiles1.eof()==0)

 {

 ifiles1>>ch;

 ifilet<<ch;

 }

 while(ifiles2.eof()==0)

 {

 ifiles2>>ch;

 ifilet<<ch;

 }

 cout<<"The two files were merged into "<<fname3<<" file successfully..!!";

 ifiles1.close();

 ifiles2.close();

(Affiliated to Saurashtra University & Gujarat Technological University)

 ifilet.close();

 getch();

}

1 word Question Answer

Sr No. Question Answer

1. _____ will read a byte of data and _____will
write a byte of data.

get(),put()

TOPIC: EXCEPTION HANDLING...

 An exception is a problem that arises during the execution of a program. A C++ exception is

a response to an exceptional circumstance that arises while a program is running, such as

an attempt to divide by zero.

 Exceptions provide a way to transfer control from one part of a program to another. C++

exception handling is built upon three keywords: try, catch, and throw.

 throw − A program throws an exception when a problem shows up. This is done using

a throw keyword.

 catch − A program catches an exception with an exception handler at the place in a

program where you want to handle the problem. The catch keyword indicates the catching

of an exception.

 try − A try block identifies a block of code for which particular exceptions will be activated.

It's followed by one or more catch blocks.

 Assuming a block will raise an exception, a method catches an exception using a

combination of the try and catch keywords. A try/catch block is placed around the code

that might generate an exception. Code within a try/catch block is referred to as protected

code, and the syntax for using try/catch as follows −

try {

(Affiliated to Saurashtra University & Gujarat Technological University)

 // protected code

} catch(ExceptionName e1) {

 // catch block

} catch(ExceptionName e2) {

 // catch block

} catch(ExceptionName eN) {

 // catch block

}

 You can list down multiple catch statements to catch different type of exceptions in case

your try block raises more than one exception in different situations.

1 word Question Answer

Sr No. Question Answer

1. An ________is a problem that arises during the
execution of a program.

Exception

2. A program throws an exception when a
problem shows up. This is done using a _______
keyword.

throw

3. The ______ keyword indicates the catching of
an exception.

catch

TOPIC: THROWING EXCEPTIONS

 Exceptions can be thrown anywhere within a code block using throw statement. The

operand of the throw statement determines a type for the exception and can be any

expression and the type of the result of the expression determines the type of exception

thrown.

 Following is an example of throwing an exception when dividing by zero condition occurs −

double division(int a, int b)
 {

(Affiliated to Saurashtra University & Gujarat Technological University)

 if(b == 0) {
 throw "Division by zero condition!";
 }
 return (a/b);
}

Catching Exceptions

 The catch block following the try block catches any exception. You can specify what type of

exception you want to catch and this is determined by the exception declaration that

appears in parentheses following the keyword catch.

try {

 // protected code

} catch(ExceptionName e) {

 // code to handle ExceptionName exception

}

 Above code will catch an exception of ExceptionName type. If you want to specify that a

catch block should handle any type of exception that is thrown in a try block, you must put

an ellipsis, ..., between the parentheses enclosing the exception declaration as follows −

try {
 // protected code
} catch(...) {
 // code to handle any exception
}

 The following is an example, which throws a division by zero exception and we catch it in

catch block.

#include <iostream>
using namespace std;

double division(int a, int b) {
 if(b == 0) {
 throw "Division by zero condition!";
 }
 return (a/b);
}

(Affiliated to Saurashtra University & Gujarat Technological University)

int main () {
 int x = 50;
 int y = 0;
 double z = 0;

 try {
 z = division(x, y);
 cout << z << endl;
 } catch (const char* msg) {
 cerr << msg << endl;
 }

 return 0;
}

1 word Question Answer

Sr No. Question Answer

1. Exceptions can be thrown anywhere within a
code block using _______ statement.

throw

TOPIC: RANDOM-ACCESS-FILE:

 In This Tutorial, We are Introduction the concept of Random file Access. Unlike Sequential

files, we can access Random Access files in any order we want.

 Think of data in a Random Access file as we would songs on a compact disc or record, we

can go directly to any song we want without having to play or fast-forward over the other

songs.

 If we want to play the first song, the sixth song, and then the fourth song, we can do so.

The order of play has nothing to do with the order in which the songs were originally

recorded.

 Random-file access sometimes takes more Programming but rewards our effort with a

more flexible file-access method .

 Random file access enables us to read or write any data in our disk file without having to

read or write every piece of data before it.

(Affiliated to Saurashtra University & Gujarat Technological University)

 We can Quickly search for data, Modify data, delete data in a random-access file.

 We can open and close Random access file same like Sequential files with same opening

mode, but we need a few new functions to access files randomly, we find that the extra

effort pays off in flexibility, power, and speed of disk access:

 The process of randomly accessing data in a file is simple. Think about the data files of a
large credit card organization.

 When we make a purchase, the store calls the credit card company to receive

authorization.

 Millions of names are in the credit card company’s files. There is no quick way the credit

card company could read every record sequentially from the disk that comes before Ours.

Sequential files do not lend themselves to quick access.

 It is not feasible, in many situations, to look up individual records in a data file with

sequential access.

 The credit card companies must use a random file access so their computers can go directly

to our record, just as we go directly to a song on a compact disk or record album.

 The functions we use are different from the sequential functions, but the power that

results from learning the added functions is worth the effort.

 When our program reads and writes files Randomly, it treats the file like a big Array. with

Arrays, we know we can add, print, or remove values in any order.

(Affiliated to Saurashtra University & Gujarat Technological University)

 we don't have to start at the first array element, Sequentially looking at the Next one, Until

we get the Element we need.

 We can view our Random-access-file in the same way, accessing the data in any order. In

Random Access file, we can:

 » We Can Read from Anywhere from the file.

» We Can Write to Anywhere in the file.

» We can Modify our record:

» We can Search any Record from file

» And we can Delete Any record from file:

 For doing this all operation, we have just one Important things that we need to know about

before Move on.

 The thing is file-pointer, this File-Pointer move sequentially but we can also make it to

move Randomly using some function.

 C++ provide us four function, using these function can help us to set this file-pointer to any

where in the file:

Special function to move File-Pointer within the File:

Function Syntax Explanation

seekg() fileObject.seekg(long_num,
origin);

We can move input pointer to a specified location for
reading by using this function. fileObject is the
pointer to the file that we want to access. long_num
is the number of bytes in the file we want to skip.
and origin is a value that tells to compiler, where to
begin the skipping of bytes.

seekp()
fileObject.seekp(long_num,
origin);

We can move Output pointer to a specified location
by using this function. it's same like seekg() Function
but in Case of writing:

(Affiliated to Saurashtra University & Gujarat Technological University)

tellg()
fileObject.tellg();

This function return the current position of Input
pointer. this function don't need any argument.

tellp()
fileObject.tellp();

This function return the current position of Output
pointer. this function don't need any argument.

1 word Question Answer

Sr No. Question Answer

1. _______enables us to read or write any data in
our disk file without having to read or write
every piece of data before it.

Random file access

TOPIC: TEMPLATES IN C++

 A template is a simple and yet very powerful tool in C++.

 The simple idea is to pass data type as a parameter so that we don’t need to write the

same code for different data types.

 For example, a software company may need sort() for different data types. Rather than

writing and maintaining the multiple codes, we can write one sort() and pass data type as a

parameter.

 C++ adds two new keywords to support templates: ‘template’ and ‘typename’. The second

keyword can always be replaced by keyword ‘class’.

 How templates work?

Templates are expanded at compiler time. This is like macros. The difference is, compiler

does type checking before template expansion. The idea is simple, source code contains

only function/class, but compiled code may contain multiple copies of same function/class.

(Affiliated to Saurashtra University & Gujarat Technological University)

Function template

 Function Templates We write a generic function that can be used for different data types.

Examples of function templates are sort(), max(), min(), printArray().

Know more on Generics in C++

#include <iostream>

using namespace std;

// One function works for all data types. This would work

// even for user defined types if operator '>' is overloaded

template <typename T>

T myMax(T x, T y)

{

 return (x > y)? x: y;

}

int main()

https://www.geeksforgeeks.org/generics-in-c/
https://media.geeksforgeeks.org/wp-content/cdn-uploads/gq/2014/06/templates-cpp.jpg

(Affiliated to Saurashtra University & Gujarat Technological University)

{

 cout << myMax<int>(3, 7) << endl; // Call myMax for int

 cout << myMax<double>(3.0, 7.0) << endl; // call myMax for double

 cout << myMax<char>('g', 'e') << endl; // call myMax for char

 return 0;

}
Function template overloading

 Function templates and non-template functions may be overloaded.

 A non-template function is always distinct from a template specialization with

the same type. Specializations of different function templates are always

distinct from each other even if they have the same type.

 Two function templates with the same return type and the same parameter list

are distinct and can be distinguished with explicit template argument list.

 When an expression that uses type or non-type template parameters appears

in the function parameter list or in the return type, that expression remains a

part of the function template signature for the purpose of overloading:

 For ex:

template<int I, int J> A<I+J> f(A<I>, A<J>); // overload #1

template<int K, int L> A<K+L> f(A<K>, A<L>); // same as #1

template<int I, int J> A<I-J> f(A<I>, A<J>); // overload #2

Class Templates

 Class Templates Like function templates, class templates are useful when a class defines

something that is independent of the data type. Can be useful for classes like LinkedList,

BinaryTree, Stack, Queue, Array, etc.

 Following is a simple example of template Array class.

#include <iostream>

using namespace std;

(Affiliated to Saurashtra University & Gujarat Technological University)

template <typename T>

class Array {

private:

 T *ptr;

 int size;

public:

 Array(T arr[], int s);

 void print();

};

template <typename T>

Array<T>::Array(T arr[], int s) {

 ptr = new T[s];

 size = s;

 for(int i = 0; i < size; i++)

 ptr[i] = arr[i];

}

template <typename T>

void Array<T>::print() {

 for (int i = 0; i < size; i++)

 cout<<" "<<*(ptr + i);

 cout<<endl;

}

int main() {

(Affiliated to Saurashtra University & Gujarat Technological University)

 int arr[5] = {1, 2, 3, 4, 5};

 Array<int> a(arr, 5);

 a.print();

 return 0;

}

 Non-type template argument

 A template can have multiple arguments. In the template specification for a generic class, it

is also possible to specify non-type arguments.

 It is addition to the type argument T, another non-type argument may be either of

following: integers, strings, function names, constant expression and built-in types.

template<class T, int size>

class Myfilebuf

{

 T filepos;

 static int array[size];

 public:

 Myfilebuf() { /* ... */ }

 ~Myfilebuf();

 advance(); // function defined elsewhere in program

};

Partial and Primary template specialization

 Allows customizing class and variable templates for a given category of template

arguments.

template<class T1, class T2, int I>

class A {}; // primary template

(Affiliated to Saurashtra University & Gujarat Technological University)

template<class T, int I>

class A<T, T*, I> {}; // #1: partial specialization where T2 is a pointer to T1

template<class T, class T2, int I>

class A<T*, T2, I> {}; // #2: partial specialization where T1 is a pointe

1 word Question Answer

Sr No. Question Answer

1. _______are expanded at compiler time. Templates

TOPIC: CONTAINERS

 Containers or container classes store objects and data. There are in total seven standard

“first-class” container classes and three container adaptor classes and only seven header

files that provide access to these containers or container adaptors.

 Sequence Containers: implement data structures which can be accessed in a sequential

manner.

 vector

 list

 deque

 arrays

 forward_list(Introduced in C++11)

 Container Adaptors : provide a different interface for sequential containers.

 queue

 priority_queue

http://quiz.geeksforgeeks.org/vector-sequence-containers-the-c-standard-template-library-stl-set-1/
http://quiz.geeksforgeeks.org/list-sequence-containers-the-c-standard-template-library-stl/
http://quiz.geeksforgeeks.org/deque-sequence-containers-the-c-standard-template-library-stl/
https://www.geeksforgeeks.org/array-class-c/
https://www.geeksforgeeks.org/forward-list-c-set-1-introduction-important-functions/
http://quiz.geeksforgeeks.org/queue-container-adaptors-the-c-standard-template-library-stl/
http://quiz.geeksforgeeks.org/priority-queue-container-adaptors-the-c-standard-template-library-stl/

(Affiliated to Saurashtra University & Gujarat Technological University)

 stack

 Associative Containers : implement sorted data structures that can be quickly searched

(O(log n) complexity).

 set

 multiset

 map

 multimap

1 word Question Answer

Sr No. Question Answer

1. _________ classes store objects and data. Containers

2. _________ provide a different interface for
sequential containers.

Container Adaptors

3. _________ implement sorted data structures
that can be quickly searched (O(log n)
complexity).

Associative Containers

TOPIC: ITERATORS IN C++ STL

 Prerequisite : Introduction to Iterators

Iterators are used to point at the memory addresses of STL containers. They are primarily

used in sequence of numbers, characters etc. They reduce the complexity and execution

time of program.

Operations of iterators :-

1. begin() :- This function is used to return the beginning position of the container.

2. end() :- This function is used to return the after end position of the container.

http://quiz.geeksforgeeks.org/stack-container-adaptors-the-c-standard-template-library-stl/
http://quiz.geeksforgeeks.org/set-associative-containers-the-c-standard-template-library-stl/
http://quiz.geeksforgeeks.org/multiset-associative-containers-the-c-standard-template-library-stl/
http://quiz.geeksforgeeks.org/map-associative-containers-the-c-standard-template-library-stl/
http://quiz.geeksforgeeks.org/multimap-associative-containers-the-c-standard-template-library-stl/
https://www.geeksforgeeks.org/introduction-iterators-c/
http://quiz.geeksforgeeks.org/the-c-standard-template-library-stl/

(Affiliated to Saurashtra University & Gujarat Technological University)

3. advance() :- This function is used to increment the iterator position till the specified number
mentioned in its arguments.

4. next() :- This function returns the new iterator that the iterator would point after advancing

the positions mentioned in its arguments.

5. prev() :- This function returns the new iterator that the iterator would point after

decrementing the positions mentioned in its arguments.
6. inserter() :- This function is used to insert the elements at any position in the container. It
accepts 2 arguments, the container and iterator to position where the elements have to be
inserted.

1 word Question Answer

Sr No. Question Answer

1. ______ function is used to return the beginning
position of the container.

begin()

2. _______ function is used to return the after end
position of the container.

end()

3. ________ function is used to increment the
iterator position till the specified number
mentioned in its arguments

advance()

4. _______ function returns the new iterator that
the iterator would point after advancing the
positions mentioned in its arguments.

next()

5. _______ function returns the new iterator that
the iterator would point after decrementing the
positions mentioned in its arguments.

prev()

6. _______ function is used to insert the elements
at any position in the container.

inserter()

TOPIC: NAMESPACES IN C++

(Affiliated to Saurashtra University & Gujarat Technological University)

 Same situation can arise in your C++ applications. For example, you might be writing some

code that has a function called xyz() and there is another library available which is also

having same function xyz(). Now the compiler has no way of knowing which version of xyz()

function you are referring to within your code.

 A namespace is designed to overcome this difficulty and is used as additional information

to differentiate similar functions, classes, variables etc. with the same name available in

different libraries.

 Using namespace, you can define the context in which names are defined. In essence, a

namespace defines a scope.

TOPIC: DEFINING A NAMESPACE

A namespace definition begins with the keyword namespace followed by the namespace name
as follows −

namespace namespace_name {
 // code declarations
}

 To call the namespace-enabled version of either function or variable, prepend (::) the

namespace name as follows −

 name::code; // code could be variable or function.

 Let us see how namespace scope the entities including variable and functions −

#include <iostream>

using namespace std;

// first name space

namespace first_space {

 void func() {

 cout << "Inside first_space" << endl;

 }

(Affiliated to Saurashtra University & Gujarat Technological University)

}

// second name space

namespace second_space {

 void func() {

 cout << "Inside second_space" << endl;

 }

}

int main () {

 // Calls function from first name space.

 first_space::func();

 // Calls function from second name space.

 second_space::func();

 return 0;

}

1 word Question Answer

Sr No. Question Answer

1. Using ________ you can define the context in
which names are defined.

namespace

(Affiliated to Saurashtra University & Gujarat Technological University)

TOPIC: What is STL? Explain in brief.

 The Standard Template Library (STL) is a set of C++ template classes to provide common

programming data structures and functions such as lists, stacks, arrays, etc.

 It is a library of container classes, algorithms, and iterators.

 It is a generalized library and so, its components are parameterized.

 A working knowledge of template classes is a prerequisite for working with STL.

 STL has four components

1. Algorithms

2. Containers

3. Functions

4. Iterators

https://www.geeksforgeeks.org/templates-cpp/

	1 word Question Answer
	Topic: Object -Oriented Programming (OOP) Or

	1 word Question Answer (1)
	1 word Question Answer (2)
	 Real-World Applications of C++

	C++ Features
	1) Simple
	2) Machine Independent or Portable
	3) Mid-level programming language
	4) Structured programming language
	5) Rich Library
	6) Memory Management
	7) Speed
	8) Pointer
	9) Recursion
	10) Extensible
	11) Object Oriented
	12) Compiler based

	1 word Question Answer (3)
	1 word Question Answer (4)
	1 word Question Answer (5)
	1 word Question Answer (6)
	1 word Question Answer (7)
	1 word Question Answer (8)
	1 word Question Answer (9)
	1 word Question Answer (10)
	1 word Question Answer (11)
	1 word Question Answer (12)
	1 word Question Answer (13)
	1 word Question Answer (14)
	1 word Question Answer (15)
	1 word Question Answer
	1 word Question Answer (1)
	1 word Question Answer (2)
	1 word Question Answer (3)
	1 word Question Answer (4)
	1 word Question Answer (5)
	1 word Question Answer (6)
	1 word Question Answer (7)
	1 word Question Answer (8)
	1 word Question Answer (9)
	1 word Question Answer (10)
	1 word Question Answer (11)
	1 word Question Answer (12)
	1 word Question Answer (13)
	1 word Question Answer (14)
	1 word Question Answer (15)
	1 word Question Answer (16)
	1 word Question Answer (17)
	1 word Question Answer (18)
	1 word Question Answer (19)
	1 word Question Answer (20)
	Q -1 What is operator overloading?
	1 word Question Answer
	1 word Question Answer (1)
	1 word Question Answer (2)
	1 word Question Answer (3)
	1 word Question Answer (4)
	1 word Question Answer (5)
	1 word Question Answer (6)
	Topic: Virtual base class
	1 word Question Answer (7)
	Topic: Abstract Classes
	Topic: Constructor in derived class
	1 word Question Answer (8)
	Topic: Containership
	1 word Question Answer (9)
	Topic: POINTER TO OBJECTS:
	1 word Question Answer
	THIS POINTER:

	1 word Question Answer (1)
	Topic: VIRTUAL FUNCTION:
	Topic: PURE VIRTUAL FUNCTION:

	1 word Question Answer (2)
	Topic: RTTI (Run-time type Information) in C++
	1 word Question Answer (3)
	1 word Question Answer (4)
	getline() and write()

	1 word Question Answer (5)
	Topic: File Handling through C++ Classes
	1 word Question Answer
	Topic: Opening a File

	1 word Question Answer (1)
	Topic: Closing a File

	1 word Question Answer (2)
	Topic: Writing to a File
	Reading from a File
	File Position Pointers

	1 word Question Answer (3)
	The get(), getline() and put() Functions
	The read() and write() Functions

	1 word Question Answer (4)
	1 word Question Answer (5)
	Topic: Throwing Exceptions
	Catching Exceptions

	1 word Question Answer (6)
	Topic: RANDOM-ACCESS-FILE:

	1 word Question Answer (7)
	Topic: Templates in C++
	Function template

	1 word Question Answer (8)
	1 word Question Answer (9)
	Topic: Iterators in C++ STL
	1 word Question Answer (10)
	Topic: Namespaces in C++
	Topic: Defining a Namespace
	1 word Question Answer (11)

