Shree H. N. Shukla College of Science (Affiliated to Saurashtra University \& GTU)
 Nr. Lalpari Lake, B/h Marketing Yard, Rajkot-360003

F.Y.B.SC. SEM-I (CBCS)

SUBJECT: Mathematics
 PAPER: 101

Unit: 2
Indeterminate Forms \& Differential Equation of first order \& first degree

Prepared By:
Renuka Dabhi

INTRODUCTION

∇ Indeterminate forms

> L'hospitals rules for various indeterminate forms(without proof)
$>$ Various indeterminate forms like $\frac{0}{0}$ form, $\frac{\infty}{\infty}$ form, $0 \cdot \infty$ form, $\infty-\infty$ form, 0^{0} form, ∞^{0} form

Indeterminate

Forms and
L'Hopital's Rule

Kinds of indeterminate forms:
A. Primary Forms:

1. $\frac{0}{O}$ and
2. $\frac{\infty}{\infty}$
B. Secondary Forms :
3. $0 \cdot \infty$
4. $\infty-\infty$ and
5. $0^{\circ}, \infty^{0}, 1^{\infty}$

\downarrow Differential equations of first order and first degree

> Definitions and method of solving of Differential equation of the form variable separable
> Homogeneous differential equation
> Linear differential equations of first order and first degree

DIFFERENTIAL Equations

1st Order Dif. Equations

$$
\begin{aligned}
& y^{\prime}+P(x) y=Q(x) \\
& I(x)=e^{\int p(x) d x} \\
& y=\frac{1}{I(x)}\left[\int I(x) Q(x) d x+C\right]
\end{aligned}
$$

In this unit we are going to learn and discuss about different types of indeterminate forms \& Differential equations.

\& Indeterminate forms;

In calculus and other branches of mathematical analysis, limits involving an algebraic combination of functions in an independent variable may often be evaluated by replacing these functions by their limits; if the expression obtained after this substitution does not provide sufficient information to determine the original limit, then the expression is called an indeterminate form.

More specifically, an indeterminate form is a mathematical expression involving 0,1 and ∞.

Differential equation;

In mathematics, a differential equation is an equation that relates one or more functions and their derivatives.

An equation involving a dependent variable and its derivatives with respect to one or more independent variables is called a Differential Equation.

First order and first degree differential equation;

A differential equation of first order and first degree can be written as $f(x, y, d y / d x)=0$.

LEARNING OUTCOME

© Indeterminate forms:

\rightarrow Recognize when to apply L’Hospitals rule.
\rightarrow Identify indeterminate forms produced by quotients, products, subtractions, and powers, and apply l'Hospitals rule in each case.
\rightarrow Describe the relative growth rates of functions.

Differential equation:

\rightarrow Recognize differential equations that can be solved by each of the three methods - direct integration, separation of variables and integrating factor method - and use the appropriate method to solve them
\rightarrow Use an initial condition to find a particular solution of a differential equation, given a general solution
\rightarrow Check a solution of a differential equation in explicit or implicit form, by substituting it into the differential equation
\rightarrow Understand the terms 'exponential growth/decay', 'proportionate growth rate' and 'doubling/halving time' when applied to population models, and the terms 'exponential decay', 'decay constant' and 'half-life' when applied to radioactivity
\rightarrow Solve problems involving exponential growth and decay.

Indeterminate forms:

\checkmark If $\emptyset(x)=\frac{f(x)}{g(x)}$ is function of x and $\mathrm{f}(\mathrm{x}) \rightarrow 0, \mathrm{~g}(\mathrm{x}) \rightarrow 0$ as $\mathrm{x} \rightarrow$ a then $\emptyset(a)=\frac{0}{0}$ represent the indeterminate form $\frac{0}{0}$.
\checkmark Similarly $\mathrm{f}(\mathrm{x}) \rightarrow \infty, \mathrm{g}(\mathrm{x}) \rightarrow \infty$ as $\mathrm{x} \rightarrow$ a then $\varnothing(a)=\frac{\infty}{\infty^{\prime}}$, also represent the indeterminate form $\frac{\infty}{\infty}$.
\checkmark To evaluate these indeterminate forms means to find $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$, provided it exists.
\checkmark Other indeterminate forms are $0 \cdot \infty, \infty-\infty, 0^{\infty}, 1^{\infty}, 0^{0}, \infty^{\infty}$, etc.
\checkmark For example,
$\lim _{x \rightarrow 0} \frac{\sin x}{x}, \lim _{x \rightarrow 0} \frac{\log \sin x}{\cot x}, \lim _{x \rightarrow 0}(\operatorname{cosec} x-\cot x)$,
$\lim _{x \rightarrow 0} x^{x}, \lim _{x \rightarrow 0} \sin x \log \frac{1}{x}$
Are $\frac{0}{0}, \frac{\infty}{\infty}, \infty-\infty, 0^{0}, 0 \cdot \infty$ forms respectively.
$\checkmark \frac{0}{0}$ and $\frac{\infty}{\infty}$ are fundamental indeterminate forms, all other indeterminate forms can be converted into $\frac{0}{0}$ and $\frac{\infty}{\infty}$ form.
\checkmark To evaluate these indeterminate forms, French Mathematician L’Hospital, find a method which is known as L'Hospitals rule.

SR. NO.	QUESTION	RNSWER
$\mathbf{1}$	If $\varnothing(x)=\frac{f(x)}{g(x)}$ is function of x and $\mathrm{f}(\mathrm{x}) \rightarrow 0, \mathrm{~g}(\mathrm{x})$ $\rightarrow 0$ as $\mathrm{x} \rightarrow$ a then $\emptyset(a)=\frac{0}{0}$ represent the indeterminate form	$\frac{\mathbf{0}}{\mathbf{0}}$
$\mathbf{2}$	Write down the fundamental indeterminate forms.	$\frac{\mathbf{0}}{\mathbf{0}}$ and $\frac{\infty}{\infty}$
$\mathbf{3}$	1^{∞} is an indeterminate form.(T/F)	True
$\mathbf{4}$	Who evaluated indeterminate forms?	French Mathematician L'Hospital

THEOREM-1:

L'Hospitals rule for $\frac{0}{0}$ form. (Without proof)

Statement:

If f and g are two real functions defined on $[\alpha, \beta]$ and for $a \in(\alpha, \beta)$.
(i) f and g are continuous in $[\alpha, \beta]$
(ii) $\mathrm{f}(\mathrm{a})=0=\mathrm{g}(\mathrm{a})$
(iii) $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exist then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$

THEOREM-2:

L'Hospitals rule for $\frac{\infty}{\infty}$ form (Without proof).

Statement:

If f and g are two real functions defined on $[\alpha, \beta]$ and for $a \in(\alpha, \beta)$.
Prepared by: Ms. Renuka Dabhi | MATHS/SEM-1/P-101/UNIT-2 |

SHREE H. N. SHUKLA COLLEGE OF SCIENCE

(i) f and g are continuous in $[\alpha, \beta]$
(ii) f and g are derivable in (α, β), for $x \in(\alpha, \beta)$ - $\{a\}$ and $g^{\prime}(x) \neq 0$
(iii) $\mathrm{f}(\mathrm{x}) \rightarrow \infty, \mathrm{g}(\mathrm{x}) \rightarrow \infty$ as $\mathrm{x} \rightarrow \mathrm{a}$
(iv) $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exist then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$

NOTE:

The L'Hospitals rule for $\frac{\infty}{\infty}$ form can be extended to higher derivatives as done in the case of $\frac{0}{0}$ form.

SR. NO.	QUESTION	RNSWER
$\mathbf{1}$	French Mathematician L'Hospital, find a method which is known as......	L'Hospitals rule
$\mathbf{2}$	The L'Hospitals rule for $\frac{\infty}{\infty}$ form can be extended to__ as done in the case of $\frac{0}{0}$ form	higher derivatives

EXAMPLE-1:

Find
$\lim _{x \rightarrow 0} \frac{x \cos x-\log (1+x)}{x^{2}}$

SOLUTION:

$$
\begin{array}{ll}
\lim _{x \rightarrow 0} \frac{x \cos x-\log (1+x)}{x^{2}} ; & \frac{0}{0} \text { form } \\
=\lim _{x \rightarrow 0} \frac{\cos x-x \sin x-\frac{1}{1+x}}{2 x} ; & \frac{0}{0} \text { form }
\end{array}
$$

$=\lim _{x \rightarrow 0} \frac{-\sin x-[\sin x+x \cos x]+\frac{1}{(1+x)^{2}}}{2}$
$=\frac{1}{2}$

EXAMPLE-2:

Find
$\lim _{x \rightarrow a} \frac{\log (x-a)}{a \log \left(e^{x}-e^{a}\right)}$

SOLUTION:

$\lim _{x \rightarrow a} \frac{\log (x-a)}{\operatorname{alog}\left(e^{x}-e^{a}\right)} ; \quad \quad \frac{\infty}{\infty}$ form
$=\lim _{x \rightarrow a} \frac{1 / x-a}{e^{x} /\left(e^{x}-e^{a}\right)} ; \quad \quad \frac{\infty}{\infty}$ form
$=\lim _{x \rightarrow a} \frac{e^{x}-e^{a}}{e^{x} \cdot(x-a)} ; \quad \frac{0}{0}$ form
$=\lim _{x \rightarrow a} \frac{e^{x}}{e^{x}(x-a)+e^{x}}$
$=1$

EXAMPLE-3:

Evaluate
$\lim _{x \rightarrow 0} \frac{\log x^{2}}{\cot x^{2}}$
Prepared by: Ms. Renuka Dabhi | MATHS/SEM-1/P-101/UNIT-2 |

SOLUTION:

It is a $\frac{\infty}{\infty}$ form and therefore

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\log x^{2}}{\cot x^{2}}=\lim _{x \rightarrow 0} \frac{1 / x^{2} \cdot 2 x}{-\operatorname{cosec}^{2} x^{2} 2 x} \\
& =\lim _{x \rightarrow 0} \frac{-1}{x^{2} \operatorname{cosec}^{2} x^{2}} \\
& =\lim _{x \rightarrow 0} \frac{-\sin x^{2}}{x^{2}} ; \quad \frac{0}{0} \text { form } \\
& =\lim _{x \rightarrow 0} \frac{\cos x^{2} \cdot 2 x}{2 x} \\
& =\lim _{x \rightarrow 0} \cos x^{2} \\
& =-1
\end{aligned}
$$

EXAMPLE-4:

Evaluate
$\lim _{x \rightarrow \frac{\pi}{2}}(1-\sin x) \tan x$

SOLUTION:

This is $0 \cdot \infty$ form, therefore we have,

$$
\begin{aligned}
& \lim _{x \rightarrow \frac{\pi}{2}}(1-\sin x) \tan x=\lim _{x \rightarrow \frac{\pi}{2}} \frac{1-\sin x}{\cot x} ; \quad \frac{0}{0} \text { form } \\
& =\lim _{x \rightarrow \frac{\pi}{2}} \frac{-\cos x}{-\operatorname{cosec}^{2} x}
\end{aligned}
$$

$=\lim _{x \rightarrow \frac{\pi}{2}} \cos x \cdot \sin ^{2} x$
$=0$

EXAMPLE-5:

Evaluate

$\lim _{x \rightarrow 0}\left(\cot ^{2} x-\frac{1}{x^{2}}\right)$

SOLUTION:

This is $\infty-\infty$ form, therefore we have,

$$
\begin{aligned}
& \lim _{x \rightarrow 0}\left(\cot ^{2} x-\frac{1}{x^{2}}\right)=\lim _{x \rightarrow 0} \frac{x^{2} \cos ^{2} x-\sin ^{2} x}{x^{2} \sin ^{2} x} \\
& =\lim _{x \rightarrow 0} \frac{x^{2} \cos ^{2} x-\sin ^{2} x}{x^{4}} \cdot \frac{x^{2}}{\sin ^{2} x} \\
& =\lim _{x \rightarrow 0} \frac{x^{2} \cos ^{2} x-\sin ^{2} x}{x^{4}} \quad\left(\because \lim _{x \rightarrow 0} \frac{x^{2}}{\sin ^{2} x}=1\right) \\
& =\lim _{x \rightarrow 0} \frac{2 x \cos ^{2} x-2 x^{2} \cos x \sin x-2 \sin x \cos x}{4 x^{3}} \\
& =\lim _{x \rightarrow 0} \frac{2 x \cos ^{2} x-x^{2} \sin 2 x-\sin 2 x}{4 x^{3}} ; \quad \frac{0}{0} \text { form }
\end{aligned}
$$

$$
=\lim _{x \rightarrow 0} \frac{2 \cos ^{2} x-4 x \sin x \cos x-2 x \sin 2 x-2 x^{2} \cos 2 x-2 \cos 2 x}{12 x^{2}}
$$

$$
=\lim _{x \rightarrow 0} \frac{2 \cos ^{2} x-2 x \sin 2 x-2 x \sin 2 x-2 x^{2} \cos 2 x-2 \cos 2 x}{12 x^{2}}
$$

$$
=\lim _{x \rightarrow 0} \frac{2 \cos ^{2} x-4 x \sin 2 x-2 x^{2} \cos 2 x-2 \cos 2 x}{12 x^{2}} ; \quad \frac{0}{0} \text { form }
$$

$$
=\lim _{x \rightarrow 0} \frac{-4 \cos x \sin x-4 \sin 2 x-8 x \cos 2 x-4 x \cos 2 x+4 x^{2} \sin 2 x+4 \sin 2 x}{24 x}
$$

$$
=\lim _{x \rightarrow 0} \frac{-2 \sin 2 x-12 x \cos 2 x+4 x^{2} \sin 2 x}{24 x} ; \quad \frac{0}{0} \text { form }
$$

$$
=\lim _{x \rightarrow 0} \frac{-4 \cos 2 x-12 \cos 2 x+24 x \sin 2 x+8 x \sin 2 x+8 x^{2} \cos 2 x}{24}
$$

$$
=\frac{-4-12}{24}=\frac{-16}{24}=\frac{-2}{3}
$$

EXAMPLE-6:

Evaluate
$\lim _{x \rightarrow \frac{\pi}{2}}(\sin x)^{\tan x}$

SOLUTION:

This is 1^{∞} form, therefore we have,
$y=(\sin x)^{\tan x} \Rightarrow \log y=\tan x \cdot \log \sin x=\frac{\log \sin x}{\cot x}$
$\therefore \lim _{x \rightarrow \frac{\pi}{2}} \log y=\lim _{x \rightarrow \frac{\pi}{2}} \frac{\log \sin x}{\cot x}$;
$\frac{0}{0}$ form
$=\lim _{x \rightarrow \frac{\pi}{2}} \frac{\cot x}{-\operatorname{coses}^{2} x}$
$=\lim _{x \rightarrow \frac{\pi}{2}} \frac{\cos x}{\sin x} \cdot\left(-\sin ^{2} x\right)$

$$
=\lim _{x \rightarrow \frac{\pi}{2}}-\sin x \cdot \cos x=0
$$

$\therefore \lim _{x \rightarrow \frac{\pi}{2}} \log y=0$
$\therefore \lim _{x \rightarrow \frac{\pi}{2}} y=e^{0}=1$

EXAMPLE-7:

Evaluate
$\lim _{x \rightarrow 0}(\cot x)^{\frac{1}{\log x}}$

SOLUTION:

This is ∞^{0} form therefore,
Let $y=(\cot x)^{\frac{1}{\log x}} \Rightarrow \log y=\frac{1}{\log x} \cdot \log \cot x$
$\therefore \lim _{x \rightarrow 0} \log y=\lim _{x \rightarrow 0} \frac{\log \cot x}{\log x} ; \quad \quad \frac{\infty}{\infty}$ form
$=\lim _{x \rightarrow 0} \frac{\frac{-\operatorname{cosec}^{2} x}{\cot x}}{1 / x}$
$=\lim _{x \rightarrow 0} \frac{-x}{\sin x} \cdot \frac{1}{\cos x}$
$=-\frac{1}{\cos 0}$

$$
\left(\because \lim _{x \rightarrow 0} \frac{x}{\sin x}=1\right)
$$

$\therefore \lim _{x \rightarrow 0} \log y=-1$
Prepared by: Ms. Renuka Dabhi | MATHS/SEM-1/P-101/UNIT-2 |
$\therefore \lim _{x \rightarrow 0} y=e^{-1}=\frac{1}{e}$

EXAMPLE-8:

If
$\lim _{x \rightarrow \frac{\pi}{2}} \frac{\cos ^{2} x}{a-b \operatorname{cosec} x}=1$
Then find value of a and b.

SOLUTION:

Here given that $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\cos ^{2} x}{a-b \operatorname{cosec} x}$ exists and since $\lim _{x \rightarrow \frac{\pi}{2}} \cos ^{2} x=0$, by
L'Hospital's rule denominator $a-b \operatorname{cosec} \frac{\pi}{2} \rightarrow 0$ as $x \rightarrow \frac{\pi}{2}$.
Hence $a-b \operatorname{cosec} \frac{\pi}{2}=0 \Rightarrow a-b=0 \Rightarrow a=b$
Now by L’Hospital rule,
$\lim _{x \rightarrow \frac{\pi}{2}} \frac{\cos ^{2} x}{a-b \operatorname{cosec} x}=\lim _{x \rightarrow \frac{\pi}{2}} \frac{-2 \sin x \cos x}{b \cot x \operatorname{cosec} x}=\lim _{x \rightarrow \frac{\pi}{2}} \frac{-2}{b} \sin ^{3} x=\frac{-2}{b}$
But given that
$\lim _{x \rightarrow \frac{\pi}{2}} \frac{\cos ^{2} x}{a-b \operatorname{cosec} x}=1$
$\therefore \frac{-2}{b}=1$
$\therefore b=-2$

From result (i), we get
$a=b=-2$
Prepared by: Ms. Renuka Dabhi | MATHS/SEM-1/P-101/UNIT-2 |

REMARKS:

We can deduce from L'Hospital's rule that,

1) If $f^{\prime}(a)$ and $g^{\prime}(a)$ are defined and $\lim _{x \rightarrow a} f^{\prime}(x)$ and $\lim _{x \rightarrow a} g^{\prime}(x)$ exists then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{f^{\prime}(a)}{g^{\prime}(a)}
$$

2) If $f^{\prime}(a)=g^{\prime}(a)=0$ and second derivative exists for f and g then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow a} \frac{f^{\prime \prime}(x)}{g^{\prime \prime}(x)} \quad\left(g^{\prime \prime}(x) \neq 0\right)
$$

Similarly,

$$
\begin{gathered}
f^{n-1}(a)=g^{n-1}(a)=0 \text { and } g^{\prime \prime}(x) \neq 0 \text { then } \\
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{n}(x)}{g^{n}(x)}
\end{gathered}
$$

EXERCISE-A

Evaluate the following:

1) $\lim _{x \rightarrow 0} \frac{\sin x-x \cos x}{\sin x-x}$
2) $\lim _{x \rightarrow 1} \frac{\log x}{x-1}$
3) $\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{e^{x}-1}\right)$
4) $\lim _{x \rightarrow \frac{\pi}{2}}(\sec x-\tan x)$

Definition: Differential equation

> Differential equation is an equation which involves differential coefficients OR differentials.
Thus,

1) $e^{x} d x=e^{y} d y$
2) $\frac{d^{2} x}{d t^{2}}+n^{2} x=0$
3) $\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3 / 2} / \frac{d^{2} y}{d x^{2}}=C$

Are all examples of Differential equations.

Order of Differential Equation:

Order of Differential Equation is the order of the highest derivative appearing in it.

Degree of a Differential Equation:

Degree of a Differential Equation is the degree of the highest derivative occurring in it, after the equation has been expressed in a form free from radicals and Factions as far the derivatives are concerned.

Thus, from the examples above,
(1) is of the first order and first degree;
(2) is of the second order and first degree;
(3) is of the second order and second degree.
Formation of a differential equation:
An ordinary differential equation is formed in an attempt to arbitrary constant from a relation in the variables and constant. Example-9: Form the differential equation of simple harmonic A
eliminate certain
motion given by

