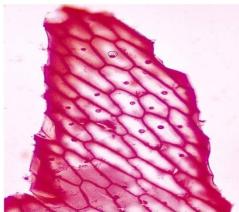


Shree H. N. Shukla Institute of Pharmaceutical Education and Research, Rajkot

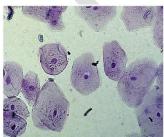

B. Pharm Semester-I

Subject Name: Human Anatomy & Physiology-I Subject Code: BP101TP

Chapter-1 Cell Structure and Function

- Smallest living unit
- Most are microscopic

Discovery of Cells

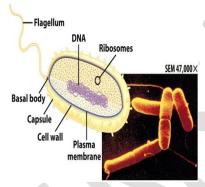

- Robert Hooke (mid-1600s)
 - Observed sliver of cork
 - Saw "row of empty boxes"
 - Coined the term cell

Principles of Cell Theory

- All living things are made of cells
- Smallest living unit of structure and function of all organisms is the cell
- All cells arise from preexisting cells (this principle discarded the idea of spontaneous generation)

Characteristics of All Cells

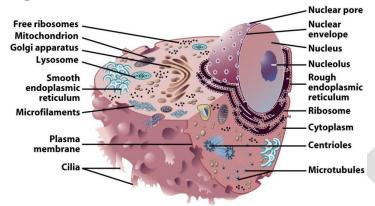
- A surrounding membrane
- Protoplasm cell contents in thick fluid
- Organelles structures for cell function
- Control center with DNA


Cell Types

- Prokaryotic
- Eukaryotic

Prokaryotic Cells

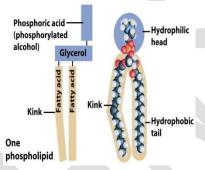
- First cell type on earth
- Cell type of Bacteria and Archaea


- No membrane bound nucleus
- Nucleoid = region of DNA concentration
- Organelles not bound by membranes

Eukaryotic Cells

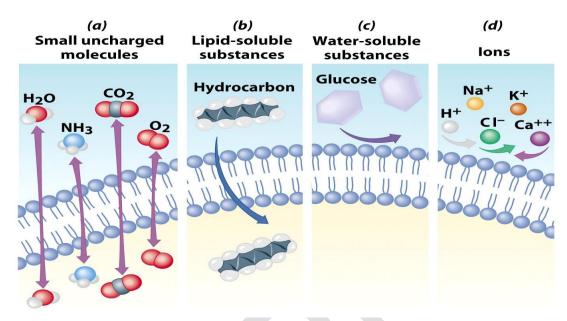
- Nucleus bound by membrane
- Include fungi, protists, plant, and animal cells
- Possess many organelles

Representative Animal Cell

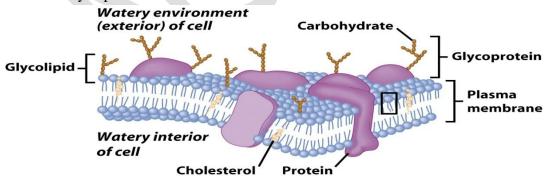


Plasma Membrane

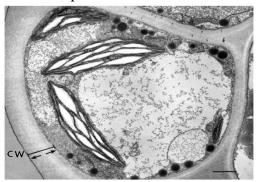
- Contains cell contents
- Double layer of phospholipids & proteins


Phospholipids

- Polar
 - Hydrophylic head
 - Hydrophobic tail
 - Interacts with water

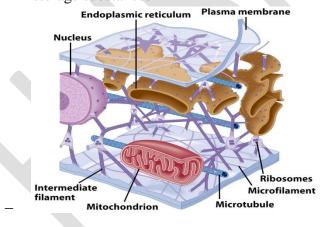

Movement Across the Plasma Membrane

- A few molecules move freely
 - Water, Carbon dioxide, Ammonia, Oxygen
 - Carrier proteins transport some molecules
 - Proteins embedded in lipid bilayer
 - Fluid mosaic model describes fluid nature of a lipid bilayer with proteins


Membrane Proteins

- 1. Channels or transporters
 - Move molecules in one direction
- 2. Receptors
 - Recognize certain chemicals
- 3. Glycoproteins
 - Identify cell type
- 4. Enzymes
 - Catalyze production of substances

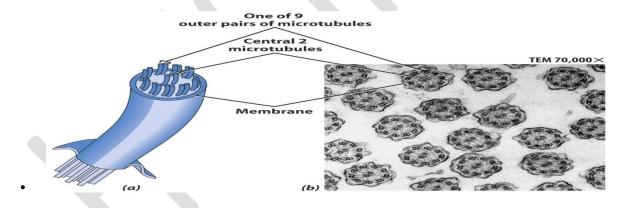
Cell Walls


- Found in plants, fungi, & many protists
- Surrounds plasma membrane

- Plants mostly cellulose
- Fungi contain chitin

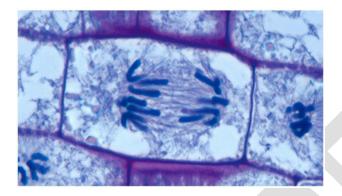
Cytoplasm

- Viscous fluid containing organelles
- components of cytoplasm
 - Interconnected filaments & fibers
 - Fluid = cytosol
 - Organelles (not nucleus)
 - storage substances

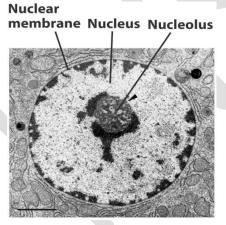

Cilia & Flagella

- Provide motility
- Cilia
 - Short

Used to move substances outside human cells



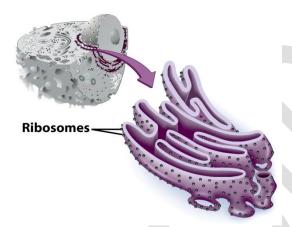
- Flagella
 - Whip-like extensions
 - Found on sperm cells
- Basal bodies like centrioles
- Bundles of microtubules
- With plasma membrane


Centrioles

- Pairs of microtubular structures
- Play a role in cell division

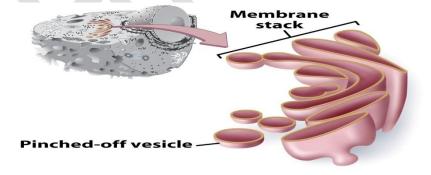
Nucleolus

- Most cells have 2 or more
- Directs synthesis of RNA
- Forms ribosomes


Endoplasmic Reticulum

- Helps move substances within cells
- Network of interconnected membranes
- Two types

- Rough endoplasmic reticulum
- Smooth endoplasmic reticulum


Rough Endoplasmic Reticulum

- Ribosomes attached to surface
 - Manufacture protiens
 - Not all ribosomes attached to rough ER
- May modify proteins from ribosomes

Golgi Apparatus

- Involved in synthesis of plant cell wall
- Packaging & shipping station of cell

- 1. Molecules come in vesicles
- 2. Vesicles fuse with Golgi membrane

- 3. Molecules may be modified by Golgi
- 4. Molecules pinched-off in separate vesicle
- 5. Vesicle leaves Golgi apparatus
- 6. Vesicles may combine with plasma membrane to secrete contents

Molecule Movement & Cells

- Passive Transport
- Active Transport
- Endocytosis

(phagocytosis & pinocytosis)

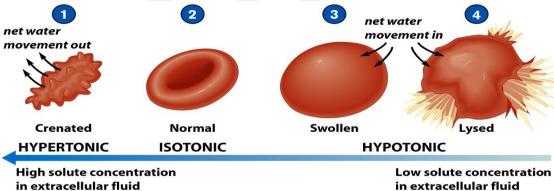
Exocytosis

Passive Transport

- No energy required
- Move due to gradient
 - differences in concentration, pressure, charge
 - Move to equalize gradient
 - High moves toward low

Types of Passive Transport

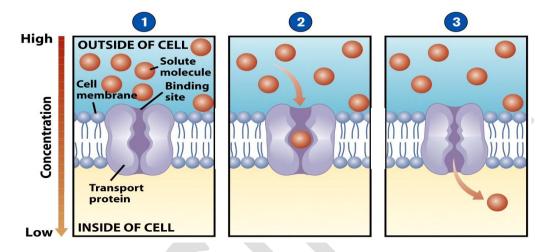
- 1. Diffusion
- 2. Osmosis
- 3. Facilitated diffusion


Diffusion

Molecules move to equalize concentration

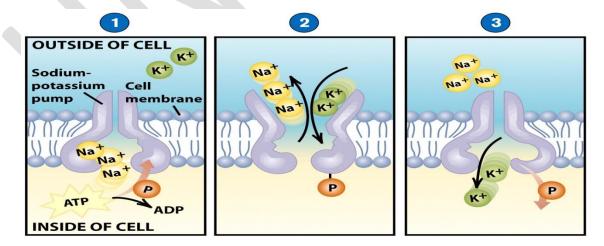
Osmosis

- Special form of diffusion
- Fluid flows from lower solute concentration
- Often involves movement of water
 - Into cell
 - Out of cell


Facilitated Diffusion

in extracellular fluid

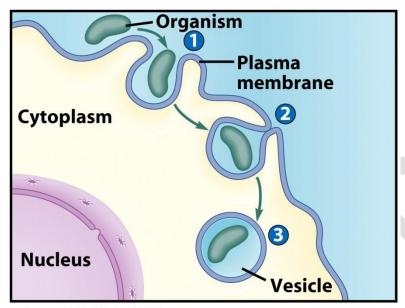
- Differentially permeable membrane
- Channels (are specific) help molecule or ions enter or leave the cell
- Channels usually are transport proteins (aquaporins facilitate the movement of water)
- No energy is used


Process of Facilitated Transport

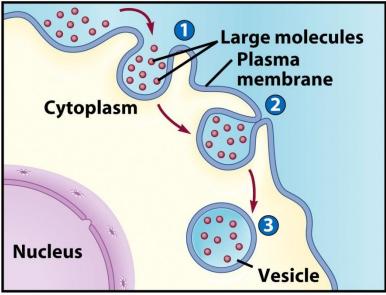
- Protein binds with molecule
- Shape of protein changes
- Molecule moves across membrane

Active Transport

- Molecular movement
- Requires energy (against gradient)
- Example is sodium-potassium pump



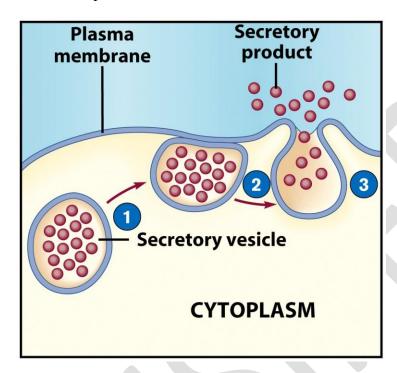
Endocytosis


- Movement of large material
 - Particles
 - Organisms
 - Large molecules
- Movement is into cells
- Types of endocytosis
 - bulk-phase (nonspecific)
 - receptor-mediated (specific)

Process of Endocytosis

- Plasma membrane surrounds material
- Edges of membrane meet
- Membranes fuse to form vesicle

PHAGOCYTOSIS


PINOCYTOSIS

- Phagocytosis cell eating
- Pinocytosis cell drinking

Exocytosis

Vesicle moves to cell surface

- Membrane of vesicle fuses
- Materials expelled

