SHREE H. N. SHUKLA INSTITUTE OF PHARMACEUTICAL EDUCATION AND RESEARCH

B.PHRAM

(SEMESTER -III)

SUBJECT NAME: BIOCHEMISTRY CHAPTER 2: METABOLISM OF CARBOHYSRATES SUBJECT CODE: BP303TP

Carbohydrate Metabolism

- Carbohydrate metabolism denotes the various <u>biochemical</u> processes responsible for the <u>formation</u>, <u>breakdown</u> and interconversion of <u>carbohydrates</u> in living organisms.
- The most important carbohydrate is glucose, a simple sugar (<u>monosaccharide</u>) that is metabolized by nearly all known organisms.
- Glucose and other carbohydrates are part of a wide variety of metabolic pathways across species: <u>plants</u> synthesize carbohydrates from carbon dioxide and water by <u>photosynthesis</u>, storing the absorbed energy internally, often in the form of <u>starch</u> or <u>lipids</u>.
- Plant components are consumed by animals and <u>fungi</u>, and used as fuel for <u>cellular respiration</u>. Oxidation of one gram of carbohydrate yields approximately 4 kcal of <u>energy</u>, while the oxidation of one gram of lipids yields about 9 kcal. Energy obtained from metabolism (e.g., oxidation of glucose) is usually stored temporarily within cells in the form of <u>ATP</u>. Organisms capable of <u>aerobic respiration</u> metabolize glucose and <u>oxygen</u> to release energy with <u>carbon dioxide</u> and <u>water</u> as byproducts.

<u>Metabolic pathways</u>

- Carbon fixation, or photosynthesis, in which CO₂ is reduced to carbohydrate.
- Glycolysis the oxidation metabolism of glucose molecules to obtain <u>ATP</u> and <u>pyruvate</u>
- Pyruvate from glycolysis enters the <u>Krebs cycle</u>, also known as the citric acid cycle, in <u>aerobic organisms</u> after moving through <u>pyruvate dehydrogenase complex</u>.

- The pentose phosphate pathway, which acts in the conversion of <u>hexoses</u> into <u>pentoses</u> and in <u>NADPH</u> regeneration.
- NADPH is an essential antioxidant in cells which prevents oxidative damage and acts as precursor for production of many biomolecules.
- Glycogenesis the conversion of excess glucose into glycogen as a cellular storage mechanism; this prevents excessive osmotic pressure buildup inside the cell
- Glycogenolysis the breakdown of glycogen into glucose, which provides glucose supply for glucose-dependent tissues.
- Gluconeogenesis de novo synthesis of glucose molecules from simple organic compounds. An example in humans is the conversion of a few <u>amino acids</u> in cellular protein to glucose.

<u>Glycolysis</u>

Glycolysis (from *glycose*, an older term^[1] for glucose + *-lysis* degradation) is the <u>metabolic pathway</u> that converts <u>glucose</u> $C_6H_{12}O_6$, into <u>pyruvate</u>, $CH_3COCOO^- + H^+$. The <u>free energy</u> released in this process is used to form the high-energy molecules ATP (<u>adenosine</u> <u>triphosphate</u>) and NADH (<u>reduced nicotinamide adenine dinucleotide</u>).

Glycolysis is a determined sequence of ten <u>enzyme</u>-catalyzed reactions. The intermediates provide entry points to glycolysis converted to one of these intermediates. The intermediates may also be directly useful. For example, the intermediate <u>dihydroxyacetone phosphate</u> (DHAP) is a source of the glycerol that combines with fatty acids to form fat.

For example, most monosaccharides, such as <u>fructose</u> and <u>galactose</u>, can be Glycolysis is an oxygen independent metabolic pathway, meaning that it does not use molecular oxygen (i.e. atmospheric oxygen) for any of its reactions. However the products of glycolysis (<u>pyruvate</u> and <u>NADH</u> + H⁺) are sometimes <u>metabolized</u> using atmospheric oxygen.

When molecular oxygen is used for the metabolism of the products of glycolysis the process is usually referred to as <u>aerobic</u>, whereas if no oxygen is used the process is said to be <u>anaerobic</u>.

Sr. No.	Question	Answer
1.	Various biochemical processes responsible for	Carbohydrate
	the formation, breakdown and interconversion	metabolism
	of carbohydrates in living organisms.	
2.	The most important carbohydrate is	Glucose
3.	The pentose phosphate pathway, which acts in	Pentoses and in
	the conversion of hexoses into	NADPH regeneration.
4.	No oxygen is used the process is	anaerobic
5.	Molecular oxygen is used for the metabolism of	aerobic
	the products of glycolysis the process is	
6.	Plants synthesize carbohydrates	carbon dioxide
7.	De novo synthesis of glucose molecules from	Gluconeogenesis
	simple organic compounds.	
8.	The products of glycolysis	Pyruvate and NADH +
		H^+

Simplified Glycolysis diagram. Molecule names contain extra capitals to illustrate components. 21/02/2010 followchemistry.wordpress.com

Thus, glycolysis occurs, with variations, in nearly all organisms, both <u>aerobic</u> and <u>anaerobic</u>. The wide occurrence of glycolysis indicates that it is one of the most ancient metabolic pathways.

Indeed, the reactions that constitute glycolysis and its parallel pathway, the <u>pentose phosphate pathway</u>, occur metal-catalyzed under the <u>oxygen-free conditions</u> of the <u>Archean</u> oceans, also in the absence of enzymes.^[7] Glycolysis could thus have originated from chemical constraints of the prebiotic world.

Glycolysis occurs in most organisms in the <u>cytosol</u> of the cell. The most common type of glycolysis is the *Embden–Meyerhof–Parnas (EMP pathway)*, which was discovered by <u>Gustav Embden</u>, <u>Otto Meyerhof</u>, and <u>Jakub Karol Parnas</u>.

Glycolysis also refers to other pathways, such as the <u>Entner–Doudoroff</u> <u>pathway</u> and various heterofermentative and homofermentative pathways. However, the discussion here will be limited to the Embden–Meyerhof–Parnas pathway.

<u>Glycogenolysis</u>

Not to be confused with <u>Glycolysis</u>, <u>Glycogenesis</u>, or <u>Gluconeogenesis</u>.

<u>Glycogen</u>

Glucose-6-phosphate

Sr. No.	Question	Answer
1.	What carbohydrates are reactants in glycolysis?	Glucose
2.	In liver, the accumulation of which of the following metabolite attenuates the inhibitory of ATP on phosphofructokinase	Fructose-1,6-Bisphosphate
3.	Cancer cells have high energy demands for replication and division. Increased flux of glucose into glycolysis replenishes the energy demand. Which of the following enzyme plays an important role in tumor metabolism	Pyruvate Kinase M
4.	Which glucose transporter (GLUT) is important in insulin-dependent glucose uptake	GLUT 2
5.	Which glucose transporter (GLUT) is important in	GLU 5

	fructose transport in the intestine	
6.	Which metabolite negatively regulates pyruvate kinase?	Alanin
7.	During prolong starvation, which of the following hormone is responsible for increasing gluconeogenesis in live	Glucagon
8.	During gluconeogenesis, the three irreversible steps of glycolysis have to be bypassed. The final step is the conversion of glucose-6-P to glucose that is catalyzed by glucose-6-phosphatase. Which of the following statement is true about the reaction step?	Defect in glucose-6- phosphatase leads to abnormal accumulation of glycogen in liver

Glycogenolysis is the breakdown of <u>glycogen (n)</u> to <u>glucose-6-phosphate</u> and <u>glycogen (n-1)</u>. Glycogen branches are <u>catabolized</u> by the sequential removal of glucose monomers via <u>phosphorolysis</u>, by the enzyme <u>glycogen phosphorylase</u>.^[11]

<u>Mechanism</u>

The overall reaction for the breakdown of glycogen to glucose-1-phosphate is:glycogen_(n residues) + $P_i \rightleftharpoons$ glycogen_(n-1 residues) + glucose-1-phosphate.

Here, <u>glycogen phosphorylase</u> cleaves the bond linking a terminal glucose <u>residue</u> to a glycogen branch by <u>substitution</u> of a <u>phosphoryl</u> group for the $\alpha[1\rightarrow 4]$ linkage.

Glucose-1-phosphate is converted to glucose-6-phosphate by the enzyme phosphoglucomutase. Glucose residues are phosphorolysed from branches of glycogen until four residues before a glucose that is branched with a $\alpha[1\rightarrow 6]$ linkage. <u>Glycogen debranching enzyme</u> then transfers three of the remaining four glucose units to the end of another glycogen branch. This exposes the $\alpha[1\rightarrow 6]$ branching point, which is

<u>hydrolysed</u> by $\alpha[1\rightarrow 6]$ glucosidase, removing the final glucose residue of the branch as a molecule of glucose and eliminating the branch.

This is the only case in which a glycogen metabolite is not glucose-1-phosphate. The glucose is subsequently phosphorylated to glucose-6-phosphate by <u>hexokinase</u>.

Function

Glycogenolysis takes place in the cells of the <u>muscle</u> and <u>liver</u> tissues in response to hormonal and neural signals. In particular, glycogenolysis plays an important role in the <u>fight-or-flight response</u> and the regulation of glucose levels in the blood.

In <u>myocytes</u> (muscle cells), glycogen degradation serves to provide an immediate source of glucose-6-phosphate for <u>glycolysis</u>, to provide energy for muscle contraction.

In <u>hepatocytes</u> (liver cells), the main purpose of the breakdown of glycogen is for the release of glucose into the bloodstream for uptake by other cells.

The phosphate group of glucose-6-phosphate is removed by the enzyme <u>glucose-6-phosphatase</u>, which is not present in myocytes, and the free glucose exits the cell via <u>GLUT2</u> facilitated diffusion channels in the hepatocyte cell membrane.

<u>Gluconeogenesis</u>

Not to be confused with Glycogenesis or Glyceroneogenesis

Simplified Gluconeogenesis Pathway

Sr. No.	Question	Answer
1.	During vigorous exercise, pyruvate produced by glycolysis is converted	Lactate
2.	What stimulates gluconeogenesis and inhibits glycolysis	Ephedrine
3.	Name the enzyme which is responsible for the conversion of pyruvate to phosphoenolpyruvate (PEP)?	Pyruvate carboxykinase
4.	Which hormone maintains blood glucose level by activation of gluconeogenesis?	Glucagon
5.	Name the hormone which is secreted in an emergency or in stress condition?	Epinephrine
6.	Name the pathway for glucose synthesis by non-carbohydrate precursors?	Gluconeogenesis

7.	Glycolysis is a pathway that is Independent of oxygen?	True
8.	Where does glycolysis take place?	Cytosol
9.	Gluconeogenesis is an anabolic pathway that makes glucose from pyruvate.	True
10.	Which of the following enzyme is defective in galactosemia- a fatal genetic disorder in infants	Galactose-1-Phosphate Uridyltransferas

Gluconeogenesis (GNG) is a <u>metabolic pathway</u> that results in the generation of <u>glucose</u> from certain non-<u>carbohydrate</u> carbon substrates.

From breakdown of <u>proteins</u>, these substrates include <u>glucogenic amino</u> <u>acids</u> (although not <u>ketogenic amino acids</u>); from breakdown of <u>lipids</u> (such as <u>triglycerides</u>), they include <u>glycerol</u> (although not <u>fatty acids</u>); and from other steps in <u>metabolism</u> they include <u>pyruvate</u> and <u>lactate</u>.

Gluconeogenesis is one of several main mechanisms used by humans and many other animals to maintain <u>blood glucose levels</u>, avoiding low levels (<u>hypoglycemia</u>).

Other means include the degradation of <u>glycogen</u> (<u>glycogenolysis</u>)^[1] and <u>fatty acid catabolism</u>.

Gluconeogenesis is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms. In vertebrates, gluconeogenesis takes place mainly in the <u>liver</u> and, to a lesser extent, in the <u>cortex</u> of the <u>kidneys</u>. In <u>ruminants</u>, this tends to be a continuous process. In many other animals, the process occurs during periods of <u>fasting</u>, <u>starvation</u>, <u>low-carbohydrate diets</u>, or intense <u>exercise</u>. The process is highly <u>endergonic</u> until it is coupled to the hydrolysis of <u>ATP</u> or <u>GTP</u>, effectively making the process <u>exergonic</u>.

For example, the pathway leading from <u>pyruvate</u> to <u>glucose-6-phosphate</u> requires 4 molecules of ATP and 2 molecules of GTP to proceed spontaneously.

Gluconeogenesis is often associated with <u>ketosis</u>. Gluconeogenesis is also a target of therapy for <u>type 2 diabetes</u>, such as the <u>antidiabetic drug</u>, <u>metformin</u>, which inhibits glucose formation and stimulates glucose uptake by cells.

In <u>ruminants</u>, because dietary carbohydrates tend to be metabolized by <u>rumen</u> organisms, gluconeogenesis occurs regardless of fasting, low-carbohydrate diets, exercise, etc.

 \sim

Sr. No.	Question	Answer
1.	What carbohydrates are reactants in glycolysis?	Glucose
2.	In liver, the accumulation of which of the following metabolite attenuates the inhibitory of ATP on phosphofructokinase	Fructose-1,6-Bisphosphate
3.	Cancer cells have high energy demands for replication and division. Increased flux of glucose into glycolysis replenishes the energy demand. Which of the following enzyme plays an important role in tumor metabolism	Pyruvate Kinase M
4.	Which glucose transporter (GLUT) is important in insulin-dependent glucose uptake	GLUT 2
5.	Which glucose transporter (GLUT) is important in fructose transport in the intestine	GLU 5
6.	Which metabolite negatively regulates pyruvate kinase?	Alanin
7.	During prolong starvation, which of the following hormone is responsible for increasing gluconeogenesis in live	Glucagon
8.	During gluconeogenesis, the three irreversible steps of glycolysis have to be bypassed. The final step is the conversion of glucose-6-P to glucose that is catalyzed by glucose-6-phosphatase. Which of the following statement is true about the reaction step?	Defect in glucose-6- phosphatase leads to abnormal accumulation of glycogen in liver

Pentose phosphate pathway

The **pentose phosphate pathway** (also called the **phosphogluconate pathway** and the **hexose monophosphate shunt**) is a <u>metabolic</u> <u>pathway</u> parallel to <u>glycolysis</u>.

It generates <u>NADPH</u> and <u>pentoses</u> (5-<u>carbonsugars</u>) as well as <u>ribose 5-</u><u>phosphate</u>, the last one a precursor for the synthesis of nucleotides. While it does involve oxidation of <u>glucose</u>, its primary role is <u>anabolic</u> rather than <u>catabolic</u>.

There are two distinct phases in the pathway. The first is the <u>oxidative</u> phase, in which NADPH is generated, and the second is the non-oxidative <u>synthesis</u> of 5-carbon sugars. For most organisms, the pentose phosphate pathway takes place in the <u>cytosol</u>; in plants, most steps take place in <u>plastids</u>.

Similar to <u>glycolysis</u>, the pentose phosphate pathway appears to have a very ancient evolutionary origin. The reactions of this pathway are mostly enzyme-catalyzed in modern cells, however, they also occur non-enzymatically under conditions that replicate those of the <u>Archean</u> ocean, and are catalyzed by <u>metal ions</u>, particularly <u>ferrous</u> ions (Fe(II)).This suggests that the origins of the pathway could date back to the prebiotic world.

Pentose Phosphate pathway

Sr.No.	Questions	Answers
1	The pentose phosphate pathway is also called as.	Hexose monophosphate shunt
2	The primary role of pentose phosphate pathway is anabolic or catabolic?	Anabolic
3	The reaction of pentose phosphate pathway is catalyzed by mostly which metal ions	Ferrous metal ion
4	For most organisms, the pentose phosphate pathway takes place in	Cytosol
5	The pentose phosphate pathway has two distinct phase in which first one is.	Oxidative phase
6	The pentose phosphate pathway, first oxidative phase in which what is generated?	NADPH
7	The pentose phosphate pathway has two distinct phase in which second one is.	Non oxidative phase
8	The pentose phosphate pathway, non oxidative phase in which what is synthesized?	5-carbon sugars