

DBJ-CMT-3001
Seat No.

M. Sc. (Sem. III) (CBCS) Examination June - 2022
 Mathematics - 3001
 (Programming in $C \&$ Numerical Methods)

Time: $\mathbf{2} \frac{\mathbf{1}}{\mathbf{2}}$ Hours]
[Total Marks : 70

Instructions :

(1) There are ten questions.
(2) Answer any five of them.
(3) Each question carries 14 marks.

1 Answer following short questions :
$7 \times 2=14$
(i) Define terms: Program and Lower Level Language.
(ii) Write down at least four names of C-Tokens.
(iii) Write a program which can print 1 to 30 integers in three lines.
(iv) Write a program, which can read two integers and it can find smallest integer from given two integers.
(v) Give definition of flow-chart.
(vi) Determine the value of following, when $a=10, b=20$ and $c=-12$:
(1) $a^{*} b-6-15$
(2) $b>25 \& \& c<0| | a>0$.
(vii) Write down format for jump in a loop statement by break.

2 Answer following short questions : $7 \times 2=14$
(1) Write down at least four reserved identifiers.
(2) Write a program which can print 1 to 40 integers in four lines.
(3) Write down name of Relational Operators.
(4) Express following mathematical functions in C Language :
(i) $\cos x$, (ii) $\log _{e} x$, (iii) \sqrt{x} and (iv) e^{x}.
(5) Write a program, which can read two integers and it can find the largest integer from given two integers.
(6) Give definitions: Identifier and Variable.
(7) Draw flow chart, so that one can write a program which can print small letters ' a ' to ' z '.

3 Attempt following two :
$7 \times 2=14$
(a) Write a note about development of C - Language.
(b) Explain about Basic Structure of a C program.

4 Attempt following one :
$1 \times 14=14$
Discuss about Newton Raphson's Method and write down the program for the same Method.

5 Attempt following one :
$1 \times 14=14$
Explain about Gauss Seidel Method to solve a system of linear equations.

6 Attempt following one : $1 \times 14=14$

Explain about Lagrange interpolation polynomial and derive its formula. Using it write a program for Lagrange interpolation polynomial.

7 Attempt following one : $1 \times 14=14$
Explain about N-G forward polynomial and derive its formula.
Using it write a program for $\mathrm{N}-\mathrm{G}$ forward interpolation polynomial.

8 Attempt following two :
(a) Explain about Switch Statement with its format or syntax and appropriate example.
(b) Write a program, which can read two integers a and b and, it can find (a, b), the GCD of a and b as well as $[a, b]$, the LCM of a and b.

9 Attempt following two :
(1) Find a root of $f(x)=x^{3}-7$, using Bisection Method and take initial values $a=1.5, b=2$.
(2) Write a program which can read any date of $21^{\text {st }}$ century and it can find day of corresponding date, assuming $1^{\text {st }}$ Jan 2001 is Monday.

10 Attempt following two :
$2 \times 7=14$
(1) Discuss about False Position Method and write flowchart or program for the same method.
(2) Explain about Gauss Elimination Method.

Seat No \qquad

FM-CMT-3001

M. Sc. (Sem. - III) Examination

November - 2022
Mathematics - 3001
(Programming in C and Numerical Methods)

Time : 2.30 Hours / Total Marks : 70

Instructions : (1) There are five questions.
(2) All questions are compulsory.
(3) Each questions carries 14 marks.

1 Answer any seven short questions.
[$7 \times 2=14$]
(i) Define terms : program and lower level language.
(ii) Give definition of flow-chart.
(iii) Write a program which can print 1 to 40 integers in four lines.
(iv) Write down name of Relational Operators.
(v) Give definitions; Identifier and Variable.
(vi) Write down at least four names of C-Tokens.
(vii) Draw flow chart, so that one can write a program which can print letters ' A ' to ' Z '.
(viii) Write down ASCII code for ' A ', ' 1 ' and ' Z '.
(ix) Write down general form for Assignment Statement.
(x) Write down general format for one dimensional array. Also write down one example for this.

2 Attempt any two.
$[2 \times 7=14]$
(a) Write a note about development of C- Language.
(b) Explain about input and output operations by their format and suitable examples.
(c) Write a program which can read two square matrices A, B of order n and it can print the matrices $A-B$, A * B.

3 Attempt any one.
$[1 \times 14=14]$
(a) Discuss about Newton Raphson's Method, write down the program for the same method and find the order of convergence for the N-R Method.
(b) Explain about Gauss - Elimination Method and using it solve following system of four linearly independent equations of four variables.
(i) $\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4}=25$
(ii) $2 \mathrm{x}_{1}+3 \mathrm{x}_{2}+4 \mathrm{x}_{3}+5 \mathrm{x}_{4}=75$
(iii) $x_{1}+x_{2}+4 x_{3}+5 x_{4}=50$
(iv) $\mathrm{x}_{1}+4 \mathrm{x}_{2}+16 \mathrm{x}_{3}+64 \mathrm{x}_{4}=-35$.

4 Attempt following two.
(a) Write a program, which can read date, month and year of $21^{\text {st }}$ Century and give it day which associate with the given date. Assuming $1^{\text {st }}$ Jan 2001 is Monday.
(b) Find the root of $\mathrm{f}(\mathrm{x})=x^{3}-7$, using Bisection Method and take initial values $\mathrm{a}=1.5, \mathrm{~b}=2$.

5 Attempt any two.
(1) Write down a Note about C-Tokens.
(2) Write a program to read n integers and arrange them in ascending order.
(3) Discuss about While loop Statement.
(4) Explain about following Function Subprogram with suitable example : No Argument and No Return Value.

||

SAA-CMT-3001
Seat No. 003022

M. Sc. (Sem. III) (CBCS) Examination

November - 2021
CMT-3001 : Mathematics
(Programming in $C \&$ Numerical Methods)

Time: $\mathbf{2} \frac{\mathbf{1}}{\mathbf{2}}$ Hours]
[Total Marks : 70

Instructions : (1) There are Ten questions.
(2) Answer any five questions.
(3) Each question carries 14 marks.

1 Answer following short questions
$[7 \times 2=14]$
(i) Write down at least four reserved identifiers.
(ii) Write a program which can print 1 to 40 integers in four lines.
(iii) Write down name of Relational Operators.
(iv) Express following mathematical functions in C - Language.
(i) $\cos x$, (ii) $\log _{e} x$, (iii) \sqrt{x} and (iv) e^{x}.
(v) Write a program, which can read two integers and it can find the smallest integer from given two integers.
(vi) Give definitions: Identifier and Variable.
(vii) Draw flow chart, so that one can write a program which can print small letters 'a' to ' z '.

2 Answer following short questions [7×2=14]
(1) Define terms: Program and Lower Level Language.
(2) Write down at least four names of C-Tokens.
(3) Give definition of flow-chart.
(4) Write a program which can print 1 to 30 integers in three lines.
(5) Express following mathematical functions in C Language.
(i) $\sin x$, (ii) $|x|$, (iii) $\sqrt{x+1}$ and (iv) $e^{2 x+1}$.
(6) Draw flow chart, so that one can write a program which can print letters ' A ' to ' Z '.
(7) Write down format for jump in a loop statement by break.

Attempt following two
$[2 \times 7=14]$
(a) Write a note about importance of C-Language.
(b) Write a program, which can read date, month and year of 21 st Century and give it day corresponding to the given date. Assuming 1 st Jan 2001 is Monday.
4 Attempt following one
(a) Discuss about Newton Raphson's Method, write down the program for the same-method and find order of convergence for the N-R Method.

5 Attempt following one
$[1 \times 14=14]$
(1) Explain about Gauss - Elimination Method and using it solve following system of four linearly independent equations of four variables.
(1)

$$
x_{1}+x_{2}+x_{3}+x_{4}=25
$$

(2) $2 x_{1}+3 x_{2}+4 x_{3}+5 x_{4}=75$
(3) $x_{1}+x_{2}+4 x_{3}+5 x_{4}=50$
(4) $x_{1}+4 x_{2}+16 x_{3}+64 x_{4}=-35$.

6 Attempt following one

(a) Explain about Lagrange interpolation polynomial and derive its formula. Using it write a program for Lagrange interpolation polynomial.

7 Attempt following two
[2×7=14]
(a) Explain about input and output operations by their format and suitable examples.
(b) Write a program, which can read two integers a and b and it can find (a, b), the GCD of a and b as well as $[a, b]$, the LCM of a and b.

8 Attempt following two
(a) Discuss about simple if statement as well as if else statement.
(b) Find at least two roots of $\mathrm{f}(\mathrm{x})=x^{3}-4 x+1$, using any iterative method.
(1) Write a program, which can solve the linearly independent equations $a x+b y+c=0$ and $p x+q y+r=0$, using Cramer's Method.
(2) Write a program, which can read an integer n and it can check whether n is a prime or not.

10 Attempt following two $[2 \times 7=14]$
(a) A function Subprogram can recourses or invoke in itself, explain with suitable examples.
(b) Discuss about Secant Method and also compute the order of convergence for the same Method.

MV-CMT-3001
Seat No. 035035

M. Sc. (Sem. III) Examination

November / December - 2020
Mathematics : CMT-3001
(Programming in C \& Numerical Methods)
(New Course)

Time: 2 $\frac{1}{2}$ Hours]
[Total Marks: 70

Instructions : (1) Answer any five questions.
(2) Each question carries 14 marks.

1 Answer following seven questions : $7 \times 2=14$

- 2 (i) Define terms: Compiler and Iligher Level Language.

2 (ii) Write down at least four reserved identifiers.
(iii) Write a program which can print 1 to 80 integers in four lines.
(ii) Express following mathematical functions in C - Language :
(i) $\cos x$, (ii) $\log _{\mathrm{e}} x$, (iii) \sqrt{x} and (iv) e^{x}.
(v) Write a program, which can read two integers and it can. find smallest integer from given two integers.

- (vi) Give definitions: Identifier and Variable.

2 (vii) Draw flow chart, so that one can write a program which can print letters ' A ' to ' Z '.

2 Answer following both :

$$
\frac{10}{11}
$$

- (a) Write a note about development of C - Language.
(b) Write a program, which can read two integers a and b. Also it can find the value of $\operatorname{GCD}(a, b)$ and $\operatorname{LCM}[a, b]$ of given two integers.
- 3 Discuss about Newton Raphson's Method and write down the $\mathbf{1 4}$ program for the same method.

4 Explain about Gauss - Elimination Method and using it solve following system of four linearly independent equations of four variables :
(1) $x_{1}+x_{2}+x_{3}+x_{4}=5$
(2) $2 x_{1}+3 x_{2}+4 x_{3}+5 x_{4}=15$
(3) $x_{1}+x_{2}+4 x_{3}+5 x_{4}=10$
(4) $x_{1}+4 x_{2}+16 x_{3}+64 x_{4}=-7$
5. Attempt following both :
(a) Write down a program which can display all the primes which are less than 1000 .
(b) Find a root of equation $f(x)=x \cdot e^{x}-2$, using Bisection Method.

6 Attempt following both :
(1) Explain about Secant Method and also compute the order of convergence for this method.
(2) Explain about Basic Structure of a C program.
(7) Attempt following both :
$2 \times 7=14$
(1) Write a program which can display tables of 11 to 20.
(2) Write a program which can read two square matrices A, B of order n and it can print the matrices $A-B, A * B$.

8 Attempt following both :
(a) Find out at least two roots of $f(x)=x^{3}-4 x+1$, using any iterative method.
(b) Write a note about Argument with return value in user defined function with suitable example.

9 Discuss about False Position Method, write down the program for the same method and also compute order of convergence for this iterative method.

10 Attempt following seven :
(1) Write down at least four names of C-Tokens.
η (2) Give definition of flow-chart.
2 (3) Write down format for jump in a loop statement by break.
(4) Write down order of convergence of Bisection Method and Newton Raphson Method.
-(5) Write down name of Relational Operators.
q (6) Write down short keys to compiling and run a C-Program.
1 (7) Write down all Logical Operators with their appropriate notation in C language.

JAX-CMT-3001 Seat No.
M. Sc. (Mathematics) (Sem. III)
(CBCS) ExaminationDecember - 2019
CMT - 3001 : Programing in C \& Numerical Methods
Time : $\mathbf{2} \frac{\mathbf{1}}{\mathbf{2}}$ Hours][Total Marks : 70

Instructions :

(1) All questions are compulsory.
(2) Each question carries equal marks.

1 Answer following short questions (any seven) :
(i) Define terms: Machine language and Lower level language.
(ii) Write down all the sections of Basic Structure of C Program.
(iii) Write down at least four names of C-Tokens.
(iv) Write a program which can print A to Z (Capital letters) in one line.
(v) Write down name of Relational Operators.
(vi) Write down short keys to compiling and run a C-Program.
(vii) Draw flow chart, so that one can write a program which can print integers 1 to 25 .
(viii) Give names of three logical operators.
(ix) Write down all Logical Operators with their appropriate notation in C language.
(x) Remove unnecessary parentheses from following and rewrite them :
(1) $((x-(y / 5)+z) \% 8)+25$
(2) $(x * y)+(-a / b)+(c-d)$.

2 Attempt any two :
$2 \times 7=14$
(a) Write a program which can read two rectangular matrices of size 4×3 and it can find the sum of given two matrices.
(b) Write a note about Development of C Language.
(c) Explain about for loop with its format.

3 Attempt any one
$1 \times 14=14$
(a) Discuss about False Position Method and write down the program for the same method.
(b) Explain about Gauss-Seidel method and write down the program for the same method.
(c) Explain about Gauss Elimination Method and write down the program for the same method.

4 Attempt any two :
$2 \times 7=14$
(a) Write down a program which can display first 200 primes.
(b) Explain about N-G Backward interpolation polynomial.
(c) Find the value of f(3) for the following unknown function f , using following table and Lagrange interpolation polynomial :

\boldsymbol{x}	-1	1	4	5	3
$\boldsymbol{F}(\boldsymbol{x})$	8	-2	-2	2	$?$

5 Attempt any two :
(1) Write a program which can display tables of 1 to 5 and 6 to 10.
(2) Write a program which can read two square matrices A, B of order n and it can print the matrices $A+2 B$ and $A * B$.
(3) Find out at least two roots of $f(x)=x^{3}-4 x+1$, using N-R method.
(4) Explain about User Defined Functions. Also write about one user defined function with its format and a suitable program in which the user defined function has used.

PCC-CMT 3001 Seat No. III) (CBCS) Examination
 December - 2018
 Mathematics : CMT - 3001
 (Programming in $C \&$ Numerical Methods)
 (New Course)

Time : $2 \frac{1}{2}$ Hours]
[Total Marks : 70

Instructions :

(1) Answer all the five questions.
(2) Each question carries 14 marks.
\checkmark Answer any seven short questions:
(1) Define term : Compiler.
(2) Write down six sections of basic structure of a C program.
(3) Write down names of all C-Tokens.
(4) Write down a list of reserved identifiers. Which contains at least six names of the reserved identifiers.
(5) Give name of all three logical operators with their symbols in C.
(6) Write a program which can print 1 to 20 integers in column form.
(7) Give definition of flow chart.
(8) Remove unnecessary paranthesis from following expressions and rewrite them :
(i) $((a-(y / 15)+z+w) \% 2)-(x+25)$;
(ii) $(\mathrm{a} * \mathrm{~b})-(\mathrm{c} / \mathrm{d})$;

$$
2 \times 7=14
$$

2 Attempt any two :
(a) Explain about input and output operations by their format and suitable examples: getchar, scanf, putchar and printf.
(b) Discuss about recursion of a function in itself by appropriate programs.
(c) Explain about for loop and nesting loops by appropriate programs.
[Contd....
$\checkmark 3$ Attempt any one :
(a) Discuss about Bisection method and write down the program for the Bisection method.
(b) Explain about Gauss Elimination method and write the program for this method.
(c) Explain Lagrange interpolation polynomial and derive its formula. Using it, find the value of $f(3)$, for the following unknown function f :

x	-1	1	4	5	3
$f(x)$	8	-2	-2	2	$f(3)=?$

$$
2 \times 7=14
$$

Attempt any two :
(a) Write a program which can display first 150 or more primed.
(b) Write the program for the Gauss-Seidel method.
(c) Write a program which can read n integers and it can arrange them in arcending order.
$2 \times 7=14$
$\sqrt{5}$ Attempt any two :
(a) Explain about switch statement with its format/syntax and appropriate example.
(b) Write a program which can read two square matrices A, B of same order and it can find sum and product of these matrices.
(c) Write a program which can display tables of 11 to 15 and 16 to 20.
(d) Find out at least two approximate roots of $f(x)=x^{3}-4 x+1$, using N-R method. Take initial root x_{o} from $\{0.25,2$ or -2$\}$

HDU-CMT-3001 Seat No. 035064
M. Sc. (Maths) (Sem. III) (CBCS) Examination

November./ December - 2017
Mathematics : CMT-3001
(Program. in C \& Numerical Methods) (New Course)
Time : $21 / 2$ Hours]
[Total Marks : 70
\rightarrow
Instructions : (i) Answer all the questions.
(ii) Each question carries 14 marks.

1 Attempt any seven :
mobile. (1) Give definition of flow-chart and draw flow-chart of a program which can display A to Z letters.
(2) Write down ASCII code for ${ }^{102} f^{\prime}$ and ' B^{66} letters:

(3) Write a program which can display ' a ' to ' j ' letters in column form.
374 (4). Give definitions of compiler and lower level language.
II (5) Write down four names of reserved identifiers (keywords).
19 (6) Write down four name of relational operators.
$22(7)$ Write down four mathematical functions for a C program.
I2 (8) Give definitions of integer constant and real constant:
13
2 Attempt any two :
4(1) Write a note about importance of C language.
95 -(2) Discuss about bisection method.
86 (3) Discuss about recursion of a function in itself by an appropriate program.
8 (4) Write a note about basic structure of a C program.
(5) Explain about switch statement and using it write a program which can read date of Jan 2018 and it can find associate day of the date (assuming $1^{\text {st }}$ Jan 2018 is Monday).

3 Attempt any one :
133 fa) Explain about Lagrange interpolation polynomial, write down program for Lagrange interpolation polynomial and using it solve followings :

x^{\prime}	-1	1	4	5	3
$f(x)$	8	-2	-2	2	$?$

(b) Explain Newton-Raphson's method, find order of convergence for $\mathrm{N}-\mathrm{R}$ method and find an approximate root
(c) Explain Gauss-elimination method and write a program for Gauss elimination method to solve a system $A X=B$ of order n.

4 Attempt any two :

$46,84,85.5$ (a) Write a program which can read two integers a and b and
$4895 \$ 185(\mathrm{~b})$ Write a program which can print first 50 . primes $2,3,5,7, \ldots \ldots ., 229.58$

67 (c) Write a program which can read two square matrices A, B of order n and it can find value of $A B$ matrix.

5 Attempt any two :

103 (a) Discuss about false position method.
mobile (b) Write a program which can display tables of 1 to 10.
118 (c) Write a program for secant method.
(3)/(d) Solve the following system of three linearly independent equations, using Gauss-Seidel method :

$$
\begin{aligned}
& 16 x_{1}+10 x_{2}+2 x_{3}=42 \\
& 5 x_{1}+10 x_{2}+5 x_{3}=40 \\
& x_{1}+4 x_{2}+9 x_{3}=36
\end{aligned}
$$

M. 'Sc. (Sem. III) (Maths.) (CBCS') Examination December - 2016
Mathematics : CMT - 3001
(Progra. in C \& Numb. Methods) (Old Course)
Faculty Code : 003
Subject Code : 016301

Time : $2 \frac{1}{2}$ Hours]
[Total Marks : 70

Instructions : (1) Answer all the five questions.
(2) Each question carries 14 marks.

1 Answer any seven :
$7 \times 2=14$
(1) Give definition of flow. chart. -
(2) Write a program which can print 1 to 10 integers in
\& 8 column form.-
(3) Write down two names of higher level languages and * name of associates (developers) with these languages.-
(4) Write down ASCII code for the characters: ' D ', ' d ' and
(5) Write a program which can print first letters Z to A.
(6) Give definition of identifier and write down two reserved \& identifiers (key words) - \$
(7) Give name of following special characters : \wedge and ".
(8) Determine value of followings '(when $a=6, b=8$ and $\mathrm{c}=-9$).
(i) $a>b \& \& a<c$
(ii) $a * b+b \% a+c$
(9) Write a program which can read a string variable and
(10) Write a program which can read four integers a, b, c, d and it can print the values of $a+b+c+d$ and $a b+c d$.
MBR-003-016301]

Answer any two :

(a) Write down a note about imp
(b) Write
(b) Write a note about basic structure of a C program. Explain about if....else statement and using it write a program which can find a largest number from given three numbers.

3 Answer any one :
(a) Explain
$1 \times 14=14$,
the formula

$$
P(x)=f_{1}+\frac{\Delta f_{1}}{h}\left(x-x_{1}\right)+\frac{\Delta^{2} f_{1}}{2 \cdot h^{2}}\left(x-x_{1}\right)\left(x-x_{2}\right)
$$

$f\left(\frac{8}{1}\left(n_{0}\right)\left(x^{-n-1}+\ldots+\frac{\Delta^{n-1} f_{1}}{(n-1)!h^{n-1}}\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n-1}\right)\right.\right.$
Using this find the formula for an unknown function f given by

x	0	1	2	3	4	5
$f(x)$	-2	-3	-2	1	6	13

(b) Write the program for Gauss - Elimination method.
(c) Discuss about N-R method and using its formula find the approximate value of $\sqrt[3]{7}$ by taking initial $x_{0}=2$.

4 Answer any two :

$$
2 \times 7=14
$$

(a) Write a program which can find ged of four integers and it can use to find ged of two integers x and y as a sub-program.

 syntax. Also write a program whet with its format ad loop to print 1 to 100 integers inch includes loop in a
(b) Write a program which can read two matrices A and B of the size $\mathrm{m} \times \mathrm{n}$ and $\mathrm{n} \times \mathrm{p}$. Also it can find the product $A B$ of these two matrices
Write a program which can display tables of 11 lol 20.
Discuss about Gauss-Seidel method to solve a system of
linear equations :

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}=b_{2}
\end{aligned}
$$

BBG-003-016301 Seat No. \qquad
M. Sc. (Maths) (Sem. III) (CBCS) Examination December - 2015

Programming in C \& Numerical Methods

Faculty Code : 003
 Subject Code : 016301

Time : 2.30 Hours]
[Total Marks : 70

Instructions : (i) Attempt all five questions.
(ii) ' All questions carry equal (14) marks.

1 Answer seven MCQ questions: ;
(1) C language was developed by Dennis Richie in the year \qquad ?
(a) 1970
(b) 1962
(c) 1960
(d) 1972
(2)) Order of convergence for false position method is the positive root of \qquad .
(a) $x^{2}+x-2 \quad 4+2 z$

(d) $x^{3}-7$
(3) In control string
\qquad format specifies for integers.
(a) $\% f$
(b) $\% \mathrm{~d}$
(c) $\% s$
(d) None of these
[Contd...
(4) In C-language program sign of colon is \qquad

$$
\begin{aligned}
& \text { (a) } \\
& \hline \text { (b) } \\
& \hline \text { (c) } \\
& \text { (c) } \\
& \text { (d) }
\end{aligned}
$$

(5) $C=(a f(b)-b, f(a)) \prime(f(b)-f(a))$ can be consider as a formula for \qquad iterative method.
(a) false position method
(b) secant method
(c) (a) and (b) both
(d) bisection method
(6) Iterative formula for New-Raphson's method is \qquad -
(a) $x_{i}=\frac{x_{i-1}+x_{i-2}}{2}$
(b) $x_{i}=x_{i-1}-\frac{f\left(x_{i-1}\right)}{f^{\prime}\left(x_{i-1}\right)}$
(c) $\quad x_{i}=\frac{x_{i-1} f\left(x_{i-2}\right)-x_{i-2} f\left(x_{i-1}\right)}{f\left(x_{i-2}\right)-f\left(x_{i-1}\right)}$
(d) None of these

An integer constant has value \qquad when it is
assigned by ' $\mathrm{d}^{\prime}+1 / \mathrm{I}$)
(b) 121
(c) 69
(d) 101

2 Answer any two:

(a) Write a note about importance of C -language. Discuss about recursion of a function in appropriate program.

$$
2 \times 7=14 \text { ? }
$$

Also it can print which can read two integers m and n. integers. "print all the divisors of these given Write a program which can display tables of 1 to 10
integer.

3

1248

 *Explain Lagrange interpolation polynomial and derive the formula $p(x)=\sum_{k=1}^{n}\left[f_{k} \prod_{\substack{i=1 \\ i \neq k}}^{n}\left(\frac{x-x_{i}}{x_{k}-x_{i}}\right)\right]$. Using this find the unknown value for the following function :

2_{1}							2
x	-1	1	4	5	3		
$f(x)$	8	-2	-2	2	$f(3)=?$		

(b) Discuss about bisection method. Also write the program for this method.
(c) Write the program for Gauss Elimination method.

4 Answer any two :
(a) Solve the following system of equations:
$x_{1}+x_{2}+x_{3}+x_{4}=5 ; x_{3}+x_{2}+4 x_{3}+5 x_{4}=10 ;$
$2 x_{1}+3 x_{2}+4 x_{3}+5 x_{4}=15 ; x_{1}+4 x_{2}+16 x_{3}+64 x_{4}=-7$.
using the Gauss Elimination method. Also show the triangular form for above system.
(b) Write program about false position method.

Write a program which can print all the primes more than 540 and less than 1225.
Explain about for loop statement with its format, syntax and an example.

Answer any seven:
$7 \times 2=14$
(i) Give definition of single character constant and string constant.
(iii) Give definition of identifier and variable.

- (iii) Identify unneccessary paranthesis in following statements and rewrite them.
(a) $((x-(y / 5)+z) \% 8)+25$
(b) $x /(9 * y)$
(iv) Give name of special characters ^, \#. -

Give name of scientist who develop or associate with BCPL language.

- (vi). Write a program which can print a to z small letters.
\&(vii) Write characters whose ASCII codes are 68 and 122. (viii) Write a program which can print 200 to 101 integers in decreasing form. -
(ix) Give definition of flow-chart. -
$-(x)$ Write a pro
- (x) Write a program which can read four integers x, y, z and w. Also it will print the values of $x+y+z+w$ and $x y+z w$.
. 7
- Thatch

003-016301
MiSc. Maths (CBCS) (Scm.-lII) Examination
Noveṇber-2014
Programming in C and Numerical Methods
Faculty Code : 003
Subject Code: 016301

Time: 21⁄2 Hours]

[Total Marks : 70
Instructions: (1) Answer all five questions.
(2) Each question carries 14 marks.

1. Answer MCQ type questions:
(1) In a C program sign of semicolon is \qquad ?
(a) :
(b) \&
(or) 2 ;
(d) $\%$
(2) There are \qquad reserved identifiers in C -language.
(a) -29
(b) 27
(c) 127
(d); 128
(3) Name of program or programmer is written in \qquad section of a program,
(a) link
(b) global declaration
(c) documentation
(d) none of these
(4) How many types of user defined functions are there?
(a). 4
(b) 3
(c) 2
(d) 1
(5) Formula for Newton Raphson's method is \qquad ?
(a) $x_{i}=x_{i-1}-\frac{f\left(x_{i}-1\right)}{f\left(x_{i}-1\right)}$
(b) $x_{i}=x_{i-1}-\frac{f^{\prime}\left(x_{i-1}\right)}{f^{\prime \prime}\left(x_{i}-1\right)}$
(c) $x_{i}=x_{i-1}+\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)}$
(d) None of these
(6) Arrange following basic structure for a C-programme in proper order.
(1) definition section
(2) main function
(3) link section
(4) global declaration sec.
(a) $4 \rightarrow 1 \rightarrow 2 \rightarrow 3$
(b) $1 \rightarrow 4 \rightarrow 2 \rightarrow 3$
(c) $3 \rightarrow 4 \rightarrow 1 \rightarrow 2$
(d) None of these
\qquad method.
(7) Process to get triangular form is associate with
\because (a) Gaus-Seidel
(b) Gauss-Elimination
-(c) Newton-Raphson
(d) None of these
p.t.o.

$A \rightarrow 65 \quad$ a $\rightarrow 97$
 $z \rightarrow 90$ 建 $2 \rightarrow 122$

$\frac{25}{0}$
\&60
2. Answer any two:

Write a note about development of C language.
$7 \times 2=14$
(b) Write a program which can find GCD and LCM of given two integers.

Ley Write a program which can print 200 to 101 integers in desending order.
(d) Explain about if else statement with a suitable example.
3. Answer any one.
(a) -Discuss about bisection method and write the program for this method.
$1 \times 14=14$
(b) Discuss about Newton-Raphson's method and using it find a root of equation
$\mathrm{f}(x)=x^{3}-7=0$ by taking $x_{0}=2$. $\mathrm{f}(\mathrm{x})=x^{3}-7=0$ by taking $x_{0}=2$.
(c) Write a program which can print first 100 p rimes. 14
4. Answer any two:
(1) 7 Write a program about false-position method to solve the equation $(x)=0 . \quad 2 \times 7=14$
(b) Write a note about secant method to solve the equation $f(x)=0$.
(d) Explain about while loop statement with its format and syntax.
(d) Write a program which can read an integer and it can print
(d) Write a program which can read an integer and it can prink all the divisors of the
given integer.
(e) Discuss about one-dimensional array and initialization for one-dimen 7 array.
5. Answer any seven : (1) Muchine lungurie coverian in?
(i) Give definition of high level language, (2) docurratation ampler, $7 \times 2=14$

(iii) State arithmetic operators with their sign and meaning. $\frac{(0)}{(c)}$
(iv) Determine value of followings (when $a=5, b=10 \& c=-6$)
(a) $\mathrm{a}>\mathrm{b} \& \& \mathrm{a}<\mathrm{c} \rightarrow 0$ \{dcclarmint
(b) $a==c \| b>a$
-1
(vi) Write a program which can read three integers and it can print sum and product
of given integers.

接(vi) Write a program which can print 1 to 100 integers. -
(vii) Write a program which can read p, r and n. Also it can find simple interest for this data.
(viii) Give all the names of C tokens.

(ix) Write ASCII code for the characters ' A ', ' z ' and ' d '. \sim : . Sortyrn'p ' 1
(x) Write order of convergence for $\mathrm{N}-\mathrm{R}$ method and false position method.

128\%..

003-016301
 MiSc. (Sem.-III) (Maths) (CBCS) Examination
 November-2013
 Programming in C \& Numerical Methods

Faculty Code : 003
Subject Code : 016301
Time: $21 / 2$ hours
|Total Marks : 70
Instructions: (1) Answer all the questions.
(2) Each question carries 14 marks.

1. Answer any seven MCQ.
(1) In 1972 C language developed by \qquad at AT \& T's Bell Laboratories.
(a) Martin Richards
(b) Ken Thomson
(c) Dennis Richie:
(d) None of these
(2) To give increment to the variable x. which of following use in C language?
(a) $\frac{x}{2}+\mathbf{2}+$ or $++x$
(b) $x=x+1$:
(c) $x+=1$;
(d) All above three
(3) There are \qquad reserved identifiers in Γ language.
(a) 27
(b) 127
(c) 128
(4) Before 1960 which language was used for' commercial applications?
(a) ForTran
(c) C-language
we) COBOL
(d) None of these

1

(6) Which of the following used to specify the format for integer type
vari/sonst.?
(a)
(b) \%c
(c) $\%$
(d) $\% \mathrm{f}$
(7) Order of convergence for any iterative method is \qquad .
(a). always zero
(b) positivo of negative
(c) Atrays positive
(d) nonetor these
(8) Formula for Newton-Raphson's methodeis \qquad .
(a) $x_{1}=x_{i-1}-\frac{f\left(x_{i-1}\right)}{\mathrm{f}^{\prime}\left(x_{\mathrm{i}}\right)}$
(b) $f_{i}=x_{i-1}-f\left(x_{i-1}\right) /\left\{\left(x_{i-1}\right)\right.$
(c) $x_{i}=x_{i-1}-f^{\prime}\left(x^{\prime} f^{\prime}\right) / f^{\prime \prime}\left(x_{i-1}\right)$
(d) $x_{i}=x_{i=2}$ 记 $-f\left(x_{i}\right) / f\left(x_{i}\right)$

Whichigef following is a shori key, which use to compilation for a $C_{4}{ }^{2} \mathrm{f}_{\mathrm{g}} \mathrm{gramme}$?
(a) Altr + F5
(b) $\mathrm{Ctrl}+\mathrm{F} 9$
\Rightarrow -
(c) Altr + F9
(d) None of these

คrs.
(10) What is output of following?
printf ("l" Wel come !");
(a) WEL COME
(c) "Wel Come!"
(b) "Wel come"
(d) 'Wel Come!
2. Answer any two:
(a) Write a note about development of C language. 1
(b) Explain about arithmetic operators.
and precedence of
(c) Write a program which can find ged and lcm of giventwomegers. 7
(d) Write a program which can print tables of 11 to 20.1
3. Write a note about user-defined functions.

OR

Discuss bisection method and also write the phatram, for bisection method.
4. Answer any two:
(a) Discuss about Gauss -Elimination Method y
(b) Discuss about Gausteidel Method.
(a) Explain falsaposition method.
(d) Write a program which can give a liskof ton or mere primes.
er any one of following:
5. Answer any one of following:
(a) Explain Lagrange interpolation polynomial and derive its formula

$$
p(x)=\sum_{k=1}^{n}\left[f_{k}{\underset{i}{i=1}}_{n}^{i \neq k} \left\lvert\,\left(\frac{x-x_{i}}{x_{k}-x_{i}}\right)\right.\right]
$$

A! so write the program for this method.
(b) Write a note about $N \cdot R$ method and alsp write the program for $N \cdot \mathrm{R}$ method.
OP Pncetor(6) (i). Write a program which can read an integer and it cancrieck whether given inter is a prime number or nat 2
(ii) Write a program which can two matrices of same size and it can find the sum of these two matrices.

\qquad

003-016301

m. Sc. Maths (CBCS) (Son

Programming in C and Numerical Methods
Faculty Code : 003
Subject Code : 016301
[Total Marks : 70
Time: $21 / 2$ Hours
Instructions: (1) Answer all live questions.
(2) Each question carries 14 marks.

1. Answer any seven MCQ.

Answer any seven
(1) Hinclude <stdio.h> has used in a C program at \qquad .
(a) declaration section
(b) Tocumatation section
(c) top of the program
(d) none ci f these
(2) Order of convergence for false position method is \qquad .
(a) positive root of $x^{2}+x-2$
(b) positive root of $x^{2}-x-2$
160) positive root of $x^{2}-x-1$
(d) none of these
(3) \qquad is a finite sequence of characters that is treated as a single data item:
(a) An array
(db) string
(c) An identifier
(d) A data type
(4) C-languagewas developed by Dennis Ritchie in the year \qquad .
(a) 1972
(b) 1952
(c) 1960
(d) 1970
(5) There are \qquad reserved identifiers in C -language.
(a) 27

(c) 127
(d) 128
(6) $C=\frac{a f(b)-b f(a)}{f(b)-f(a)}$ can be consider as a formula for \qquad iterative method.
(a) secant method
(b) false position method
(b) (a) and (b) both
(d) bisection methoi ${ }^{\text {a }}$
p.t.O.
(7) An control string format \qquad specifies for long integer.
(a) $\% \mathrm{wc}$
(b) $\% \mathrm{~d}$
(c) $\% \mathrm{~s}$
(d) $\% \mathrm{ld}$
(8) General equation for variable in Gauss Elimination method is \qquad .

$$
\text { (c) } x_{i}=\left[b_{i}-\sum_{i=j+1}^{n} a_{i j} x_{j}\right] / a_{i i}
$$

(b) $x_{i}=\left[b_{i}-a_{n-1 n} x_{n}\right]^{/ a_{n-1 n-1}}$
(c) $x_{n}=\left[b_{n}-a_{n-1 n} x_{n}\right] / a_{n n}$
(d) none of these
(9) General form of the variable formal $\%$ wd, where w denotes \qquad .
(c) weight of the variable
(b) order of the variable
(c) data type for the variable
(d) none of these
(10) A program written in a nigher -level language can be transfer into machine language by \qquad ..
(a) compiler
(b) link
(c) declaration
(d) none of these

2. Answer any two:

0 H. (a) Write a note about development off language
(b) Explain about following statements with a
suitable example and their format if \qquad else statement and for loop.
(c) Write a program which can read two integers and it can print all the divisors of given integers.
3. Write note about user defined functions with examples.

Discuss about Gauss Elimination method and also write a program for this method.
4. Answer any two:

O (a) Explain bisection method.
(b) Write a program to solve $f(x)=x^{3}-7$ by secant method.
(G) Write a program which can read three integers and it can find the smallest
\qquad
(a) Explain Langrange interpolation polynomial and derive iss formula
$P(x)=\sum_{k=1}^{n}\left[\sum_{\substack{ \\f_{k} \neq k \\ i \neq k}}^{n}\left(\frac{x-x_{i}}{x_{k}-x_{i}}\right)\right]$ and
(b) Write a program which can give a list of alt primes less than 5000 .
(c) Write a program which can read coordinates of three points of a triangle in \mathbb{R}^{2}
(d) Write a program which can solve a system of linearly independent equations:

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
& a_{n!} x_{1}+a_{n 2} x_{2}+\ldots .+a_{n n} x_{n}=b_{n}
\end{aligned}
$$

M- 003-016301
M. Sc. (Sem. ILI) (Maths) Examination

Programming in C

December - 2011
 in C and Numerical Methods

Faculty Code : 003

Subject Code : 016301

Time : $2 \frac{1}{2}$ Hours]

[Total Marks : 70
Instructions: (1) Answer all the questions.
(2) Each question carries 14 marks.

1 Answer any seven objective typé questions:
(1) Variable are declared in ?
(2) Global declaration section
(b) Definition section
(c) Declaration part of main () section
(d) (a) and (c) both
(2) A language which can be understood by computer is
\qquad ?
(a) compiler
(b) higher level language
(c) C language
(af) none of these
(3) How many types of user defined functions are there ?
(a) 1
(b) 2
(c) 3
(d) 4

Wontd...
UAI-583-003-016301]
(4) $A / A n$ \qquad is a sequence of characters that is treated as a singlo data item.
(a) array
(b) string
(c) data type
(d) none of these
(G) Which of the following is used to specify the format of character data typo?
(b) $\% w_{1} w_{2} f$
(c) \%d
(d) none of thege
(G) In a general form of the variable format \%ld, where $]$ denotes \qquad ?
(a) Order of the variable
(b). Weight of the variable length
(c) Thata type of the variable
(d) None of these
(I) The order of convergence for the false position method is same as \qquad ?
(a) bisection method
(b) newton raphsor method
(c) secant method
(d) none of these
(8) The formula $x_{n} \approx \frac{\left.x_{n-2} f\left(x_{n-1}\right)-x_{n-1}\right)\left(x_{n-2}\right)}{f\left(x_{n-1}\right)-f\left(x_{n-2}\right)}$ is used in
\qquad iterative method.
(a) secant method
(b) bisection method
(c) (a) and (b) both
(d) none of these
(9) Which of following use in C. language to give an increment for a variable x ?
(a) $x+t$; or $++x$;
(b) $x=x+1$;
(c) $\mathrm{x}+=1$;
(d) all these three
(1.0) The general equation of gauss elimination method is
(a) $x_{i}=\left[b_{i}-\sum_{j=i+1}^{n} a_{i j} x_{j}\right] / a_{i i} \quad$ (32): $214 y^{2}$
(b) $x_{i}=\left[b_{i}+\sum_{j=i+1}^{n} a_{i j} x_{j}\right] i a_{i i}+2$,
(c) $x_{n}=\left[b_{n}-\sum_{j=1}^{n-1} a_{n j} x_{j}\right] / a_{n n}$
(d) none of these

O- ${ }^{2}$ Answer any two:

Explain about arithmetic operators.
(b) Discuss about recursion of a function in it self.

Write a program which can find god and lcm of given two integers.
P. Describe about importance -of C language and development 14 OR
Write a note about user-define functions.

4 Answer any two: \cdot.

Write a program to solve $f(x)=0$ by bisection method. 7
A4) Explain false position method
(c) Solve following system by gauss elimination method: 7

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}+x_{4}=5 \\
& x_{1}+x_{2}+4 x_{3}+5 x_{4}=10 \\
& 2 x_{1}+3 x_{2}+4 x_{3}+5 x_{4}=15 \\
& x_{1}+4 x_{2}+16 x_{3}+64 x_{4}=-7
\end{aligned}
$$

5 Answer any two:
(a) Explain langrange interpolation polynomial and
2. derive its formula

$$
P(x)=\sum_{k=1}^{n}\left[f_{k} \cdots \underset{\substack{i=1 \\ i \neq k}}{n}\left(\frac{x-x_{i}}{x_{k}-x_{i}}\right)\right]
$$

(b) Write formula for the secant method and using compute order of convergence of this method.
(c) Write a program for the polynomial of an unknown

- function by newton gregory backward interpolation polynomial.
(d) Write a program which can give a list of first 100 or 7 more primes.

DBK-003-1163002
Seat No.

M. Sc. (Sem. III) (CBCS) Examination
 June - 2022
 Mathematics : CMT - 3002
 (Functional Analysis)

Faculty Code : 003
Subject Code : 1163002

Time: $\mathbf{2} \mathbf{2}$ Hours]
[Total Marks : 70

Instructions :

(1) Attempt any five questions from the following.
(2) There are total ten questions.
(3) Each question carries equal marks.

1 Answer the following : $7 \times 2=14$
(1) Let $T: X \rightarrow X$ be a linear transformation. Justify whether $R(T)$ is a vector space or not?
(2) Define with example: Continuous Linear transformation.
(3) Define with example: Banach Space.
(4) Justify whether a real valued function $f:[0,1] \rightarrow \mathbb{R}$ given by
$f(x)= \begin{cases}0, & \text { when } x \in[0,1] \cap \mathbb{Q} \\ x, & \text { when } x \in[0,1] \cap \mathbb{Q}^{c}\end{cases}$
is essentially bounded or not?
(5) State Parseval's identity.
(6) Define with example: Weak* -Convergence.
(7) Define with example: Algebraic Dual Space.
(1) Justify whether dual space of l^{∞} is l^{1} or not?
(2) Define with example : Sub-linear functional.
(3) Define with example: Direct Sum.
(4) Define with example: Hilbert space.
(5) Define with example: Orthogonal elements.
(6) Justify whether two Orthonormal elements of an Inner Product Space X are linearly independent or not?
(7) Define nowhere dense set. Give an example of uncountable set which is nowhere dense set.

3 Answer the following :
(1) State and prove, Minkowski's Inequality.
(2) Let X and Y be two normed spaces.

Let $T: X \rightarrow Y$ be a linear transformation. Prove that, the following are equivalent :
a) T is continuous on X.
b) The null space $N(T)$ is closed in X and the linear transformation $\tilde{T}:\left.X\right|_{N(T)} \rightarrow Y$ defined by

$$
\tilde{T}(x+N(T))=T(x), \forall x+\left.N(T) \in X\right|_{N(T)} \text { is continuous. }
$$

4 Answer the following :
(1) Prove that, every finite dimensional subspace of a normed space X is complete.
(2) Let $p \in[1, \infty)$. Prove that, ${ }_{l} p$ is a complete metric space.

5 Answer the following :
(1) Prove that, on a finite dimensional vector space X, any norm $\|\cdot\|_{a}$ is equivalent to any other norm $\|\cdot\|_{b}$
(2) Let X and Y be Normed linear space and let $B(X, Y)$ be the space of all bounded linear transformations from X into Y. If Y is a Banach space, prove that, $B(X, Y)$ is also a Banach space

6 Answer the following :
$2 \times 7=14$
(1) State and prove, Uniform Boundedness theorem.
(2) State Baire's Category theorem. Prove that, a Banach space does not have a countably infinite Hamel Basis.

7 Answer the following :
$2 \times 7=14$
(1) State and prove, closed graph theorem.
(2) State Hahn-Banach Theorem. Prove that, if X is any normed linear space over K then

$$
\|x\|=\sup _{0 \neq f \in X}, \frac{|f(x)|}{\|f\|}, \forall x \in X .
$$

8 Answer the following :
$2 \times 7=14$
(1) State and Prove, Projection Theorem.
(2) Let X be an Inner Product Space. Let $x_{n} \rightarrow x$ in X and

$$
y_{n} \rightarrow y \text { in } X \text {. Prove that, }\left\langle x_{n}, y_{n}\right\rangle \rightarrow\langle x, y\rangle
$$

9 Answer the following :
$2 \times 7=14$
(1) State and prove, Riesz-Representation Theorem.
(2) Prove that, every Hilbert space H is reflexive.

10 Answer the following : $2 \times 7=14$
(1) State and prove, Parallelogram law as well as Pythagorean Relation.
(2) State and prove, Polarization identity.

Seat No. \qquad
FN-003-1163002
M. Sc. (Sem. III) Examination

November - 2022
Mathematics : CMT-3002
(Functional Analysis)
Faculty Code : 003
Subject Code : 1163002

Time : 2 $\frac{1}{2}$ Hours / Total Marks : 70

Instructions : (1) There are total five questions.
(2) All questions are mandatory.
(3) Each question carries equal marks.

1 Answer any seven of the following : $\mathbf{7 \times 2 = 1 4}$
(1) Define with example: Norm linear Space.
(2) Define with example: Schauder Basis.
(3) State Minkowski's Inequality
(4) Define with example: Dual Space.
(5) Define with example: Separable norm linear space.
(6) True or false? Justify $\left(l^{\infty},\|\cdot\|_{\infty}\right)$ has a Schauder basis.
(7) Define :
(i) Cauchy sequence in normed space.
(ii) Compactness of a subset of a metric space.
(8) Define with example: Inner product space.
(9) Define with example: Orthonormal Set.
(10) Define with example : Weak* - Convergence.

2 Answer any two of the following :
(1) State and prove Holder's inequality.
(2) Let X be a norm linear space over K and $\left\{x_{1}, \ldots . ., x_{n}\right\}$ is linearly independent in X then prove that $\exists c>0$ such that

$$
\left\|\alpha_{1} x_{1}+\ldots \ldots+\alpha_{n} x_{n}\right\| \geq c\left(\left|\alpha_{1}\right|+\ldots . .+\left|\alpha_{n}\right|\right), \forall \alpha_{1}, \ldots ., \alpha_{n} \in K
$$

(3) Show that every finite dimensional vector subspace Y of normed linear space X over \mathbb{K} is a Banach space.

3 Answer the following : $2 \times 7=14$
(1) State and prove Riesz lemma.
(2) State and prove closed graph theorem.
OR

3 Answer the following : $2 \times 7=14$
(1) State and prove Uniform Boundedness Principle.
(2) If Y is a closed and bounded subset of a finite dimensional normed linear space X over \mathbb{K} then prove that Y is compact.

4 Answer the following:
(1) State and prove Bessel's inequality for an orthonormal sequence.
(2) State and prove Pythagorean inequality.

5 Answer any two of the following :
(1) Define reflexive space and prove every Hilbert space is reflexive.
(2) State and prove Riesz representation theorem for bounded linear functional on Hilbert spaces.
(3) Show that $l^{\infty}=\left\{\left(x_{1}, \ldots, x_{n}, \ldots\right) ; x_{n} \in K\right.$,
$\forall n=1,2, \ldots \ldots \&\left|x_{n}\right|<M, \forall n$ for some $\left.M>0\right\}$ with $\|\cdot\|_{\infty}: l^{\infty} \rightarrow \mathbb{R}$ defined by $\left\|\left(x_{1}, \ldots, x_{n}, \ldots .\right)\right\|_{\infty}=\operatorname{Sup}_{n}\left|x_{n}\right|$, $\forall\left(x_{1}, \ldots, x_{n}, \ldots\right) \in l^{\infty}$ is norm on l^{∞} and $\left(l^{\infty},\|\cdot\|_{\infty}\right)$ is a Banach space over K.
(4) Let $X_{1}, \ldots \ldots, X_{n}$ be a norm linear space over K. Then show that $\left(X_{1} \times \ldots . . \times X_{n},\|\cdot\|\right)$ is a Banach space over K iff X_{i} is a Banach space over $K, \forall i=1, \ldots, n$.

Where $\left\|\left(x_{1}, \ldots ., x_{n}\right)\right\|=\max _{1 \leq i \leq n}\left\|x_{i}\right\|$,
$\forall\left(x_{1}, \ldots, x_{n}\right) \in X_{1} \times \ldots . . \times X_{n}$

MW-003-1163002
 Seat No. $23 T 03{ }^{2}$

M. Sc. (Sem. III) Examination

December - 2020
CMT-3002 : Mathematics
(Functional Analysis)

Faculty Code : 003
Subject Code : 1163002
Time : $2 \frac{1}{2}$ Hours]
Instructions : (1) Attempt any five questions from the following.
(2) There are total ten questions.
(3) Each question carries equal marks.

1 Answer the following:
(1) Define Taxicab Space.
(2) Justify: Whether every metric in a metric space is complete.
(3) Define with example Cauchy sequence in a metric space.
(4) Give an example of a space that is not a Banach space over K.
(5) Define with example complete metric space.
(6) Define with example Annihilator.
(7) Define with example Algebraic Dual Space.

2 Answer the following:
(1) Define with example accumulation point in a metric space.
(2) Define with example bounded linear operator.
(3) Define Weak convergence and Strong convergence in norm linear space.
(4) Justify: $\left(l^{\infty},\|\cdot\|_{\infty}\right)$ has a schaunder basis or not?
(5) Define Quotient space and Dense space in metric space.
(6) State Parseval's Inequality.
(7) Justify: Whether every finite dimensional vector subspace of a norm linear space over K is closed?
(3) Answer the following:
(a) State and prove Holder's Inequality.
(b) State and prove Riesz Lemma.

4 Answer the following:
(a) Define Banach space over K and prove that ($\mathrm{C}[0,1], \mid$ | . $\left|\left.\right|_{1}\right)$ is not a Banach space over K.
(b) State without proof Baire's Theorem. Prove that a Banach space cannot have a countably infinite hamel basis.
5. Answer the following:
(a) State and Prove Schwartz Inequality in inner product space.
(b) Prove that a finite dimensional vector space is algebraically reflexive.

6 Answer the following:
(a) Prove that dual of \mathbb{R}^{n} is \mathbb{R}^{n}.
(b) For a norm linear space X over K, prove that the dual space X^{l} is separable $\Rightarrow \mathrm{X}$ is separable.

7 Answer the following:
(a) State and prove parallelogram law in inner product space. Also give an example of norm which does not satisfy parallelogram law. Justify your answer.
(b) In an inner product space X, if $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ then prove that $\left.\left\langle x_{n}, y_{n}\right\rangle x, y\right\rangle$.

8 Answer the following:
(a) State and prove Hanh- Banach Theorem.
(b) State and prove Polarization Identity and prove that $<,>: X \times X \rightarrow K$ is continuous for ($\mathrm{X},<,>$) be an inner product space.

9 Answer the following:
(a) State and Prove Projection Theorem and Pythagorean Relation in an inner product space.
(b) Prove that a Hilbert space H is separable if and only if H has a countable orthogonal basis.

10 Answer the following:
(a) If X is a finite dimensional norm linear space with $\operatorname{dim} \mathrm{X}=\mathrm{n}$ then prove that X^{\prime} is also a finite dimensional norm linear space and $\operatorname{dim} X^{\prime}=n$
(b) State and prove Closed Graph Theorem.

JAY-003-1163002 Seat No. \qquad
M. Sc. (Mathematics) (Sem. III) (CBCS) Examination December - 2019
Maths : Functional Analysis : CMT - 3002
(Old \& New Course)
Faculty Code : 003
Subject Code : 1163002
Time: $\mathbf{2} \frac{1}{2}$ Hours]
[Total Marks: 70

Instructions :

(1) There are five questions.
(2) All questions are compulsory.
(3) Each question carries 14 marks.

1 Answer the following questions: (Any seven) $7 \times 2=14$

1. Define :
i) Taxicab metric
ii) Accumulation point in a metric space.
2. Write in brief about the function space sequence space s.
3. Is every metric in a metric space complete? Justify.
4. Prove that every convergent sequence in a metic space is a Cauchy sequence.
5. Define :
i) Cauchy sequence in a metric space
ii) Cauchy sequence in a normed linear space.
6. Define Complete metric space with example.
7. State and prove Translation invariance of metric d in a metric space?
8. Define :
i) Dual Space
ii) Algebraic Dual Space.
9. Define :
i) Linear Functional
ii) Bounded Linear Operator.
10. Define Banach space with example.

2 Answer the following questions: (Any two)

1. State and prove Holder inequality for sums.
2. State and prove Minkowski inequality for sums.
3. Prove that A subspace M of a complete metric space X is itself complete if and only id the set M is closed in X.
4. Prove the completeness of the space IR".

3 Answer the following questions :
a) Let $\mathrm{X}=(\mathrm{X}, \mathrm{d})$ be a metric space. Then, prove that a convergent sequence in X is bounded and its limit is unique.
b) Let $\mathrm{X}=(\mathrm{X}, \mathrm{d})$ be a metric space. Then, prove that if $\mathrm{x}_{\mathrm{n}} \rightarrow \mathrm{x}$ and $\mathrm{y}_{\mathrm{n}} \rightarrow \mathrm{y}$, then $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right) \rightarrow \mathrm{d}(\mathrm{x}, \mathrm{Y})$.

OR
a) Let T be a linear operaot. Then, prove that the range of $T, R(T)$, is a vector space.
b) Let T be a linear operator. Then, prove that the null space of $T, N(T)$, is a vector space.

4 Answer the following questions: (Any two)

1. Prove that if in an inner product space, $x_{n} \rightarrow x$ and $\mathrm{y}_{\mathrm{n}} \rightarrow \mathrm{y}$, then $\left.<\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right\rangle \rightarrow\langle\mathrm{x}, \mathrm{y}\rangle$.
2. State and prove Parseval relation.
3. Let X and Y be the inner product spaces and $\mathrm{Q}: \mathrm{X} \rightarrow$ Y be a bounded linear operator. Then, prove that :
a) $\quad Q=0$ if and only if $\langle Q x, y\rangle=0$ for all $x \in X$ and $\mathrm{y} \in \mathrm{Y}$.
b) If $\mathrm{Q}: \mathrm{X} \rightarrow \mathrm{X}$, where X is complex and $\langle\mathrm{Qx}, \mathrm{x}\rangle$ $=0$ for all $x \in X$, then $Q=0$.

5 Answer the following questions: (Any two)
$2 \times 7=14$

1. Define Hilbert space and Hilbert adjoint operator. Let H_{1} and H_{2} be the Hilbert spaces, $\mathrm{S}: \mathrm{H}_{1} \rightarrow \mathrm{H}_{2}$ and T $: \mathrm{H}_{1} \rightarrow \mathrm{H}_{2}$ be the bounded linear operators and x be any scalar. Then, prove that
i) $<\mathrm{T}^{*} \mathrm{y}, \mathrm{x}>{ }_{-}<\mathrm{y}, \mathrm{Tx}>$
ii) $(\mathrm{S}+\mathrm{T})^{*}=\mathrm{S}^{*}+\mathrm{T}^{*}$.
iii) $\left(\mathrm{T}^{*}\right)^{*}=\mathrm{T}$.
iv) $\mathrm{T}^{*} \mathrm{~T}=0$ if and only if $\mathrm{T}=0$.
v) $(\mathrm{ST})^{*}=\mathrm{T} * \mathrm{~S}^{*}$.
2. Define Self ad joint operator and unitary operator. Let the operators $\mathrm{U}: \mathrm{H} \rightarrow \mathrm{H}$ and $\mathrm{V}: \mathrm{H} \rightarrow \mathrm{H}$ be unitary, where h is the Hilbert space. Then, prove that
i) U is isometric.
ii) $\quad||\mathrm{U}||=1$; provided $\mathrm{H} \neq\{0\}$.
iii) $\mathrm{U}^{-1}=\left(\mathrm{U}^{*}\right)$ is unitary.
iv) U is normal.
v) UV is unitary.
3. State and prove Hann Banach Theorem (Normed linear spaces).
4. State and prove Riesz lemma.
5. State and prove Cauchy Schwarz inequality for an inner product space.

$|||\mid$

PCD-003-1163002 Seat No. \qquad
M. Sc. (Mathematics) (Sem. III) (CBCS) Examination

December - 2018
MATH CMT - 3002 : Functional Analysis
(Old and New Course)
Faculty Code : 003
Subject Code : 1163002

Time : $\mathbf{2} \frac{\mathbf{1}}{\mathbf{2}}$ Hours]
[Total Marks : 70

Instructions : (1) Answer all questions.
(2) Each question carries 14 marks.
(3) The figures to the right indicate the marks allotted to the question.

1 Answer any seven : (Each question carries 2 marks)
(1) Define :
(i) Normed space $\quad+$ i) Linear Functional
(ii) Banach space (2) with example, ii) Bdd Lineur operator.
(2) Explain Translation invariance and give its example.
(B) Sterteand prove? 't matric din a meetric spuce?
(3) Define :
(i) Cauchy sequence in normed spacélmeuticspace
(ii) Compactness of a subset of a metric space.
(4) State only Minkowski's Inequality.
(5) If T is a linear operator, then prove that $R(T)$ is a vector space.
(6) If T is a linear operator, then prove that $N(T)$ is a vector space.
(7) Let X and Y be the vector spaces, both real or both complex. $T: D(t) \rightarrow Y$ be a linear operator with $D(T)$ contained in X and $R(T)$ contained in Y. Let inverse of T exist. Then, prove that inverse of T is also a linear operator.

$$
\begin{aligned}
& \text { PCD-003-1163002] } 1 \\
& \text { [Complete mutric spuee with example. }
\end{aligned}
$$

(8) Define :
(i) Algebraic Dual space
(ii) Dual Space.
(9) Prove that for an inner product space $X,\|x+y\| \leq\|x\|+\|y\|$, where x, y are contained in X.
(10) Can every metric be obtained from norm? Justify.

2 Answer any two :
\rightarrow (1) State and prove Riesz's lemma.
(2) Let T be a linear operator. Then, prove that if $\operatorname{dim}(D(T))=n<\infty$, then $\operatorname{dim}(R(T)) \leq n$.
(3) If a normed space X is finite dimensional, then prove that every linear operator on X is bounded.

3 Attempt the following :
(1) Let $T: D(T) \rightarrow Y$ be a linear operator and $D(T)$ is contained in X, where X and Y are the normed spaces. Then, prove that T is continuous if it is bounded.
(2) State and prove Bessel's inequality.

OR

(2) In an inner product space X, if $x_{n} \rightarrow x$, and $y_{n} \rightarrow y$, then prove that $\left\langle x_{n}, y_{n}\right\rangle \rightarrow\langle x, y\rangle$.

4 All are compulsory :
(1) State and prove Parseval relation:
(2) State and prove Man Banach theorem for normed spaces.

5 Answer any two :
(1) Define Reflexive Space. Prove that for every fixed x in a normed space \mathbf{X}, the functional $g_{x}(f)=f(x), f \in X^{\prime}$ is a bounded linear functional on X_{r}^{\prime} and g_{x} preserves the norm.
(2) State and prove Zero operator theorem.
(3) Obtain an alternative definition of the norm of a linear λ operator T. (Q)
(4) Prove that any orthonormal set on X is linearly independent. 1

HDV-003-1163002 Seat No. 035064
M. Sc. (Mathematics) (Sem. III) (CBCS) Examination
, November / December - 2017
MATH CMT - 3002 : Functional Analysis
Faculty Code : 003Subject Code : 1163002
Time : $2 \frac{1}{2}$ Hours][Total Iarks : 70
Instructions : (1) Answer all questions.
(2) Each question carries 14 marks.
(3) The figures to the right indicate marks allottedto the question.
1 All are compulsory : (Each question carries 2 marks) 14
(a) True or false? Justify $\left(l^{\infty},\|\cdot\|_{\infty}\right)$ has a Schauder basis.
x (b) Define weak convergence, strong convergence in a n.l.Space.
(c) Define Banach Space.
(d) True or false? Justify Dual of a Hilbert space is a Hilbert space.
(e) Give an example of a space that is not Banach space over IK.
$x \rightarrow(f)$ True or false? Jūstify Every Separable Hilbert space is isomorphic to l^{2}.
(g) Define equivalent norms on a n.l. space.
2 Answer Any Two :
(A) State and Prove the necessary and sufficient
condition for a vector subspace of a Banach space to
be a Banach space. True or false? Justify. $\left(C_{0},\|\cdot\|_{\infty}\right)$
is a Banach space.
[Contd....
\times (B) State, without pruof, Baire's theorem. Prove that a Banach space cannot have a countably infinite Hamel basis.
(C) State and prove Riesz lemma.

3 All are compulsory :
(A) For a n.l. space X over IK, prove that the dual space X^{I} is separable $\Rightarrow X$ is separable.
(B) Give an example to show that a metric on a vector space x need not be induced by a norm on x, with justification.

OR

3 All are compulsory :
(A) Let X, Y be a n.l. space over IK and $\|\cdot\|$ be the norm on $B(X . Y)$ defined by $\|T\|=\inf \{c>0 /\|T x\| \leq c\|x\|, \forall x \in X\}$. Prove that $\|T\|=\sup \left\{\frac{\left\|T_{x}\right\|}{\|x\|}, 0 \neq x \in X\right\}=\sup \{\|T x\|,\|x\|=1\}$.
(B) Define Canonical mapping C from a n.l. space

* $\quad X$ to X^{n}. Prove that $\mathrm{C}: X \rightarrow X^{n}$ is an isometry.
$\times 4$ Answer any two:
\times (A) State, without proof, projection theorem. If H is a Hilbert space and M is a non empty subset of H then prove that $\overline{\operatorname{span} M}=M^{\perp \perp}$.
\propto (B) State and prove characterization of the Hyperspace 7
in a n.l. Space.
D (C) State and prove closed graph theorem.7

5 All are compulsory : (Each question carries 2 marks)
x (A) State Hahn Banach Theorem.
(B) Define Hyper plane and Hyperspace and with an example.
(C) Give an example of a nil. space which is not complete.
(ID) If Y is closed subspace of a nil. space X then give the definition of the induced norm on the quotient space X/Y.
(E) What is the meaning of the statement that the dual X^{\prime} of X separates the points of X .
(F) Give the definitions of (1) Convergent series and (2) The absolute convergent series.
(G) Write the statement of Zorn's lemma and define sub linear functional.

MBU-003-016302 Seat No.

M. Sc. (Sem. III) (Mathematics) (CBCS) Examination December - 2016

CMT-3002 : Functional Analysis

(Old Course)
Faculty Code : 003
Subject Code : 016302
Time : $2 \frac{1}{2}$ Hours
[Total Marks : 70

Instructions : (1) Answer all questions.
(2) Each question carries 14 marks.
(3) The figures on the right indicate marks allotted
(i) Define C_{0}, C_{00}^{5}.
(ii) True or false ? Justify. $\left(l^{\infty},\|\cdot\|_{\infty}\right)$ has a Schauder basis.
(iii) If $f:[a, b] \rightarrow \mathbb{R}$ is defined by $f(t)=\frac{t-a}{b-a}$ then find $|g(t)|=\frac{t-c}{b-c}$

$$
\|f\|=\operatorname{Max}\{|f(t)|: t \in[a, b]\} . \quad \text { an } \quad \text { a }\left|1 r^{\prime}\right\rangle \|!-1
$$

Livy If $1 \leq p<\infty$ and $e_{n}=(0,0, \ldots, 0,1,0, \ldots)$ then find qu $^{\prime} \mid(9 r n)!!=1$ $\left\|e_{n}-e_{m}\right\|, \forall n \neq m$.
(y) Does $\|\cdot\|_{p}$ on $l_{p}, \overline{1} \leq<\infty$ satisfy the parallelogram law? Justify:
$\chi \rightarrow$ (vi) If X is an inner product space over \mathbb{K} and $A, B \subset X, A \subset B$ then prove that $B^{\perp} \subset A^{\perp}$.
(yin) Define weak convergence, strong convergence in a nil. space.
(viii) Give an example of an imner product space X and $x, y \in X$ $\therefore 1\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}$ and x is not orthogonal to y in x.
(f) Prove that $\|x\|=\sup \left\{\mid f(x)\left\|f \in X^{\prime},\right\| f \|=1\right\}, \forall x \in X$, where X is a $n!$ space over \mathbb{K}.
(x) Prove that $\|x\|_{2} \leq\|x\|_{1}, \forall x \in \mathbb{K}^{n}$.

2 Answer any two questions:
(a) Define Banach space over \mathbb{K} and prove that $\left(C[0,1],\|\cdot\|_{1}\right)$

市 is not a Banach space over $\mathbb{I K}$.
(b) In a finite-dimensional n.l. space X over \mathbb{K}, prove that $Y \subset X$ is compact iff Y is closed and bdd.
(c) State and prove Riesz lemma.
$3 \times \quad$ (a) Prove that $\left(C_{0},\|\cdot\|_{\infty}\right)^{\prime} \cong\left(l^{1},\|\cdot\|_{1}\right)$.
(b) For a n.l. space X over \mathbb{K}, prove tinat X^{\prime} is separable 7 $\Rightarrow X$ is separable.

OR

3
(c) Prove that every finite-dimensional vector subspace Y of a n.l. space X is a Banach space. Deduce that every finitedimensional vector subspace Y of a n.l. space X. is closed Let A. I be n.l. space over \mathbb{K} and $\|\cdot\|$ be the norm on

Then prove that $\|T\|=\dot{\operatorname{Sup}}\left\{\frac{\|T x\|}{\|x\|} 0 \neq x \in X\right\}$.
[Contd...

Y4 Define inner product space and Hilbert space over \mathbb{k} and give an example of a liber space with justification.
(b) State, without proof, projection theorem. If $I I$ is a Hilbert space and M is a nonempty subset of H then prove that $\overline{\operatorname{span} M}=M^{L+}$;
\times (c) If $\left\{e_{n}\right\}_{n=1}^{\infty}$ is an orthonormal sequence in a Hilbert space H then prove that $\sum_{n=1}^{\infty} \alpha_{n} e_{n}$ converges in H iff $\sum_{n=1}^{\infty}\left|\alpha_{n}\right|^{2}$ converges in \mathbb{R}.

5 Answer any two questions :
(a) State, without proof, Hahn-Banach theorem for mil. spaces.

Given $0 \neq x_{0}$ in a nil. space X over \mathbb{K}, prove that $\ni F \in X^{\prime}$
s.t. $\|F\|=1$ and $F\left(x_{0}\right)=\left\|x_{0}\right\|$.
\Varangle (b) State, without proof, Bare category theorem. Deduce that Banach space can not have a countably infinite Hame basis.
Define closed linear transformation between two nil. spaces over \mathbb{K}. State and prove closed graph theorem.
(d) Define total orthonormal set in an inner product space over \mathbb{K}. If $\left\{x_{\alpha} \mid \alpha \in \wedge\right\}$ is an orthonormal set in a Hilbert space H and $\|x\|^{2}=\left.\sum_{\alpha \in \wedge}\left|<x, e_{\alpha}\right\rangle\right|^{2}, \forall x \in H$ then prove that $\left\{x_{\alpha \alpha} \mid \alpha \in \wedge\right\}$ is total in F .

BBH-003-016302 Seat No.
M. Sc. (CBCS) (Sem. III) Examination

December - 2015
Mathematics : CMT-3002
(Functional Analysis)
Faculty Code : 003
Subject Code : 016302
Time : 2.30 Hours]
[Total Marks : 70
Instructions : (i) Answer all questions. Each question carries 14
7
(ii) The figures on the right indicate the marks allotted to the question.

1 Choose the correct answer.

$$
2 \times 7=14
$$

(1) $c_{00}=$ \qquad
(A) $\left\{\left(x_{1}, x_{2}, \ldots . x_{n}, \ldots.\right) \mid x_{n} \in I K, \forall n=1,2, \ldots.\right\}$
(B) $\left\{\left(x_{1}, x_{2}, \ldots, x_{n}, \ldots ..\right) \mid x_{n} \in \mathbb{K}, \forall n\right.$ and $x_{n}=0, \forall n \geq N$ for none $\left.N \in I N\right\}$
(C) $\left\{\left(x_{1}, x_{2}, \ldots \ldots, x_{n}, \ldots ..\right) \mid x_{n} \in I K, \forall n\right.$ and $x_{n} \rightarrow 0$ as $n \rightarrow \infty$ in $\left.I K\right\}$
(D) $\left\{\left(x_{1}, x_{2}, \ldots ., x_{n}, \ldots.\right) \mid x_{n} \in \mathbb{I}, \forall n\right.$ and $\left\{x_{n}\right\}$ converges in $\left.I K\right\}$
(2) \qquad is not a Banach space over $I K$.
(A) $\left(C_{00},\|\cdot\|_{\infty}\right)$
(B) $(C[\dot{a}, b]$, max norm $)$
(C) $\left(C_{0},\|:\|_{\infty}\right)$
(D) $\left(l^{2},-\|\cdot\|_{2}\right)$
(3) - is not reflexive.
(A) every finite dimensional $n \cdot l$ space
(B) $\left(l^{2}, \|_{2}\right)$
(C) $\left(l,\| \|_{j}\right)$
(D) every Hilbert space over IK
[Contd...
(4) $\|x\|_{\infty} \leq \longrightarrow, \forall x \in I K^{\cap}$
(A) $\|x\|_{2}{ }^{*}$.
(B) $n\|x\|_{1}$
(C) $\sqrt{n}\|x\|_{1}$
(D) $\sqrt{n}\|x\|_{2}$
(5) If $e_{n}=(0,0, \ldots \ldots, 0,1,0, \ldots).\left(n^{\text {th }}\right.$ term 1), $\forall n=1,2, \ldots .$. then $\left\{e_{n}\right\}$ is not a Schauder basis of \qquad
(A) $\left(l^{p},\| \|_{p}\right), 1 \leq p<\infty$
(B) $\left(l^{2},\| \|_{2}\right)$
(C) $\left(l^{1},\|\cdot\|_{1}\right)$
(D) $\left.L^{\infty},\|\cdot\|_{\infty}\right)$
(6) A vector subspace Y of a Hilbert space H is closed iff
$\overline{(A)} \bar{Y}=H$
(B) Y is finite-dimensional
(C) $Y=Y^{\perp i}$
(D), $Y^{\perp}=\{0\}$
(7) __ is not separable.
(A) $\left(l^{2},\|\cdot\|_{2}\right)$
(B) Every n.l. space with a Schauder basis
(C) $\left(l^{\infty},\| \|_{\infty}\right)$
(D) Every inner product space with a countable orthonormal basis
(8) \qquad
(A) Weak convergence \Rightarrow strong convergence in any n.l. space
(B) $\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2} \Rightarrow x \perp y$ in any inner product space
(C) For an orthonormal set M in an inner product space, $M^{+}=\{0\} \Rightarrow M$ is total
(D) for a n.l. space X, X, is separable $\Rightarrow X$ is
[Contd...
(9) \qquad is not true.
(A) Differential operator is not bdd linear
(B) Hahn-Banach extension is not unique
(C) Weakly convergent sequence in a $n \cdot l$. space is bdd
(1) Every norm on a vector space X is induced by an .. innter product on X.
(10) \qquad is not a true statement.
(A) Every separable Banach space has a Schauder basis
(B) $\left(C_{00},\|\cdot\|_{\infty}\right)^{\prime} \equiv\left(l^{\infty},\|\cdot\|_{\infty}\right)$
(C) $\left(C_{\%-}^{[0,1]},\|\cdot\|_{2}\right)$ is not a Banach space
(1)) Every separable Hilbert space is isomorphic to 1^{2}

2 Answer any two :
$2 \times 7=14$
(a) State and prove the necessary and sufficient condition for a vector subspace of a Banach space to be a
Banach space. True or false ? Justify. $\left(C_{0},\|\cdot\|_{\infty}\right)$ is a Banach space.
(b) State, without proof, Baire's theorem. Prove that a

Banach space can not have a countably infinite Hamel basis.
(c) Prove that a closed and bdd set in a finite-dimensional n.l. space is compact.

3 (a) $\frac{\text { Define equivalent norms on a n.l. space. Prove that }}{\text { any two norms on a finite-dimensional n.l. space are }} 14$
(b) Define weak convergence, strong convergence of sequences in a nil. space. True or false ? Justify. weak convergence \Rightarrow strong convergence in a n.l. space OR
(c) Define Canonical mapping C from a n.l. space X to $X^{\prime \prime}$. Prove that $C: X \rightarrow X^{n}$ is an isometry and isomorphism.

χ (d) Define reflexive spaces. Prove that every Hilbert space is reflexive.

4 Answer any two :
(a) Define open mapping between two topological spaces.
\mp State and prove open mapping theorem.
X (b) State, without proof, uniform bddness theorem. Give an application of uniform bddness theorem with proof.
(c) State, without proof, Hahn-Banach_theorem. For a nil. space X prove that $\|x\|=\sup _{0 \neq f \in x} \frac{|f(x)|}{\|f\|}, \forall x \in X$.

5 Answer any two:
$2 \times 7=14$
(a) Define orthonormal set in an inner product space.

State and prove Bessel's inequality for an orthonormal sequence in an inner product space.
(b) If $\left\{e_{\alpha} \mid \alpha \in \wedge\right\}$ is a total orthonormal set in a Hilbert
(c) State, without proof, Riesz representation theorem for od linear functional on a Hilbert spaces. Prove or disprove that the dual of a Hilbert space is a Hilbert. space.
(d) Given two Hilbert spaces H_{1}, H_{2} and a bd linear transformation $T: H_{1} \rightarrow H_{2}$, prove that \ni a unique dd linear transformation $T^{*}: H_{2} \rightarrow H_{1}$ s.t. $\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle, \forall x, y \in H_{1}$ and $\left\|T^{*}\right\|=\|T\|$.

WM-134

003-016302

M.Sc. (Maths) (CBCS) (Sem.-III) Examination
 November-2(1)4

MATH CN1T-3002 : Functional Analysis

(Set-2)
Faculty Code : 003
Subject Code : 016302

Time: 21/2 Hours]

Instructions: (1) Answer all questions. Each question carries 1 mark.
(2) The figures on the right indicate the marks allotted to each question.

1. Answer any seven questions:

$$
2 \times 7=14
$$

(1) \qquad is not a Banach space orer. K
$\left(\underset{T}{(a)}\left([0,1],\|!\cdot\|_{2}\right)\right.$
(b) $\left(\mathrm{C}_{0},\|\cdot\|_{\infty}\right)$
(c) $\left({ }^{\mathrm{P}},\|\cdot\|_{\mathrm{p}}\right), 1 \leq \mathrm{p} \leq \infty$
(d) $(C[0,1]$, max. norm)
(2) ___ is not induced by any inner product.
(a) (C[0, 1], max. norm)
(b) $\left(\mathrm{C}[0,1],\|\cdot\|_{2}\right)$
(c) $\|\cdot\|_{2}$ on $\|^{2}$
(d) $\|\cdot\|_{2}$ on K^{n}
(3) \qquad is the polarization identity.
(a) $\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right)$
(b) $4\langle x, y\rangle=\left(\|x+y\|^{2}-\| x-y i^{2}\right)+i\left(\|x+i y\|^{2}-\|x-i y\|^{2}\right)$
(c) $4\langle\dot{x}, y\rangle=\left(\|x+y\|^{2}+\|\dot{x}-y\|^{2}\right)+\mathrm{i}\left(\|x+i y\|^{2}+\|x-i y\|^{2}\right)$
(d) $4\langle x, y\rangle=\left(\|x+y\|^{2}-\|x-y\|^{2}\right)-i\left(\|x+i y\|_{1}^{2}-\|x-i y\|^{2}\right)$.
(4) \qquad of the follownes is corred.
(a) $\|x+y\|=\|x\|+\|y\|$ in $(x,\|\cdot\|) \Rightarrow x, y$ are linear dependent in x.
(b) x, y are n.l. spaces over $K \Rightarrow B(x, y)$ with operator norm is a Eanch space over K.
(c) x^{\prime} is separable $\Rightarrow x$ is separable.
(d) $x \equiv x " \Rightarrow x$ is reflexive.
(5) \qquad implication is correct.
(a) Weak convergence \Rightarrow strong converg n nce in a finite-dimensional n.l. space over K.
(b) x is separable $\Rightarrow x^{\prime}$ is separable.
(c) $\left\{x_{n}\right\}_{n=1}^{\infty}$ is not a Schauder basis of $(x,\|\cdot\|) \Rightarrow\left\{x_{n}\right\}_{n=1}^{\infty}$ is not a Schauder basis of $(y,\|\cdot\|)$ for every vector subspace of x.
(d) Weak convergence \Rightarrow strong convergence in any n.l. space over K.
(6) \qquad is the statement of Baire's theorem.
(a) Every bold linear transformation is continuous linear.
(b) Every linear transformation from a finite-dimensional n.l. space to any n.l. space is bold linear.
(c) Every nori-empty complete metric space is second category in itself.
(d) Any two norms on a finite dimensional space are equivalent.
(7) \qquad is not bold linear.
(a) Differential operator
(b) Integral operator
(c) A continuous linear transformation
(d) Closed linear transformation between Banach spaces
(8) \qquad is a true statement.
(a) x^{\prime} separates points of x
(b) Eold linear transformation is closed linear
(c) every closed bold set in a metric space is compact
(d) every poset has a unique maximal element
(9) \qquad is not a true statement.
(a) Every nil space over K with a Schauder basis is separable
(b) $\left(T^{*},\|\cdot\|_{2}\right)$ is separable
(c) Strong convergence \Rightarrow weak convergence
(d) Hahn-Banach extension is not unique
(10) \qquad of the following inequalities is correct in an inner product space.
(a) $\|x\|\|y\| \leq 1<x, y>1$
(b) $\|x+y\|^{2}+\|x-y\|^{2}<2\left[\|x\|^{2}+\|y\|^{2}\right]$
(c) $2\left[\|x\|^{2}+\|y\|^{2}\right]<\|x+y\|^{2}+\|x-y\|^{2}$
(d) $|<x, y>| \leq\|x\|\|y\|$
2. Answer any two questions :
(a) Define $\mathbb{D}^{p}, 1 \leq \mathrm{p} \leq \infty$ and prove that $\left(1^{\infty},\|\cdot\|_{\infty}\right)$ is a Banach space over K (prove only completeness!)
(b) When do you say that two norms on a vector space x are equivalent? Prove that equivalent norms on x generate the same topology.
(c) True or false? Justify. Every closed and bold set in a nil. space x over K is compact.
3. (a) Define bold linear transformation between nil: spaces over K. True or false? Justify. Every linear transformation from a finite-dimensional nil. space to any n. 1 space is bold.

N

(b) Prove that a nil. space is finite-dimensional iff its closed unit disc is compact.

OR

(c) If x is a Banach space and y is a closed vector subspace of x then prove that the quotient nl. space x / y is a Banach space.
(d) Prove that a vector subspace y of a Banach space $(x,\|\cdot\|)$ is a Banach space $w . r . t .\|\cdot\|$ eff y is closed in $(x,\|\cdot\|)$.
4. Answer any two questions:
(a) If x is a Banach space writ. wo norms $\|;\|_{1}:\|\cdot\|_{2}$ and $\|x\|_{1} \leq C\|x\|_{2}, \forall, i \in X$ for some $C>0$ then prove that $\ni k=0$ s.t. $\|x\|_{2} \therefore k$ if $x \|_{1}, \forall x \in X$.
(b) Prove that $\left.\left(\mathrm{C}_{\mathrm{o}}\right),\|\cdot\|_{5}\right)^{\prime} \equiv\left(I^{\prime},\|\cdot\|_{2}\right)$
(c) State, without proof, Hahn-Banach theorem for nil. spaces over K. Given a nil. space X and $0 \neq x_{0} \in \mathrm{X}$, prove that, $\exists \mathrm{f} \in x^{\prime}$ st. $\|\mathrm{f}\|=!$ and $\mathrm{f}\left(x_{0}\right)=\left\|x_{0}\right\|$.
5. Answer any two questions :
\mathcal{X} (a) Prove that the canonical map $\mathrm{C}: \mathrm{X} \rightarrow \mathrm{X}^{\prime \prime}$ is linear isometry.
X (b) Give an example of an inner product space which is not a Hilbert space. Justify.
x
(c) State and prove parallelogram law. Give an example of a norm which does not satisfy the parallelogram law with justification.
x
(d) Given an inner product space X , a complete vector subspace Y of X and $x \in \mathrm{X}$, prove that \exists a unique $y_{0} \in Y$ st. $\left\|x-y_{0}\right\|=d(x, y)$ and $x-y_{0}$ is orthogonal to Y.

003-016302
MiSc. (MATHS) (CBCS) (Sem.-III) Examination November-2013

Maths
GMT - 3002 : Functional Analysis
Faculty Code : 003
Subject Code : 016302
Time: $21 / 2$ Hours
Trotyl Marks: 70

1. Answer any seyeńquestions:
$7 \times 2=14$
(1) intro norms on \qquad are equivalent :

(c) any infinite-dimensional mil, space (4) 2930 tinite-dimensional'n:l. space of
(2) A went ronvirgent sequence on a nil. space is a
(a) Cauchy sequence
(b) Convergent Sequence
(c) Brunded'sequence .
(d) Unbounded sequence
(3)

An orthononnal sequence in an inner product space is

(a) cauchy sequence
(c) a convergent sequence
(b) an unbounded sequence
\qquad is the Bessel's inequality in an inner product space
(a) $|\langle x, y\rangle| \leq\|x\| i i y \|, \forall x, y \in X$
(b) $\sum_{n=1}^{2} f=x, e_{n}>\left.\right|^{2} \leq\|x\|^{2}, \forall x \in X$ and orthonormal sequence $\left\{e_{n}\right\}_{n=1}^{\infty}$ in X
(c) $\|x+y\| \leq\|x\|+\|y\|, \forall x, y \in X$
(d) ${\underset{n}{3}=1}_{3}\left|<x, c_{n}>\right| \leq\|x\|, \forall x \in \mathrm{X}$ and orthonormal sequence $\left\{e_{n}\right\}_{n=1}^{\infty}$ in X
\qquad is a true statement.
(a) $=$ Every closed and bounded set in a metric space is compact
(b) $\{f \in c[0,1]|\underbrace{\max }_{x \in\{0,1]}| f(x) \mid \leq 1\}$ is compact in (c $[0,1]$, max. norm)
(d) Every norm on a vector space x is induced by an inner product on x
(6)

Hahn-Banach extension is not unique.

 is not a true statement.(a) $\left(\mathrm{c}_{00},\|\cdot\|_{\infty}\right)^{\prime} \cong\left(l^{\prime},\|\cdot\|_{1}\right)$
(b) $\quad\left(c_{0},\|\cdot\|_{\infty}\right)^{\prime} \cong\left(l^{1}, 4 N_{1}, \|_{1}\right)$
(c) The canonical mapping $\mathrm{c}=\mathrm{x} \rightarrow \mathrm{x}$ " is an into some's.
(d) Every norm on a vector space satisfies paratyelogram law:
(7) A subspace y of a nil. space x is a hyperspace 9 inf
(a) $y=k e r f$, for son ie linear functional on x
$\frac{\lambda\left(y=k e r f, \text { for same } 0 \neq f \in x^{\prime} \text { ? }\right.}{\text { (c) } y=k e r f \text { for }}$
(c) $y=$ kerf, for some $f \in x^{\prime}$,
(d) y is finite dimensional
(8) By open mapping theorem
(a) every Banach space is of second category
(b) every onto bounded linear transformation between two Banach 1 spacesis an open mapping
(c) Hilbert spaces yefiexive
(d) bounded linear
(9) \qquad is the Parseval's identity in a Hilbert space H .

((6) $\|x+y\|^{2}+\|x-y\|^{2}=2\left[\|x\|^{2}+\|y\|^{2}\right], \forall x, y \in H \quad->$
(b) $\sum_{a \in \mathrm{n}}\left|\left\langle x, \mathrm{e}_{a}\right\rangle\right|^{2}=\|x\|^{2}, \forall x \in \mathrm{H}$ and total orthonormal set $\left\{\mathrm{e}_{\alpha}\right\}_{\alpha \in \pi}$
(c) $\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}, \forall x, y \in H, x \perp y$.
(d) $\|x+y\|=\|x\|+.\|y\|, \forall x, y \in H$ s.t. either $y=0$ or $x=\alpha y$.for some $\alpha \in K$
2.
(10) \qquad is bounded linear.
(a) Every linear transformation from a finite dimensional nil. space to n.I. space
(b) Differential operator
(c) 'Every linear transformation between two Banach spaces
(d). Every linear transformation between two all. spaces
2. Answer any two questions:
(a) Define Banach space and give an example of a n. (space which is not a Banach space with justification.
(b) If x is a nil. space and y is a Banach space then with usual notation, prove that $B(x, y)$ is a Banach space writ. the operator norm (prove only completeness).
(c) Give an example to show that a metric on a vector space x need not be induced by a north on x with justification.

(a) Define equivalent nquinton ant. space. Prove that $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ are equivalent on \mathbb{R}^{n}.
(b) Find the dual space of $\left(\mathrm{C}_{0}, \mathrm{I}_{1} \cdot \mathrm{H}_{\mathrm{m}}\right)$
(a) Proveghat any n.l. space with a Schauder basis is separable. 7
4. Answer any two questions:

\mathcal{X} (a) State and prove closed graph theorem.

$2 \times 7=14$
(b) Give an application of uniform boundedness thetrem with proof.

003-016302

Answer any two questions: converse of this theorem true? Justify.
(b) If X is an inner product space and y is a complete subspace of X, then

State, without proof, Riesz represemation theorem for bd linear functional on a Hilbert spae.. Deduce that every Hilbert space is reflexive.
(1) (Q)- If an orthonormal set $\left\{e_{a}\right\}_{\text {cen }}$ in a Hilbert space H. satisfies Parseval's identity, then prove that $\left\{\mathrm{e}_{a}\right\}_{\sigma \in x}$ is total in H .

$$
a^{b^{b}}
$$

003-016302
 MASc. (CRCS) (Sem-III) Examination
 Novimber-2012
 MATHS CMT - 3002 : FLINCTIONAL ANALYSIS

Faculty Code : 003
Subject Code : 016302

Time: 2 $1 / 2$ Hours]

[Total Marks : 70

1. Answer any seven questions:

(c) $\left(\mathrm{C}_{00},\|\cdot\|_{\infty}\right)$
$2 \times 7=14$
(b) $\left(l^{p},\|\cdot\|_{L_{N}}\right), i \leq-p<\infty$
$\left[(d) /\left(l^{\infty},\|\cdot\|_{\infty}\right)\right.$
(ii) is a true statement.

(b) $\quad\left(\mathrm{C}_{00},\|\cdot\|_{\infty}\right)$ is a Banach space overt oi ib statement
[-fe) A normed linear space with a Schauder basis is separable
(d) Every metric on a vector space x over K is induced by a non on X. vii siretment
(iii) \qquad is not a true statement.
(a) Every closed bounded set in $\left(\mathbb{R}^{\cap},\|\cdot\|_{2}\right)$ is compact
(b) Every compact subset of a metric space is closedand founded
did The closed unit disc in an infin te dimensional normed linear space over K is compact

Finite
(d) $(\mathrm{C}[\mathrm{a}, \mathrm{b}],\|\cdot\| \mid \overline{1})$ where $\|\cdot\|=$ max. norm, is a Banach space over K (iv) With usual notation ${ }^{\prime}\left(C_{00},\|\cdot\|_{\infty}\right)^{\prime} \cong$ \qquad
(a) (I^{\prime}, (4)
(c) $\left(l^{p},\|\cdot\|_{p}\right), l<p<\infty$
(b) $\left(R^{2},\|\cdot\|_{2}\right)$
(i) $\left(1^{10},\|\cdot\|_{\infty}\right)$
(v) $\|x+y\|_{2}=\|x\|_{2}+\|y\|_{2}$ for some $x, y \in \mathbb{R}^{2}$ of
(ba) x, y are linearly independent
(b) $x=y$
(c) $x=-y$
(d) either $y=0$ or $x=\alpha y$ for some $\alpha \geq 0$.
(a) $\cdot\left(l^{p},\|\cdot\|_{p}\right), 1<p<\infty$.
(b) $\left(12,\|\cdot\|_{2}\right)$
(d) $\left(l^{\infty},\|\cdot\|_{\infty}\right)$
(c) (cha, b], max. norm]
\qquad is not reflexive
(b) every finite dimensional normed linear space over K ash bs?
(c) $\left(K^{\cap},\|\cdot\|_{2}\right)$
(d) $\left(l \mathrm{P},\|\cdot\| \|_{p}\right) l<p<\infty$
(viii) A bounded linear operator T on a Hilbert space is normal ir
(a) $\mathrm{TT}^{*}=\mathrm{T}^{*} \mathrm{~T}^{+}$
(b) $\mathrm{T}^{*}=\mathrm{T}$
(c) $/ \mathrm{TT}^{*}=\mathrm{I}=\mathrm{T}^{*} \mathrm{~T}$
(d) T is in isometry
(ix) In a normed linear space X over K, weak converge once implies strong convergence if \rightarrow (a) Xis an infinite-dimensional normed linear space over K.
(b) X is a finite-dimensional normed linear space over K.
(c) X is a Banach space.
(d) X is a Hilbert space.

(a) $\{(1,0),(1,1)\}$
(b) $\left\{\left(0, \frac{1}{2}\right),(1,1)\right\}$.
(c) $\left\{\left(\frac{1}{2}, 1\right),\left(1,-\frac{1}{2}\right)\right\}$
(d) $(1,0),(0,1)\}$
2. Answer any two questions:
D) (3) Prove that a vector subspace y of a Banach space X is a Banach space of y is closed in X. Assuming that $\left(18\|\cdot\| \|_{\infty}\right)$ is a Banach space, deduce that $\left(C_{0},\|\cdot\|_{\infty}\right)$ is a Banach space over \mathbb{K}.
(b) Define bounded linear transformation between normed linear spaces. Is every linear transformation between any tyro normed linear spaces over K bouppided? Justify.
 When do you say that two norms on a rector space over K are equivalent? Prove that any two norms on a finite-dimensional vector space over K are equivalent.
3. (a) Define weak convergence and strong convergence in a normed linear space over K : Give an example to show that weak convergence does not imply strong convergence.
(b) Prove that a closed-and-bounded set in a - finite-dimensinnal normed tiñeär space over K is compact.

$$
2 \times 7=14
$$

OR

(d) Prove that in a finite dimensional normed linear space over \boldsymbol{K} strong convergence implies weak gonvergence.
4. Answer any two questions State and prove closed graph theorem.

by State, without proof, open marring theorem. Give an example to show that the yigothesis "X, Y hare Hanach-spaces" in open mapping theorem cannot be dropped and justify. $:$: te
(8) State uniform boundedness theoren-and give an example with justification to .. Show that "X is Banach" in uniform-boundedness theorem cannot be dropped.
5. Answer any two questions:
(a) State Hahn Banach theorem for gored linear spaces X over K. Deduce that given non-zero $x_{0} \in x, \exists \mathrm{~F} \in X^{\prime}$ St $\mathrm{F}\left(x_{0}\right)=\left\|x_{0}\right\|$ and $\|F\|=1$.

Let X be an inner product space and M be nonempty complete convex set in X. Prove that \exists a unique $y_{0} \in M$ s. $\left\|x-y_{0}\right\|=d(x, M)$.
(e) State and prove polarization identity in an inner product space.
(d) Define self-adjoint operator on a Hilbert space over K. If H is a Hilbert space over K then prove that a id linear operator " T " on H is self adjoint inf $<T x$, $\mathrm{x}>$ is real, $\forall x \in \mathrm{H}$.

$$
5+{ }_{2}\|x\| \sigma_{2}\|F!-x\|+-2 \| F!+x-11
$$

003-016302

HIIM!
 003-016302

Seat No. \qquad
M. Sc. (CBCS) (Sem. III) Examination

December - 2011
Maths. : CMT-3002
(Functional Analysis)
Faculty Code : 003
Subject Code : 016302
Time: 3 Hours]
['fotal Marks: 70
1 Answer any seven questions:
(1) The metric igluced by the norm $\|\cdot\|_{2}$ on $I K^{\wedge}$ is

$$
\begin{aligned}
& d(x, y)=, \forall x=\left(x_{1}, x_{2}, \ldots, x_{n}\right), \\
& y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in I K^{\wedge} .
\end{aligned}
$$

(a) $\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|$
(b) $\operatorname{mix}_{1 \equiv i \leq n}\left|x_{i}-y_{i}\right|$
$\underbrace{\text { (c) }\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{2}\right)^{\frac{1}{2}}}$
(d) $\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{p}\right)^{\frac{1}{p}}, p \neq 2, k p<\infty$
(2) The Holder's inequality is \qquad $\forall x=\left(x_{1}, x_{2}, \ldots, x_{n}, ..\right) \in l^{p}, y=\left(y_{1}, y_{2}, \ldots, y_{n}, \ldots\right) \in l^{q}$, $1 \leq p \leq \infty$.
(a) $\|x+y\|_{p} \leq\|x\|_{p}+\|y\|_{p}$

い6) $\sum_{n=1}^{\infty}\left|x_{n} y_{n}\right| \leqslant\left(\sum_{n=1}^{\infty}\left|x_{n}\right|^{p}\right)^{\frac{1}{p}}\left(\sum_{n=1}^{\infty}\left|y_{n}\right|^{q}\right)^{\frac{1}{q}}, \frac{1}{p}+\frac{1}{q}=1$
(c) $\sum_{n=1}^{\infty}\left|x_{n} y_{n}\right| \leq\left(\sum_{n=1}^{\infty}\left|x_{n}\right|^{\mid}\right)^{\frac{1}{p}}\left(\sum_{n=1}^{\infty}\left|y_{n}\right|^{q}\right)^{\frac{1}{n}}$
(d) $\sum_{n=1}^{\infty}\left|x_{n} y_{n}\right|^{p} \leq\left(\sum_{n=1}^{\infty}\left|x_{n}\right|^{p}\right)\left(\sum_{n=1}^{\infty}\left|y_{n}\right|^{\left.q\right|^{q}}\right)^{\frac{1}{q}}$
[Contd...
(3) With usual notations, $\left(\text { R }_{2}, H_{1} \cdot \|_{2}\right)^{\prime} \equiv$ \qquad
(a) $\left(l^{\prime},\|\cdot\|_{1}\right)$
(b) $\left(i^{2},\|\cdot\|_{2}\right)$
(e) $\left(I^{\infty},\|\cdot\|_{\infty}\right)$
(d) $\left(\nabla_{0},\|\cdot\|_{\infty}\right)$
(4)
$\underline{ }$ is a true statement.
(a) $\|\cdot\|_{1}$, mix. norm are equivalent on $c[0,1]$
(b) $\|\cdot\|_{2}$, max-norm are equivalent on $c[0,1]$
(c) frax-norm on $c[0,1]$ is induced by an inner product on $c[0,1]$
$\left\|\cdot i_{2},\right\| \cdot \|_{p}, \quad 1 \leq p \leq \infty, p \neq 2$ are equivalent on $I K^{n}$.
(5)
(6) $\left\|\cdot i_{2},\right\| \cdot \|_{p}, 1 \leq p \leq \infty, p \neq 2$ are
(a) a closed and bounded set is compact in a metric space
(b) $\left\{e_{n}\right\}_{n=1}^{\infty}$ is compact in $\left(l^{j},\|\cdot\|_{p}\right), 1 \leq p<\infty$
(c) A Banach space is of first category
fuse - (d) $\left(I^{p} \cdot\|\cdot\|_{r}\right), 1<p<\infty$ is reflexive
(6) The uniform bddness theorem says that
(a) every hijective bid linear transformation between two Banach spaces over $I K$ has a bod inverse
(b) every closed linear transformation between two Banach spaces is bd
Ale) Complete metric space is of second category in itself Every sequence of dd linear transformation between a Banach space and a nil. space is uniformly dd.

\qquad
(a) $\{\operatorname{eos} m\}_{n=0}^{\infty}$
(b) $\left\{e^{\text {int }}\right\}_{n \in Z}$
(产) $\quad\{\sin m t\}_{n=1}^{\infty}$
(d) $\{\cos m t\}_{n=0}^{\infty} \cup\{\sin m t\}_{n=1}^{\infty}$

(d) finite dime.
(9) I X is an inner product space over $I K$ then the Bessel inequality is
(c) $\sum_{\alpha}\left|<x, e_{\alpha}\right\rangle 12 \$ 1$
(a) $|\langle x, y\rangle| \leq\|x\| \cdot\|y\|, \forall x, y \in X \quad$ d) none of these
(b) $\|x\| \leq \sum\left|\left\langle x, c_{\alpha}\right\rangle\right|^{2}, \forall x \in X$ where $\left\{e_{\alpha}\right\}_{\alpha \in X}$ is an orthonormal set in X
(10) A bod linear operator " T " an a Hilbert space is unitary if
(a) $T^{*}=T$
(b) $T T^{*}=T^{*} T$
(c) $T^{*} T=1=T T^{*}$
(d) T is-Invertible

2 Answer any two questions:
Quota Define Banach spar al and prove that $(\{a b]$, max-norm $\|\cdot\|) 7$ is a Banach space
(b) Define bod linear transformation and prove that every
(0) linear transformation from a fipite-dimensional nil. space to any nil. space is bid.
(c) Define weak convergence and strong convergence of a sequence in a nil. space χx over $I K$. Does weak convergence imply strong convergence ? Justify.
Q (a) When do you say that wo norms on a n. 1 sf any y (ce) 7 over $i K$ are equivalent ? Prove that equivalent norms on a vector space generate the same topology.

4- (a) State and prove open maning thocioni. Can we drop the condition $X X, Y$ are Banach spaces" in the open mapping theorem? Justify.
(b) State, without proof, Barre's theorem. Deduce the uniform bddness theores. from it.
(c) Give an application of miform bddness theorem

5 (a) State, without proof, Hahn'Banach theorem for n.l.
 space X over $I K$. If X is a n.l. space over $I K$ and Y, is a proper closed vector subspace of $\cdot X$ and $\cdots \cdots$ $x_{0} \in X \sim Y$ then prove that $\exists F \in X^{\prime}$ set $\|F\|=1$, $F(y)=0, \forall y \in y$ and $F\left(x_{0}\right)=\inf \left\{\left\|x_{0}-y\right\| / y \in y\right\}$
(b) SYate, without proof, pipjection theorem. If M is a that $\overline{\operatorname{span} M}=M^{\perp \perp}$.
(c) State, without proof, Rieszrepresentation theorem for 7 bdd linear functional-on a Hilbert space. Prove that every Hilbert spoec is reflexive.
(d) Define unitary operator. Prove that a bdd linear operator on a Hilbert space is unitary iff it is an isometry and onto.

DBL-003-1163003 Seat No.

M. Sc. (Sem. III) (CBCS) Examination
 June - 2022
 Mathematics
 (3003 - Number Theory 1)

Faculty Code : 003
Subject Code : 1163003
Time: $\mathbf{2} \frac{\mathbf{1}}{\mathbf{2}}$ Hours]
[Total Marks : 70

Instructions :

(1) Attempt any five questions from the following.
(2) There are total ten questions.
(3) Each question carries equal marks.

1 Answer the following :
(a) Find the number of solutions of $x^{48} \equiv 9(\bmod 17)$ if exists.
(b) Find $\sigma(307)$ and $\tau(19610)$.
(c) Prove that, for any two non-zero integers x and $y \exists a$ and b such that $a x+b y=1$.
(d) Define Euler's function for a positive integer m and write down the value of $\phi(139)$.
(e) State, Euclid's Algorithm and verify it by an example.
(f) Define Prime numbers and also give at least four prime numbers more than 155.
(g) For three integers a, b and $n \in \mathbb{N}$, prove that, if $a \mid b$ then $a^{n} \mid b^{n}$.

2 Answer the following :
(a) Define L.c.m. with an example and prove that for $a, b \neq 0$ and $m>0 m[a, b]=[m a, m b]$.
(b) Using standard notation prove that, $\left[\frac{x}{m}\right]=\left[\frac{[x]}{m}\right]$ for any $x \in R$ and $m \geq 1$ be any integer.
(c) Find the number of solutions of $x^{12} \equiv 16(\bmod 17)$.
(d) Define : (i) Reduced Residue System and (ii) Solution of Congruence Equation.
(e) Is it always true that if $x \mid y$ then $x \mid t y$ for any $t \in Z$. Justify your answer.
(f) Show that, if $a \equiv b(\bmod m) \Rightarrow(a, m)=(b, m)$.
(g) Find the highest power of 61 which divide 38401 !.

3 Answer the following :
(a) Prove that, if p is a prime number then p^{2} has exactly 7 $(p-1) \phi(p-1)$ primitive roots in $\left(\bmod p^{2}\right)$.
(b) Find the solutions of the congruence equation $x^{4}-1 \equiv 0 \quad 7$ $(\bmod 15)$ using Chinese Remainder Theorem.

4 Answer the following :
(a) For any odd number g prove that 2^{α} has no primitive 7 roots for $\alpha \geq 3$.
(b) (i) If p is a prime number of the form $4 k+3$ and $p \mid a^{2}+b^{2}$ then $p \mid a$ and $p \mid b$ for some $a, b \in Z$.
(ii) Show that, for a prime number p of the form $4 k+3, p \quad 3$ cannot be expressed as a sum of squares of two integers.
5 Answer the following : 14
(a) (i) State, Fermat's Theorem. 2
(ii) Find a solution of $x^{11} \equiv 5\left(\bmod 2^{5}\right)$ if exists. 5
(b) (i) State and prove, Mobius Inversion Formulae. 5
(ii) Prove that, $\sigma(n)$ is a multiplicative function. 2
6 Answer the following : 14
(a) State and Prove, Fundamental Theorem of Arithmetic. 7
(b) Let, $a, b \in Z-\{0\}$ and $m \geq 1$ If $g=\operatorname{gcd}(a, m)$ then the 7 congruence equation $a x \equiv b(\bmod m)$ has a solution if and only if $g \mid b$.
7 Answer the following :14
(a) State, Wilson's Theorem and also verify the theorem 7for prime number 13.
(b) Prove that, there are infinitely many prime numbers.7
8 Answer the following : 14
(a) State and prove, Hansel's Lemma. 7
(b) If $\alpha \geq 3$ be any integer then prove that the set 7

$S=\left\{5,5^{2}, 5^{3}\right.$,
$\left..5^{2^{\alpha-2}}\right\} \cup\left\{-5,-5^{2},-5^{3}, \ldots \ldots,-5^{2^{\alpha-2}}\right\}$ is a reduced residue system $\left(\bmod 2^{\alpha}\right)$.
9 Answer the following : 14(a) (i) If g is a primitive root of m then show that the set5
$S=\left\{1, g, g^{2}, \ldots, g^{\phi(m)-1}\right\}$ is a reduced residue system $(\bmod m)$.
(ii) Prove that, for any odd number $a, 8 \mid a^{2}-1$.
(b) For a prime number p and $n \geq 1$ with $p \nmid a$ then show that either $x^{n} \equiv a(\bmod p)$ has no solution or there are $(n, p-1)$ solutions in any C.R.S. $(\bmod p)$.

10 Answer the following :
(a) Suppose $f(x) \equiv 0(\bmod p)$ has degree n then prove that 7 the n number of solutions in any C.R.S. $(\bmod m)$ is $\leq n$.
(b) If $m, m_{1}, m_{2}, \ldots \ldots, m_{k} \geq 1$ are integers with $m=m_{1}+m_{2}+\cdots \ldots \ldots+m_{k}$ then prove that $\frac{m!}{m_{1}!m_{2}!\ldots \ldots \cdot m_{k}!}$ is an integer.

Seat No. \qquad

FO-003-1163003

M. Sc. (Sem. III) (CBCS) Examination

November - 2022
Mathematics : Course No.-3003
[Number Theory 1]
Faculty Code : 003

Subject Code : 1163003

Time : $\mathbf{2} \frac{1}{2}$ Hours / Total Marks: 70

Instructions : (1) There are five questions.
(2) All questions are compulsory.
(3) Each question carries 14 marks.

1 Do as directed : (answer any seven)
(a) Define :
(i) Congruence euqation and
(ii) Square free function.
(b) If we consider any integer a in modulo 2 system then show that $\frac{a^{2}\left(a^{2}+3\right)}{4}$ is an integer.
(c) Prove that g.c.d. of any two integers is always unique.
(d) Find the g.c.d. of $(2 a+1,9 a+4) ; \forall a \in \square .2 a-4+1,93 a-4 u$
(e) Prove that $[a, b]=[a,-b] ; \forall a, b \in \square-\{0\}$.
(f) Define complete residue system in modulo m with an example.
(g) Define :
(i) Euler's Phi function and
(ii) Multiplicative function.
(h) Find all solutions of $4 x \equiv 12(\bmod 8)$ if exists.
(i) Prove that if p be a prime number and p does not divides a then $a^{p} \equiv a(\bmod p)$.
(j) Find $\phi(63 * 625 * 49)$ and $\tau(19610)$.

2 Answer any two of the following :
(a) State and prove Wilson's theorem.
(b) Prove that every g.c.d. can be expressed as a linear combination of given two integers a and b vice-versa.
(c) State Hansel's Lemma and find all the solutions of the conghruence equation of $x^{2} \equiv 1(\bmod 25)$ using the congruence equation $x^{2} \cong 1(\bmod 5)$.

3 Answer the following :
(a) State and prove unique factorization theorem.
(b) State chinese remainder theorem and explain it with an example.

OR

3 Answer the following :
(a) If $m, m_{1}, m_{2} \geq 1$ with $1=\left(m_{1}, m_{2}\right), 2 \leq\left(\phi\left(m_{1}\right), \phi\left(m_{2}\right)\right)$ and $m=m_{1} \cdot m_{2}$ then prove that m does not have a primitive root.
(b) Show that the number of primes are infinite.

4 Answer the following :
(a) State and prove any five properties of congruence.
(b) Suppose $f(x) \equiv 0(\bmod p)$ has degree n then prove that number of solutions in any C.R.S. $(\bmod p)$ is at most n.

5 Answer any two of the following:
(x) State Euclid's algorithm and justify it for (306, -657).
(b) (i) Prove that product of any two integers is always same as the product of its L.C.M. and G.C.D.
(ii) If $m \mid s t$ and $(m, s)=1$ then show that $m \mid t$.

Prove that for a prime number p there is a solution of
$f(x) \equiv 0(\bmod p)$ where $f(x)=x^{2}+1$ if and only if $p=2$ or $p=4 k+1$, for some k.
(d) Prove that if p is a prime number then p has exactly $\varnothing(p-1)$ primitive roots in $(\bmod p)$.

SAC-003-1163003 Seat No. \qquad

M. Sc. (Sem. III) (CBCS) Examination

November - 2021

Mathematics
(Number Theory 1)

Faculty Code : 003
Subject Code : 1163003
Time : 2:30 Hours]
[Total Marks : 70
Instructions :
(1) Attempt any five questions from the following.
(2) There are total ten questions.
(3) Each question carries equal marks.

1) Answer the following :
$7 \times 2=14$
(a) Define order of an element a modulo m. Also find order of 3 in (mod 5) system.
(b) Prove that, 3^{50} cannot divide 100!.
(c) Define Euler's function for a positive integer m and write down the value of $\phi(20200)$.
(d) Define : i) Mobius Function and ii) Square Free Function.

(e) Find the number of solutions of $x^{12} \equiv 16(\bmod 17)$ if 20200 exists.
(c) Find ω (105) and τ (150).
(g) Define prime numbers and also give at least four prime numbers more than 125.

2 Answer the following : $7 \times 2=14$
(a) Define g.c.d. with an example and prove that g.c.d. is always unique for any two real numbers.
(b) For three integers a, b and $n \in \mathbb{N}$, prove that, if $a \mid b$ then $a \mid b+n$ and $a \mid b-n$.
(c) State, Euclid's Algorithm and verify it by an example.
(d) Let $f(n)=\sum_{d \mid n} \mu(d)$ then the value of $f(p)$ is? Justify your answer.
(e) Find the number of solutions of $x^{2} \equiv 1(\bmod 101)$.
(f) Prove that, for any two non-zero integers x and $y \exists a$ and b such that $a x+b y=1$.
(g) If g a primitive root of $(\bmod m)$ and $g \equiv g^{\prime}(\bmod m)$ then show that, g^{\prime} is a primitive root of $(\bmod m)$.

3 Answer the following :
(a) Prove that, if p is a prime number then p has exactly $\phi(p-1)$ primitive roots in $(\bmod p)$.
(b) State, Wilson's Theorem and also verify the theorem for prime number 7 .

4 Answer the following :
(a) In standard notations prove that:

7
(i) If $a \equiv b(\bmod m) \Rightarrow(a, m)=(b, m)$.
(ii) If $(a, m)=1$ then $\exists x_{0}$ such that $a x_{0} \equiv 1(\bmod m)$.
(iii) If $(a, m)=1=(b, m) \Rightarrow(a b, m)=1$.
(b) If $n>1$ is an even integer with $\alpha \geq 3$ and a is any odd integer, prove that, the congruence equation $x^{n} \equiv a\left(\bmod 2^{\alpha}\right)$ has $2^{\beta+1}$ solutions if $a \equiv 1\left(\bmod 2^{\beta+2}\right)$ otherwise no solutions, where $2^{\beta}=\left(n, 2^{\alpha-2}\right)$.

5 Answer the following :
14
(a) Prove that, for a prime number p there is a solution of $f(x) \equiv 0(\bmod p)$ where $f(x)=x^{2}+1$ if and only if $p=2$ or $p=4 k+1$, for some k.
(b) (i) Prove that, if $m \geq 1$ has a primitive root with $(a, m)=1$ then $x^{n} \equiv a(\bmod m)$ has no solutions or $(n, \phi(m))$ solutions $(\bmod m)$ for $n \geq 1$.
(ii) Prove that, for any odd number $a, 8 \mid a^{2}-1$.
6. Answer the following:
(a) State and prove, Hansel's Lemma.
(b) (i) If p is a prime number and $d \geq 1$ such that
$d \mid p-1$ then show that, $x^{d} \equiv 1(\bmod p)$ has exactly d solutions in any C.R.S. (modm).
(ii) Prove that, for g.c.d. (a, b) if d is a positive integer of a and b such that $d \mid a$ and $d \mid b$

$$
\text { then } \frac{g}{d}=\left(\frac{a}{d}, \frac{b}{d}\right)
$$

(a) State and prove, Euler's Theorem.
(b) Prove that, there are infinitely many prime numbers.

8 Answer the following:
(a) For any odd integer a and $n>2$, show that, $x^{n} \equiv a\left(\bmod 2^{\alpha}\right)$ has a unique solution in any C.R.S. (or R.R.S) ($\bmod 2^{\alpha}$) system.
(b) (i) State, Fermat's Theorem. 2
(ii) Find a solution of $x^{3} \equiv 7\left(\bmod 2^{4}\right)$ if exists.

10 Answer the following
(a) (i) For $n \geq 1$ and p be a prime number
then $\left[\frac{n}{p^{j}}\right]=\left[\frac{n-1}{p^{j}}\right]+1$ or 0 .
(ii) Prove that, for any two integers a and b, $(a, b)=(a, b+k a)$ where k is any positive integer.
(b) Suppose $f(x) \equiv 0(\bmod p)$ has degree n, prove that, number of solutions in any C.R.S. $(\bmod p)$ is at most n.

M. Sc. (Sem. III) Examination

December - 2020
Mathematics
Number Theory-I
(New Course)
Faculty Code : 003
Subject Code : 1163003
Time: $2 \frac{1}{2}$ Hours]
[Total Marks : 70

Instructions : (i) Answer any five questions.
(ii) Each question carries 14 marks.

1 Answer following seven short questions
(7 X $2=14$)
(i) For three integers a, b and c , prove that a divide to q b and a divide to $\mathrm{c} \Rightarrow \mathrm{a}$ divide to $\mathrm{b}+\mathrm{c}$ and $\mathrm{b}-\mathrm{c}$.
(ii) Let $g=(m, n)$, GCD of m and n. Prove that g must be positive integer.
(iii) Define term: GCD of two integers m and n. Also find 2 GCD of 120 and 135.
(iv) When we say two integers m and n both are relatively primes. Also give two integers other than primes such that they are relativeiy primes.
2 (v) Write down values of (1) ρ (31) and (2) $\circ(\mathrm{p})$, where p is a prime and ϕ is the Euler's function for a positive integer.
2 (yi) Prove that the equation $x^{2} \equiv 3(\bmod 5)$ has no solutions.
${ }_{2}$ (vii) Prove that 2^{98} can't divide to the value of 100 ! (factorial of 100), while 2^{97} divide to the value 100 !

I Contd...

2 Attempt following both

I La) State and Prove Euler's Theorem.
7 (6) State and Prove Wilson's Theorem.

3 Let m, m_{1}, m_{2} be positive integers such that $m=M_{1}-M_{2} 14$ and $\left(m_{1}, m_{2}\right)$. ie. m_{1} and m_{2} both are relatively primes. Prove that the number of solutions of the equation $f(x) \equiv 0$ $(\bmod m)=$ the product of the number of solutions of the equation $f(x) \equiv 0\left(\bmod m_{1}\right)$ and the number of solutions of the equation, $f(x) \equiv 0\left(\bmod \mathrm{~m}_{2}\right)$.

4 Answer following seven short questions :
$(7 \times 2=14)$
(i) For two integers a, b, if a divide to b and b divide Q to a , then prove that, $\mathrm{a}= \pm \mathrm{b}$.
(ii) For three integers a, b and n , where $\mathrm{n} \in \mathbb{N}$, prove that 2 a divide to $\mathrm{b} \Rightarrow \mathrm{a}^{\mathrm{n}}$ divide to b^{n}, for all $\mathrm{n} \in \mathbb{N}$.
(iii) Let $g=(a, b)$, GCD of a and b. Prove that g must be unique.
(iv) Define term : Prime Number. Also give at least three primes more than 100 .
(v) Define term : Composite Number. Also check 2047 is 2 a composite number or not.
(vi) Define term : GCD of three integers. Verify that (12, $(30,40))=((12,30), 40)$ in standard notation.
2 (vii) Find a solution of $x^{11} \equiv 5\left(\bmod 2^{5}\right)$.

5 Attempt following both
$(2 \times 7=14)$
(a) State and Prove Fundamental Theorem in Arithmetic for product of primes.
(b) State Euclid's Algorithm to find GCD of two non-zero integers m and n. Using this algorithm, find GCD of 3135 and 2310.
(a) Let $\mathrm{h}=$ order of an integer a in $\bmod \mathrm{m}$ and $\mathrm{k}=$ order of an integer b in $\bmod m$, for some positive integer m . Let $(\mathrm{h}, \mathrm{k})=1$. Prove that order of ab in $\bmod \mathrm{m}$ is hk .
(b) Suppose $\mathrm{m}>1,(\mathrm{a}, \mathrm{m})=1$ and $\mathrm{h}=$ order of an integer a in $\bmod m$. If $a^{k} \equiv 1(\bmod m)$, for some integer k, then prove that h divide to k .

7 Attempt following both

$$
(2 \times 7=14)
$$

(1) Suppose m, m_{1}, m_{2} be positive integers, $m=m_{1} m_{2}$, m_{1} and m_{2} are relatively primes and $\circ\left(m_{1}, m_{2}\right) \geq 2$. Prove that m does not have any primitive root.
(2) Prove that, there are infinitely many primes.

8 Attempt following both ($2 \times 7=14$)
(1) Let a, b, c, d are non-zero integers and m, n, q are positive integers. Let $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$ and $\equiv \mathrm{d}(\bmod$ $\mathrm{m})$. Prove that $(\mathrm{i}) \mathrm{qa} \equiv \mathrm{qb}(\bmod \mathrm{m})$ and (ii) $\mathrm{ac} \equiv \mathrm{bd}$ $(\bmod m)$.
(2) Let p be a prime and (a, p) $=1$. Prove that (i) $\mathrm{a}^{\mathrm{p}-1} \equiv 1(\bmod \mathrm{p})$ and (ii) $\mathrm{a}^{\mathrm{p}} \equiv \mathrm{a}(\bmod \mathrm{p})$.

9 Attempt following both

(1) Let a, b be two non-zero integers. Define term a congruent to b in modulo $\mathrm{m},(\mathrm{m} \in \mathbb{N})$. Also prove that the congruence relation in modulo m is an equivalence relation.
(2) For a prime p and a positive integer n, if e is the highest power of p, which divide to the value of factorial $\mathrm{n}(\mathrm{n}!)$, then prove that $\mathrm{e}=. \sum_{j=1}^{\infty}\left[\frac{n}{p^{j}}\right]$, where $[\mathrm{x}]$ $=$ integral part of x .

10 Attempt following both $(2 \times 7=14)$,
(a) For a prime p, prove that p has precisely $\rho(p-1)$ primitive roots, where ϕ is the Euler's function for a positive integer.
(b) In standard notation prove that $[x]+[y] \leq[x+y]$ $\leq[x]+[y]+1$, where $[z]=$ the largest value of an integer, which is less than or equal to z. i.e. $[z]=$ integral part of z.
JBZ-003-1163003Seat No.
M. Sc. (Sem. III) Examination
December - 2019
Mathematics - 3003
(Number Theory - I)
Faculty Code : 003Subject Code : 1163003
Time: $\mathbf{2} \frac{\mathbf{1}}{\mathbf{2}}$ Hours] [Total Marks : 70
Instructions : (1) There are five questions.
(2) All questions are compulsory.
(3) Each question carries 14 marks.
1 Do as directed : (Answer any seven)14(a) Find the number of solution of $x^{2}+1 \equiv 0(\bmod p)$ for pis of the form $4 k+3$.(b) Define Totally Multiplicative Function with example.(c) Find all solutions of $6 x \equiv 2(\bmod 8)$.
(d) Prove that if p be a prime number and p does notdivides a then $a^{p} \equiv a(\bmod p)$.
(e) State Euclid's Algorithm.
(f) Prove that g.c.d is always unique for any two real numbers.
(g) State Division Algorithm.
(h) State De-Poignac's Formulae.
(i) Find $\phi(63 * 625 * 49)$.
2 Answer any two of the following : 14
(a) State and prove Chinese Remainder Theorem. 7
(b) (i) Prove that for $g=\operatorname{g.c.d}(a, b)$ if d is a positive 3integer of a and b such that $d \mid a$ and $d \mid b$ then

$$
\frac{g}{d}=\left(\frac{a}{d}, \frac{b}{d}\right) .
$$

(ii) For $n \geq 1$ and p be a prime number then

$$
\left[\frac{n}{p^{j}}\right]=\left[\frac{n-1}{p^{j}}\right]+1 \text { or } 0 .
$$

(c) Let a and b are non-zero integers then prove that g.c.d of a and b exists and if $g=$ g.c.d (a, b) then $\mathrm{g}=a x+b y$ for some integers x and y.

3 Answer the following :
14
(a) If $m_{1}, m_{2}, m_{3}, \ldots \ldots \ldots \ldots . m_{k} \geq 1$ with the condition
$m=m_{1}+m_{2}+m_{3}+\ldots \ldots \ldots .+m_{n}$ then prove that
$\frac{m!}{m_{1}!m_{2}!m_{3}!\ldots \ldots \ldots m_{n}!}$ is an integer.
(b) State and prove Hansel's Lemma.
(b) Prove that if p is a prime number then p^{2} has exactly $(p-1) \phi(p-1)$ primitive roots in $\left(\bmod p^{2}\right)$.

4 Answer the following :

(a) State and Prove Euler's Theorem.

OR
(a) State and Prove Fundamental Theorem of Arithmetic.
(b) Suppose $f(x)$ is a polynomial with integer coefficients, p is a prime number and $f(x) \equiv 0(\bmod p)$ has degree n. Prove that $f(x) \equiv 0(\bmod p)$ has atmost n solutions in any completer residue system $(\bmod p)$.

5 Answer the following :
14
(a) Prove that $\sigma(n)$ and $\mathfrak{J}(n)$ is a multiplicative function.
(b) If $m_{1}, m_{2} \geq 1$ and $m=m_{1} \cdot m_{2}$ provided m_{1} and m_{2} 5 are relatively prime with $\left(\phi\left(m_{1}\right), \phi\left(m_{2}\right)\right) \geq 2$ then show that m does not have a primitive root.
(c) Prove that if order of $a(\bmod m)=h$ and order of $b(\bmod m)=j$ with $(h, j)=1$ then order of $a b(\bmod m)=h j$.

OR

(c) Prove that for a prime number $p=2$ or $4 k+1$ there 5 is a solution of $f(x) \equiv 0(\bmod p)$ where $f(x)=x^{2}+1$ for some k.
PCE-003-1163003 Seat No. 35079M. Sc. (Sem. III) (CBCS) Examination
December - 2018
CMT - 3003 : Mathematics
(Number Theory - I)
Faculty Code : 003
Subject Code : 1163003
Time : $2 \frac{1}{2}$ Hours]
Instructions : (1) There are five questions.
(2) All questions are compulsory.(3) Each question carries 14 marks.
1 Do as directed : (answer any seven) $7 \times 2=14$
(a) Find all solutions of $x^{4} \equiv 5(\bmod 7)$
(b) Prove that for any

$$
x, y \in \mathbb{R},[x]+[y] \leq[x+y] \leq[x]+[y]+1 .
$$

(c) State Chinese Remainder Theorem.
(d) Find all solutions of $12 x \equiv 18(\bmod 15)$.
(e) Prove that if p be a prime number and p does not divides a then $a^{p} \equiv a(\bmod p)$.
(f) State Euclid's Algorithm.
(g) Define :
(i) Complete Residue System (mod m).
(ii) Reduced Residue System (mod m).
(h) Prove that for $m \neq 0, a x \equiv a y(\bmod m)$ if $x \equiv y\left(\frac{m}{a, m}\right)$.
(i) Find the highest power of 2 which divides 100 !
(j) Find $\phi\left(47^{2}\right)$.

2 Answer any two of the following :
(a) State and prove Hansel's Lemma.
(p) (b) (i) For $n \geq 1$ and p be a prime number then
$175 \quad\left[\frac{n}{p^{j}}\right]=\left[\frac{n-1}{p^{j}}\right]+1$ or 0.
(ii) Find the solution $x^{4} \equiv 1(\bmod 3)$ in C.R.S $(\bmod 3)$.
(c) If $\alpha \geq 3$ then prove that the set $\left\{5,5^{2}, 5^{3}, \ldots \ldots \ldots .5^{2^{\infty-2}}\right\}$.

$$
\begin{aligned}
& \cup\left\{-5,-5^{2},-5^{3}, \ldots \ldots-5^{2^{\alpha-2}}\right\} \text { is a reduced residue system } \\
& \left(\bmod 2^{\alpha}\right)
\end{aligned}
$$

3 Answer the following:
(a) If $f(n)=\sum_{\frac{d}{n}}^{d \geq 1}$
OR
$x(a)$ Solve $x^{3}+x 57 \equiv 0\left(\bmod 5^{3}\right)$.
थ(b) Prove that 2^{α} has no primitive roots for $\alpha \geq 3$.
$\otimes^{(c)}$ Prove that for any prime number p there are exactly $\phi(p-1)$ primitive roots in $(\bmod p)$.

4 Answer the following :
(a) State and Prove Wilson's Theorem.
(b) Suppose $f(x)$ is a polynomial with integer coefficients,

Q p is a prime number and $f(x) \equiv 0(\bmod p)$ has degree n. Prove that $f(x) \equiv 0(\bmod p)$ has atmost n solutions in any completer residue system $(\bmod p)$.

OR

©(b) State and Prove Fundamental Theorem of Calculus.

Answer the following :
(a) Prove that if $m \geq 1$ has a primitive root with $(a, m)=1 \quad 4$
. then $x^{n} \equiv a(\bmod m)$ has no solutions or $(n, \phi(m))$ solutions $(\bmod m)$ for $n \geq 1$
$x^{\text {(b) Prove that if } p}$ is a prime number of the form $p=4 k+3$ with $p / a^{2}+b^{2}$ then for some integers a and $b p$ divides a and b divides b.
(c) Prove that if order of $a(\bmod m)=h$ and order of $b(\bmod m)=j$ with $(h, j)=1$ then order of $a b(\bmod m)=h j$.

5 leks sc) 3 (a)

OR

(8) (c) Prove that there are infinitely many prime numbers.

 HDY-003-1163003
 Seat No.
 M. Sc. (Mathematics) (Sem. III) (CBCS) Examination
 November / December - 2017
 3003 : Number Theory - I
 (Old \& New Course)

Faculty Code : 003
Subject Code : 1163003
Time : $\mathbf{2} \frac{\mathbf{1}}{\mathbf{2}}$ Hours]
[Total Marks : 70

Instructions : (1) There are five questions.
(2) All questions are compulsory.
(3) Each question carries 14 marks.
(4) Figures to the right indicate full marks.

1 Fill in the blanks : (each question carries 2 marks)
(i) If p is a prime number and n is a positive integer then the number of positive divisors of p^{n} is \qquad -
(ii) If p and q are distinct primes then $p^{m} q^{n}$ has \qquad positive divisors. ($m, n \in \mathbb{N}$)
(iii) If p is a prime of the form \qquad then $x^{2}+1 \equiv 0(\bmod p)$ has no solutions.
(iv) If p is a prime number and n a positive integer then the number of positive integers relatively prime to $p^{n}=$ \qquad
(v) If $n=1001 \times 59$ then $\varnothing(n)=$ \qquad
(vi) If p is a prime number and p does not divide a then $a^{p-1} \equiv 1(\bmod p)$. This theorem is called \qquad theorem.
(vii) If m divides $a b$ then $\frac{m}{(a, m)}$ divides \qquad

2 Attempt any two :
(i) Suppose $p_{1}, p_{2}, \ldots \ldots \ldots p_{k}$ are the first k primes then prove that $p_{1}, p_{2}, \ldots \ldots \ldots p_{k}+1$ is a prime number and hence deduce that there infinitely many primes.
(ii) State and prove Division Algorithm.
(iii) State and prove Wilson's theorem.

3 All are compulsory :
(i) State and prove Hensel's Lemma.
(ii) Find the smallest positive integer x such that the remainder is 10 when it is divided by 11, the remainder is 12 when it divided by 13 and the remainder is 6 when it is divided by 7 .
(iii) Suppose $(a, m)=1$. Prove that there is a unique integer x in the complete residue system $(\bmod m)$ such that $a x \equiv 1(\bmod m)$.

OR

3 All are compulsory :
(i) Suppose $f(x)$ is a polynomial with integer coefficients, p is a prime number and $f(x) \equiv 0(\bmod p)$ has degree n. Prove that $f(x) \equiv 0(\bmod p)$ has atmost n solutions in any complete residue system $(\bmod p)$.
(ii) First find the solutions of $f(x) \equiv 0(\bmod 3)$,
$f(x) \equiv 0(\bmod 5), f(x) \equiv 0(\bmod 7)$ and use them to find
all solutions of $f(x) \equiv 0(\bmod 105)$. Here $f(x)=x^{2}-1$.

4 Attempt any two :
(i) Determine which of the following have primitive roots and if an integer has a primitive root then find atleast two primitive roots : 5, $5^{2}, 82,12$ and 35.
(ii) If $\alpha \geq 3$ then prove that the set $\left\{5,5^{2}, 5^{3}, \ldots \ldots .5^{2 \alpha-2}\right\} \cup\left\{-5,-5^{2},-5^{3}, \ldots \ldots . .5^{2^{\alpha-2}}\right\}$ is a reduced residue system $\left(\bmod 2^{\alpha}\right)$.
(iii) Suppose f is a multiplicative function then prove that 7 the function F defined by $F(n)=\sum_{d / n} f(d)$ is a multiplicative function.

5 Do as directed: (Each carries 2 marks)
(i) Write the statement of mobius inversion formula.
(ii) Find the value of $\varnothing(101)$ using mobius inversion formula.
(iii) Find the highest power of 31 which divides 47321 !
(iv) Find the number of positive divisors of 2016.
(v) Find the values of $w(n)$ for $n=49,55,101 \times 83,105$.
(vi) Give an example of a multiplicative function which is not totally multiplicative.
(vii) Find $\sigma(n)$ for $n=150,307$.
JBZ-003-1163003Seat No.
M. Sc. (Sem. III) Examination
December - 2019
Mathematics - 3003
(Number Theory - I)
Faculty Code : 003Subject Code : 1163003
Time: $\mathbf{2} \frac{\mathbf{1}}{\mathbf{2}}$ Hours] [Total Marks : 70
Instructions : (1) There are five questions.
(2) All questions are compulsory.
(3) Each question carries 14 marks.
1 Do as directed : (Answer any seven)14(a) Find the number of solution of $x^{2}+1 \equiv 0(\bmod p)$ for pis of the form $4 k+3$.(b) Define Totally Multiplicative Function with example.(c) Find all solutions of $6 x \equiv 2(\bmod 8)$.
(d) Prove that if p be a prime number and p does notdivides a then $a^{p} \equiv a(\bmod p)$.
(e) State Euclid's Algorithm.
(f) Prove that g.c.d is always unique for any two real numbers.
(g) State Division Algorithm.
(h) State De-Poignac's Formulae.
(i) Find $\phi(63 * 625 * 49)$.
2 Answer any two of the following : 14
(a) State and prove Chinese Remainder Theorem. 7
(b) (i) Prove that for $g=\operatorname{g.c.d}(a, b)$ if d is a positive 3integer of a and b such that $d \mid a$ and $d \mid b$ then

$$
\frac{g}{d}=\left(\frac{a}{d}, \frac{b}{d}\right) .
$$

(ii) For $n \geq 1$ and p be a prime number then

$$
\left[\frac{n}{p^{j}}\right]=\left[\frac{n-1}{p^{j}}\right]+1 \text { or } 0 .
$$

(c) Let a and b are non-zero integers then prove that g.c.d of a and b exists and if $g=$ g.c.d (a, b) then $\mathrm{g}=a x+b y$ for some integers x and y.

3 Answer the following :
14
(a) If $m_{1}, m_{2}, m_{3}, \ldots \ldots \ldots \ldots . m_{k} \geq 1$ with the condition
$m=m_{1}+m_{2}+m_{3}+\ldots \ldots \ldots .+m_{n}$ then prove that
$\frac{m!}{m_{1}!m_{2}!m_{3}!\ldots \ldots \ldots m_{n}!}$ is an integer.
(b) State and prove Hansel's Lemma.
(b) Prove that if p is a prime number then p^{2} has exactly $(p-1) \phi(p-1)$ primitive roots in $\left(\bmod p^{2}\right)$.

4 Answer the following :

(a) State and Prove Euler's Theorem.

OR
(a) State and Prove Fundamental Theorem of Arithmetic.
(b) Suppose $f(x)$ is a polynomial with integer coefficients, p is a prime number and $f(x) \equiv 0(\bmod p)$ has degree n. Prove that $f(x) \equiv 0(\bmod p)$ has atmost n solutions in any completer residue system $(\bmod p)$.

5 Answer the following :
14
(a) Prove that $\sigma(n)$ and $\mathfrak{J}(n)$ is a multiplicative function.
(b) If $m_{1}, m_{2} \geq 1$ and $m=m_{1} \cdot m_{2}$ provided m_{1} and m_{2} 5 are relatively prime with $\left(\phi\left(m_{1}\right), \phi\left(m_{2}\right)\right) \geq 2$ then show that m does not have a primitive root.
(c) Prove that if order of $a(\bmod m)=h$ and order of $b(\bmod m)=j$ with $(h, j)=1$ then order of $a b(\bmod m)=h j$.

OR

(c) Prove that for a prime number $p=2$ or $4 k+1$ there 5 is a solution of $f(x) \equiv 0(\bmod p)$ where $f(x)=x^{2}+1$ for some k.

003-016303

M.Sc. (Maths) (CBCS) (Sem-3) Examination
 December-2014
 Mathematics : Paper No - 3003
 Number Theory 1
 (New Course)

Faculty Code : 003
Subject Code : 016303
Time : $\mathbf{2 1}^{1 ⁄ 2}$ Hours]
[Total Marks : 70
Instructions : (1) There are five questions.
(2) All questions are compulsory.

1. Fill in the blanks: (each question carries $\mathbf{2}$ marks)
(i) If there are integers x and y such that $\mathrm{a} x+\mathrm{by}=-1$ then the g.c.d. of a and b is
(ii) If p is a prime number and n a positive integer then the number of positive integers relatively prime to p^{n} is \qquad .
(iii) If p is a prime of the form $4 \mathrm{k}+3$ then $x^{2}+1 \equiv 0(\bmod \mathrm{p})$ has \qquad solutions.
(iv) If p, q and r are distinct primes then $\mathrm{p}^{4} \mathrm{q}^{2} \mathrm{r}^{5}$ has \qquad positive divisors.
(v) If $\mathrm{n}=100 \times 202$ then $\phi(\mathrm{n})=$ \qquad .
(vi) If p is a prime number and x is any positive integer then $x^{\mathrm{p}}-x$ is divisible by
\qquad -.
(vii) If m divides ab then \qquad divides b .
2. Attempt any two :
(i) Prove that any integer $\mathrm{n}>1$ is a prime or it can be uniquely expressed as a product of primes.
(ii) Prove that the Euclidean algorithm can be used to find the greatest common divisor of two integers.
(iii) Define the Euler function $\phi(\mathrm{m})$. If $\mathrm{m}>0,(\mathrm{a}, \mathrm{m})=1$, then prove that $\mathrm{a}^{\phi(\mathrm{m})} \equiv$ $1(\bmod m)$
3. All are compulsory :
(i) If $\mathrm{m}=\mathrm{ab},(\mathrm{a}, \mathrm{b})=1$, then prove that $\phi(\mathrm{m})=\phi(\mathrm{a}) \phi(\mathrm{b})$.
(ii) Find the smallest positive integer x such that $x \equiv 2(\bmod 3), x \equiv 3(\bmod 5)$, $x \equiv 5(\bmod 7)$.
(iii) If $\mathrm{m} \neq 0$, a, x, y are integers then prove that $\mathrm{a} x \equiv \mathrm{ay}(\bmod \mathrm{m})$ if and only if $x \equiv y\left(\bmod \frac{\mathrm{~m}}{(\mathrm{a}, \mathrm{m})}\right)$.

OR

All are compulsory :
(i) Suppose d is a positive integer, p is a prime number and $d /(p-1)$. Prove that $x^{\mathrm{d}} \equiv 1$ has exactly d solutions.
(ii) First find the solutions of $\mathrm{f}(x) \equiv 0(\bmod 3), \mathrm{f}(x) \equiv 0(\bmod 5), \mathrm{f}(x) \equiv 0(\bmod 7)$ and use them to find all solutions of $\mathrm{f}(x) \equiv 0(\bmod 105)$. Here $\mathrm{f}(x)=x^{2}-1$.
4. Attempt any two :
(i) State and prove Hansel Lemma.
(ii) If m is a non-zero integer and a is relatively prime to m then define the order of $a(\bmod m)$.

If order of $a(\bmod m)=h$ and k is positive integer such that $a^{k} \equiv 1(\bmod m)$ then prove that h devides k .

7
(iii) Suppose p is a prime number then prove that p has $\phi(\mathrm{p}-1)$ primitive roots.
5. Do as Directed : (each carries $\mathbf{2}$ marks)
(i) Define the concept of primitive roots.
(ii) Find the value of $\phi(63 \times 625 \times 49)$
(iii) Find the highest power of 101 which divides 27321 !.
(iv) Find the number of positive integers relatively prime to 10100 .
(v) Find primitive roots of each of the following11, 49, 25.
(vi) Give the definition of the congruence equation $\mathrm{f}(\mathrm{x}) \equiv 0(\bmod \mathrm{~m})$.
(vii) Find $\sigma(\mathrm{n})$ for $\mathrm{n}=15,37$ and 1961.

$||\mid$
 DBM-003-1163004
 Seat No.
 M. Sc. (Sem. III) (CBCS) Examination
 June - 2022
 Mathematics : Course No. 3004
 (Discrete Mathematics)
 Faculty Code: 003
 Subject Code: 1163004

\qquad

Time : 2.30 Hours]
[Total Marks : 70

Instructions:

(1) There are ten questions.
(2) Answer any five of them.
(3) Each question carries 14 marks.

1 Answer the following :
(a) Define: Minterm and Complemented lattice.
(b) Define with example: Isomorphism of Monoids.
(c) Draw: Hasse diagram for $\left(D_{30}, R\right)$.
(d) Let $M_{1}=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right] M_{2}=\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right]$. Find $M_{1} \odot M_{2}$
(e) Define: Lattice, with example.
(f) Define: (1) Sub-Lattice (2) Distributive lattice.
(g) Define a Congruence relation on a Semigroup.
(h) Define: Poset with example.

2 Answer the following :
(1) Define: Machine congruence on a finite state machine.
(2) Define: Phrase structure grammar.
(3) State: Kleen's Theorem.
(4) Define: Language of a Moore machine.
(5) Define the term: Proposition with example.
(6) Make a truth table for the statement: $(p \wedge q) \vee(\sim p)$.
(7) Make truth tables for the statements: (i) $\mathrm{p} \wedge \mathrm{q}$ (ii) $\mathrm{p} \vee \mathrm{q}$.

3 Answer the following questions:
(a) Let R be a relation defined on A and $|A|=n$. Prove that, $\mathrm{R}^{\infty}=\mathrm{R} \cup \mathrm{R}^{2} \cup \mathrm{R}^{3} \cup \ldots . \cup \mathrm{R}^{\mathrm{n}}$.
(b) Define a Modular lattice. Let (L, \leq) be lattice. Then (L, \leq) is Modular lattice if and only if the following holds: "If M is any Sublattice of (L, \leq). Then M is not isomorphic to the Pentagon lattice."

4 Answer the following questions:
(a) Let G be a group and S be a normal subgroup of G . Let R be a relation on G by $a R b$ if and only if $a b^{-1} \in S$. Prove that, R is a congruence relation on G.
(b) Let $p(x, y, z)=(x \wedge y) \vee\left(y \wedge z^{\prime}\right)$. Determine the function $f: B_{3} \rightarrow B$ induced by $p(x, y, z)$.

5 Answer the following questions:
(a) Let p, q be any proposition or statement. Prove that, each of the following compound statements are tautology:
(i) $p \wedge q \Rightarrow p$
(ii) $p \Rightarrow p \vee q$
(iii) $\sim p \Rightarrow(p \Rightarrow q)$
(iv) $\sim(p \Rightarrow q) \Rightarrow p$
(v) $[p \wedge(p \Rightarrow q)] \Rightarrow q$
(vi) $\quad[p \wedge(p \Rightarrow q)] \Rightarrow p$
(b) For the languages given in (i) and (ii) below, construct a phrase structure grammar G such that $L(G)=L$.
(i) $\quad L=\left\{a^{n} b^{m} / n \geq 1, m \geq 3\right\}$ and
(ii) $L=\left\{x^{n} y^{m} / n \geq 2, m \geq 0\right.$ and even $\}$

6 Answer the following questions:
(a) Define: Lexicographic order. Let $n \geq 1$. Let (L, \leq) be a finite Boolean algebra. Prove that, the number of atoms of (L, \leq) is same as number of co-atoms of (L, \leq).
(b) State and prove: Pumping lemma.

7 Answer the following questions:
(a) State and prove: Fundamental theorem of Homomorphism of semigroups.
(b) Describe steps of Warshall's Algorithm for finding W_{k} from $W_{k-1}, k \in\{1,2, \ldots, n\}$. Also using them find R^{∞} for $A=\{1,2,3,4\}$ with $R=\{(1,2),(2,3),(3,2),(3,4)\}$.

8 Answer the following questions:
(a) Define atom. Let (L, \leq) be a finite Boolean algebra. Let $a \in L, a \neq 0$. Let $\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{m}\right\}$ be the set of all atoms of (L, \leq) such that $a_{i} \leq a$ for each $i \in\{1,2, \ldots, m\}$. Prove that, $a=a_{1} \vee a_{2} \vee a_{3} \vee \ldots \vee a_{m}$
(b) Define: GLB and LUB of a subset of (P, \leq). Let $\left(L_{i} \leq_{i}\right)$ be lattices for each $i \in\{1,2, \ldots, n\}$. Let $L=L_{1} \times L_{2} \times \ldots \times L_{n}$ be the Cartesian product of $L_{1}, L_{2}, \ldots, L_{n}$. Let \leq be the product partial order on L. Prove that, ($\left.L=L_{1} \times L_{2} \times \ldots \times L_{n}, \leq\right)$ is also a lattice.

9 Answer the following questions:
(a) Let R is an equivalence relation on $A=\{1,2,3,4,5\}$ determined by the partition P_{1} of A whose members are $\{1,2\},\{3,4\},\{5\}$ and S is another equivalence relation on A determined by the partition P_{2} of A whose members are $\{1\},\{2\},\{3\},\{4,5\}$. Find $(R \cup S)^{\infty}$ using:
(i) Graphical Method (ii) Matrix Method
(b) Let $f_{1}: B_{2} \rightarrow B$ be a Boolean function with $S\left(f_{1}\right)=\{00,01,10\}$ and let $f_{2}: B_{3} \rightarrow B$ be a Boolean function with $S\left(f_{2}\right)=\{000,001,011,010\}$. Construct Karnaugh maps for both f_{1} and f_{2}. Also find the Boolean expressions for both of them.

10 Answer the following questions:
(a) Prove that (\mathbb{N}, R) is distributive lattice, where R is divisibility relation on \mathbb{N}.
(b) Let p, q be propositions. Prove that the following statements hold:
(i) $(p \Rightarrow q) \equiv(\sim p) \vee q$
(ii) $(p \Rightarrow q) \equiv \sim q \Rightarrow \sim p$
(iii) $\sim(p \Rightarrow q) \equiv(p \wedge \sim q)$
(iv) $\sim(p \Leftrightarrow q) \equiv(p \wedge \sim q) \vee(q \wedge \sim p)$
(v) $\quad(p \Leftrightarrow q) \equiv(p \Rightarrow q) \wedge(q \Rightarrow p)$
(vi) $\sim(p \wedge q) \equiv(\sim p) \vee(\sim q)$
(vii) $\sim(\sim p) \equiv p$
(viii) $\sim(p \wedge q) \equiv(\sim p) \vee(\sim q)$

Seat No. \qquad
FP-003-1163004
M. Sc. (Sem. III) (CBCS)

Examination
November - 2022
Mathematics :
Paper - CMT - 3004
(Discrete Mathematics)
Time : $\mathbf{2} \frac{\mathbf{1}}{\mathbf{2}}$ Hours / Total Marks : $\mathbf{7 0}$

Instructions :

(1) There are five questions.
(2) Answer all the questions.
(3) Each question carries 14 marks.

1 Answer any seven of the following : $7 \times 2=14$
(1) Define semigroup. Prove or disprove: \mathbb{N} with usual multiplication is semigroup.
(2) Define :
(a) Reflexive closure of R
(b) Symmetric closure of R.
(3) Define with example: Lattice.
(4) Draw Hasse diagram of (D_{45}, divide) POSET.
(5) Write down idempotent properties for lattice.
(6) Define bounded lattice and give an example of a lattice which is not bounded.
(7) Define: Phrase structure grammar and language of a phrase structure grammar.
(8) Prove that, a distributive lattice is always modular.
(9) Define with example: Proposition.
(10) Explain negation of a proposition.

2 Answer any two from the following questions :
(a) State and prove, fundamental theorem of homomorphism of semigroups.
(b) Let G be a group and H be a subgroup of G . Define a relation R on G by ${ }_{a} R_{b}$ iff $a b^{-1} \in H$ for any $a, b \in G$. Prove that, R is a congruence relation on $G \Leftrightarrow H$ is a normal subgroup of G.
(c) $\mathrm{f}:(\mathrm{S}, *) \rightarrow\left(\mathrm{T}, *^{\prime}\right)$ be a homomorphism of semigroups. Prove that,
(1) $f(S)$ will be a subsemigroup of $\left(T, *^{\prime}\right)$.
(2) If $\left(\mathrm{S},{ }^{*}\right)$ is a monoid and if f is a monoid homomorphism, then $f(S)$ will be a submonoid of (T, *' $^{\prime}$).

3 Answer following two :
(a) Describe the steps of warshall's algorithm for finding W_{k} from W_{k-1} where $k \in\{(1,2, . ., n\}$. Also using them find R^{∞} for $\mathrm{A}=\{1,2,3,4\}$ with $\mathrm{R}=\{(1,2),(2,1),(2,3)$, $(3,4)\}$.
(b) Find number of atoms in finite Boolean algebra. Also prove that, in finite Boolean algebra number of atoms and number of co atoms are same.

OR

3 Answer following two :
Prove that, (L, \leq) is a distributive lattice if and only if for all $a, b, c \in L$
$(a \wedge b) \vee(b \wedge c) \vee(a \wedge c)=(a \vee b) \wedge(b \vee c) \wedge(a \vee c)$
Let $G=\left(V, S, v_{0}, \mapsto\right)$ be a phrase structure grammar in which $V=\left\{v_{0}, w, a, b, c\right\}, S=\{a, b, c\}$ and v_{0} is the starting symbol for substitutions and the production relation \mapsto is given by
(1) $\mathrm{v}_{0} \mapsto$ aw
(2) $w \mapsto$ bbw
(3) $w \mapsto c$. Find $L(G)$.

Answer following two :
(a) Explain contradiction. Verify by truth table that given compound statements are contradiction or not :
(1) $(\mathrm{a} \wedge \mathrm{b}) \wedge(\sim$ a)
(2) $(\mathrm{p} \wedge \sim \mathrm{q}) \wedge(\sim \mathrm{p} \vee \mathrm{q})$
(3) $\sim p \wedge[(p \vee \sim q) \wedge q)]$
(b) Explain logical equivalence. Verify the following by truth table :
(1) $\sim(p \rightarrow q) \equiv(p \wedge \sim q)$
(2) $\sim(p \vee q) \equiv \sim p \wedge \sim q$
(3) $\mathrm{a} \vee(\mathrm{b} \wedge \mathrm{c}) \equiv(\mathrm{a} \vee \mathrm{b}) \wedge(\mathrm{a} \vee \mathrm{c})$

5 Answer any two from the following questions:
(a) Explain the following:
(1) Conditional statement
(2) Biconditional statement
(3) Inverse of a conditional statement
(4) Conjunction of propositions.
(b) State and prove, Kleene's theorem.
(c) Prove that, if (L, \leq) is lattice then $\left(\mathrm{L}, \leq^{-1}\right)$ is also a lattice. Where \leq^{-1} is defined by $\mathrm{a} \leq^{-1} \mathrm{~b}$, if $\mathrm{b} \leq \mathrm{a}, \forall \mathrm{a}$, $b \in L$.
(d) $f:(\mathbb{R},+) \rightarrow\left(\mathbb{R}^{+}, x\right)$ defined by $f(x)=e^{x}$ for any $x \in \mathbb{R}$. Prove that, f is an isomorphism of semigroups.
\qquad

T

Instructions : (1) Answer any five questions.
(2) Each question carries 14 marks.

1 Answer following seven short questions :
(i) Let A be non-empty set and $\mathrm{P}(\mathrm{A})=$ the power set of A . Prove that $(P(A), \cup)$ and $(P(A), \cap)$, both are semigroups.
(ii) In standard notation, prove that $\left(\mathrm{M}_{\mathrm{m} \times \mathrm{n}}(\mathrm{Z}),+\right)$ is a semigroup.
(iii) Define terms: Subsemigroup and Submonoid.
(iv) Define terms: Homomorphism of semigroups and homomorphism of monoids.
(v) Define term: Partial Order Relation.
(vi) Define term totally ordered set and prove that, (\mathbb{N}, \leq) is a totally ordered set.
(vii) Prove that (N , divide) is a POSET and it is not a totally ordered set.

2

Let $\mathrm{f}:\left(\mathrm{S},{ }^{*}\right) \rightarrow\left(\mathrm{T},{ }^{*}\right)$ be an onto homomorphism of
semigroups. Prove that the relation R defined on S by aRb if and only if $f(a)=f(b)$, is a congruence relation on $\left(S,{ }^{*}\right)$ and $\left(S / R^{,} \otimes\right) \simeq\left(T, *^{\prime}\right)$ as semigroups.

3 Answer following seven short questions:
(i) Define term: Connectivity relation for a relation R on a nonempty set A.
(ii) Define term: Homomorphism of Lattices.
(iii) Define terms: Smallest element and greatest element in a Lattice (L, \leq).
(iv) What mean by Hasse diagram of a finite POSET?
(v) Prove that $\sim p \wedge[p \vee(p \wedge q)]$ is a contradiction.
(vi) Prove that $\sim p \vee[p \wedge(p \vee q)]$ is a tautology.
(vii) Let $\mathrm{A}=\{1,2,3,4\}$ and R is a relation on A defined by $R=\{(1,2),(2,1),(2,3),(3,4)\}$. Determine, R^{∞}, the connectivity relation for R on A .

Attempt following both :
(a) Let G be a group and S subgroup of G. Define a relation R on G by a $R b$ iff $a b^{-1} \in S$. Prove that S is a normal subgroup of G, whenever R is a congruence relation on G.
(b) Let (P, \leq) be a POSET. Prove that $(\mathrm{P}, \leq-1)$ is also a POSET, where $\leq^{-1}: P \times P \rightarrow P$ defined by $a \leq^{-1}$ if $b \leq a$, for all a, $b \in P$.

5 Let p, q be any propositions or statements. Prove that each of 14 following compound statements are tautologies:
(1) $p \wedge q \Rightarrow p$
(2) $p \Rightarrow p \vee q$
(3) $\sim p \Rightarrow(p \Rightarrow q)$
(4) $[\sim(p \Rightarrow q)] \Rightarrow p$
(5) $[\sim(p \Rightarrow q)] \Rightarrow q$
(6) $[p \wedge(p \Rightarrow q)] \Rightarrow p$
(7) $(p \wedge q) \vee p^{\prime} \vee q^{\prime}$.
6. Let R be a relation on a non-empty set A. Prove that, the connectivity relation R^{∞} for R is transitive relation on A and $R^{\infty}=R \cup R^{2} \cup \ldots \cup R^{n}$, when $|\mathrm{A}|=\mathrm{n}$.
[Contd...

Define following terms
(1) Syntax of a language
(2) Semantics of a language
(3) Phrase Structure Grammar
(4) Finite State Machine
(5) Language of a phrase structure grammar
(6) Moore Machine
(7) Language of a Moore Machine.

8 Attempt following both :
(1) Let $\left(A, \leq_{A}\right),\left(B, \leq_{B}\right)$ be two POSETS and $f: A \rightarrow B$ be a bijection. Prove that f is an isomorphism of POSETS iff for any $a_{1}, a_{2} \in A, a_{1} \leq_{A} a_{2} \Leftrightarrow f\left(a_{1}\right) \leq_{B} f\left(a_{2}\right)$.
(2) Let $\left(A_{i}, \leq_{i}\right) \mathrm{i}=1,2, \ldots \ldots . \mathrm{n}$ be POSETS and $A=A_{1}, \times A_{2} \times \ldots \times A_{n}$. Prove that A is also a POSET under the relation \leq on A defined by $\left(a_{1}, a_{2}, \ldots a_{n}\right) \leq\left(b_{1}, b_{2}, \ldots . b_{n}\right)$ iff $a_{i} \leq_{i} b_{i}$, for all $\left(a_{1}, a_{2}, \ldots . a_{n}\right)\left(b_{1}, b_{2}, \ldots b_{n}\right) \in A$.

Attempt following both
(1) Define relative complement of an element in an interval [a, b] of a Lattice (L, \leq). For the Lattice (L, \leq), prove that it is modular Lattice iff for any interval $[\mathrm{a}, \mathrm{b}]$ in (L, \leq), if $\mathrm{x}, \mathrm{y} \in[a, b], x \leq y$ and x, y both admits a common relative complement in $[a, b]$, then $x=y$.
(2) Let $\mathrm{f}: f:\left(L_{1}, \leq_{1}\right) \rightarrow\left(L_{2}, \leq_{2}\right)$ be an onto homomorphism of Lattices. Prove that
(a) If $\left(L_{1}, \leq_{1}\right)$ is distributive, then so is $\left(L_{2}, \leq_{2}\right)$.
(b) If $\left(L_{1}, \leq_{1}\right)$ is complemented, then so is $\left(L_{2}, \leq_{2}\right)$.
[Contd...

10 Attempt following both
(1) Let $((L, \leq)$ be a Boolean algebra. Prove that it satisfies the D'Morgon Law. ie.
(a) $(a \vee b)^{\prime}=a^{\prime} \wedge b^{\prime}$ and
(b) $(a \wedge b)^{\prime}=a^{\prime} \vee b^{\prime}$.
(2) Let p, q, r be statements. In standard notations prove that $((p \Rightarrow q) \wedge(q \Rightarrow r)) \Rightarrow(p \Rightarrow r)$ is a tautology.
\qquad
M. Sc. (Sem. III) (CBCS) Examination

December - 2019
Mathematics : CMT - 3004
(Discrete Mathematics) (Old \& New Course)
Faculty Code : 003
Subject Code : 1163005
Time: $\mathbf{2} \mathbf{2} \mathbf{2}$ Hours $]$
[Total Marks: 70

Instructions : (1) Attempt all the questions.
(2) There are 5 questions.
(3) All questions carry equal marks.

1 Answer any seven questions :
$7 \times 2=14$
(a) Define: Congruence relation on semigroups.
(b) Let $f:\left(S,{ }^{* \prime}\right) \rightarrow\left(T,{ }^{*}\right)$ be a homomorphism of semigroups. Prove that the image of f is a subsemigroup of ($T,{ }^{* \prime}$,).
(c) Give an example of lattice which is modular but not distributive.
(d) Prove that any finite lattice is bounded.
(e) Define : Context free grammar and Context free language.
(f) Find regular expression of language of all string of length eight or less.
(g) Define: Toutology with an example.
(h) Define: Existential quantification and Existential quantifier.
(i) Explain: Channel and Noise.
(j) Decide which codeword was transmitted if the received codeword is 1100111 from Hamming code of length seven with three parity bits.

2 Answer any two :
$2 \times 7=14$
(a) State and prove Fundamental theorem of homomorphism of semigroups.
(b) Let R be a relation defined on a non-empty set A. Then prove that the transitive closure of R equals $\bigcup_{n=1}^{\infty} R^{n}$.
(c) Let G be a group. Let R be a congruence relation on G. Prove that there exist a normal subgroup N of G such that for any $a, b \in G, a R b$ if and only if $a b^{-1} \in N$.

3 Answer the following :
(a) Let (L, \leq) be a lattice. Suppose that (L, \leq) is modular.

Prove that (L, \leq) is distributive iff L does not contain any sublattice which is isomorphic to the pentagon lattice.
(b) Let $n>1$ then prove that $\left(D_{n}, \leq_{d i v}\right)$ is complemented iff n is the product of distinct primes.

OR

(a) Let (L, \leq) be a lattice. Then prove that (L, \leq) is distributive iff for all $a, b, c \in L$,
$(a \wedge b) \vee(b \wedge c) \vee(c \wedge a)=(a \vee b) \wedge(b \vee c) \wedge(c \vee a)$
(b) Let V be non zero vector space defined on field F then $(L(V), \subseteq)$ is distributive iff $\operatorname{dim}_{F} V=1$.

4 Answer any two :
$2 \times 7=14$
(a) Find Context free grammars of following languages :
(1) Language of non-palindromes
(2) $L=\left\{x \in\{0,1\}^{*} \mid n_{0}(x)=n_{1}(x)\right\}$
(b) Show that for any NFA $M=\left(Q, \Sigma, q_{0}, A, \delta\right)$ accepting a language $L \subseteq \Sigma^{*}$, there is an FA $M_{1}=\left(Q_{1}, \Sigma, q_{1}, A_{1}, \delta_{1}\right)$, that also accepts L.
(c) Draw FAs corresponding to following regular expressions.
(1) $(11+10)^{*}$
(2) $(0+1)^{*}(1+00)(0+1)^{*}$

5 Answer any two :

$$
2 \times 7=14
$$

(a) Using indirect proof technique show that for all $x, x^{2}+1$ is odd then x is even.
(b) Let p and q be two statements then prove that
(1) $\sim(p \wedge q) \equiv(\sim p \vee \sim q)$
(2) $p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)$
(c) Explain Hamming code and find Hamming code of length seven with three parity bits.
(d) Show that a binary code C can correct up to k errors in any codeword if and only if $d(C) \geq 2 k+1$.

PCF-003-1163004 Seat No. 35063

M. Sc. (Sem. III) (CBCS) Examination

December - 2018
CMT - 3004 : Mathematics
(Discrete Mathematics)
(Old \& New Course)

Faculty Code : 003
Subject Code : 1163004

Time: $\mathbf{2} \frac{\mathbf{1}}{\mathbf{2}}$ Hours]
[Total Marks : 70

Instructions :

(1) Attempt all the questions.
(2) There are 5 questions.
(3) Figures to the right indicate full marks.
\mathcal{X} Answer any seven of the following : 14
(a) Find all complements in lattice $\left(S_{10}, D\right)$
(b) Find minimal and maximal element of poset (P, D) with $P=\{2,3,4,5,6,7,8,9,10\}$ and $D=$ Divisibility relation.
(c) Give an example of lattice which is modular but not distributive.
(d) State isotonicity property for lattices.
(e) Find context free grammar of language $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$
(f) Write regular expression of language of all strings that ends in 00.
(g) Define connectivity relation.
(h) Define direct product of semigroups.
(i) Define the terms : Channel, Decoder
(j) Define Hamming distance of a code.

$\sqrt{2}$ Answer any two of the following :

(a) Let $n>1$ then show that $\left(S_{n}, D\right)$ is complemented iff n is square free integer.
(b) State and prove fundamental theorem of homomorphism of semi groups.
(c) Show that a code C can detect all combination of k or fewer or error if and only if $d(C) \geq k+1$.

3 (a) Let (L, \leq) be a lattice then show that (L, \leq) is modular if $[x, y]$ is any closed interval in (L, \leq) and $a \leq c(a, c \in[x, y])$ and both a, c admit a common relative complement then $a=c$.
(b) Show that for any NFA $M=\left(Q, \Sigma, q_{0} A, \delta\right)$ accepting the language $L \subseteq \Sigma^{*}$. there is an FA $M_{1}=\left(Q_{1}, \Sigma, q_{1}, A_{1}, \delta_{1}\right)$ that also accepts L.

OR

(a) Let (L, \leq) be a lattice then show that following statement are equivalents
(i) For any $a, b, c \in L$ with

$$
a \leq c, a \oplus\left(b^{*} c\right)=(a \oplus b)^{*} c
$$

(ii) For all $x, y, z \in L$ with $z \leq x$

$$
x^{*}(y \oplus z)=\left(x^{*} y\right) \oplus z
$$

(b) State Pumping lemma for regular languages. Using Pumping lemma show that language of all Palindromes is not regular.

4 Answer the followings :
(a) Let R and S be equivalence relation defined on a non empty set A then show that $(R \cup S)^{\infty}$ is smallest equivalence relation defined on A which include $R \cup S$.
(b) Let V be a non zero vector space over field F then $(L(V), \subseteq)$ is distributive iff $\operatorname{dim}_{F} V=1$.

2
[Contd....
$\sqrt{5}$ Answer any two of following questions:
(a) Let (L, \leq) be a lattice then (L, \leq) is distributive if and only if for any $a, b, c \in L$

$$
\left(a^{*} b\right) \oplus\left(b^{*} c\right) \oplus\left(c^{*} a\right)=(a \oplus b)^{*}(b \oplus c)^{*}(c \oplus a)
$$

(b) Show that a binary code C can correct up to k errors in any codeword if and only if $d(C) \geq 2 k+1$.
(c) Let G be a group and H be a normal subgroup of G then show that a relation R defined on G by $g_{1} R g_{2}$ if $g_{1} g_{2}^{-1} \in H$ is a congruence relation of G.
(d) If L_{1} and L_{2} are context free languages then show that $L_{1} \cup L_{2}$ is also context free language. Using above result find context free grammar of language $=\left\{x \in\{0,1\}^{*} \mid n_{0}(x) \neq n_{1}(x)\right\}$

HDZ-003-1163004 Seat No. 035064

M. Sc. (Sem. III) (CBCS) Examination

November/December - 2017
Mathematics : MATHS. CMT-3004
(Disctrete Mathematics) (New Course)

Faculty Code : 003
 Subject Code : 1163004

Time: $\mathbf{2} \mathbf{2} \mathbf{~ H o u r s]}$
[Total Marks : 70

Instructions: (1) Answer all the quesitons.
(2) Each question carries 14 marks.

1 Answer any Seven :
8 (a) Let A be a nonempty set. Define the concept of the free
(b) Let $A=\{0,1\}$. Show that the following expressions are regular expressions over A.
(i) $0^{*}(0 \vee 1)^{*}$
(ii) $(01)^{*}\left(01 \vee 1^{*}\right)$
$44 \pm$ - (c) Define a complemented lattice and illustrate it with an
, 45
(d) Let $f:\left(S,{ }^{*}\right) \rightarrow\left(T,{ }^{* \prime}\right)$ be a homomorphism of semigroups. If f is onto and if ($S,{ }^{*}$) is a monoid, then show that ($T,{ }^{\prime}$) is a monoid.
180 (e) Define a Boolean Algebra. State the reason why the +184 diamond lattice is not a Boolean Algebra.
(f) Let $L \subseteq\{x, y\}^{*}$. When is L said to be a type 2 language over $\{x, y\}$?
(g) Define a (i) phrase structure grammar and a (ii) Moore machine.
$267^{(h)}$ Define a machine congruence on a finite state machine. HDZ-003-1163004]

281-(i) State Kleene's theorem.
14.6 (i) Define a modular lattice: Illustrate that a finis e lattice need not be modular.

2 Answer any Two :

$2 \times 7=14$

(a) State and prove the fundamental theorem of homomorphism of semigroups.
(D) Let (L, \leq) be a lattice. Show that (L, \leq) is distributive if and only if for all.
$a, b, c \in L,(a \wedge b) \vee(b \wedge c) \vee(c \wedge a)=(a \vee b) \wedge(b \wedge c) \wedge(c \vee a)$

214
 (c) Let $n \geq 1$ and let $f: B_{n} \rightarrow B$. Prove that f is produced by a Boolean expression.

\rightarrow
3 (a) Let G be a group and let H be a normal subgroup of G. Let R be a relation defined on G by $a R b$ if and only if $a b^{-1} \in H$. Prove that R is a congruence relation on G.
(b) Let V be a vector space over a field F. Show that the lattice of subspaces of V is modular.
(c) Let $f: A \rightarrow B$ be a bijection. If $\left(A, \leq_{A}\right)$ is a partially is an isomorphism of posts.

OR
3 (a) Let $n \geq 1$. Prove that D_{n}, the lattice of positive divisors of n is distributive.
(b) Let $G=\left(V, S, \nu_{0}, \mapsto\right)$ be a phrase structure grammar in 5 which $\left\{v_{0}, x, y, z\right\}, S=\{x, y, z\}$, and the productions are given by
(1) $\nu_{0} \mapsto x \gamma_{0}$,
(2) $v_{0} \mapsto y v_{0}$, and
(3) $v_{0} \mapsto z$.

Find $L(G)$
(c) Let R be a symmet ic relation defined on a nonempty set A. Prove that R^{∞} is symmetric.

4 Answer any Two :

$$
\text { ' } 2 \times 7=14
$$

(a) Let (L, \leq) be a finite Boolean Algebra. Prove that the number of atoms of (L, \leq) is equal to the number of coatoms of (L, \leq).
(b) Let $M=\left(S, I, \mathcal{F}, \mathrm{~s}_{0}, T\right)$ be a Moore machine. Prove that 7% there exists a type 3 phrase structure grammar G with I as its set of terminal symbols such that $L(M)=L(G)$.
(c) Let $M=\left(S, I, \mathcal{F}, \mathrm{~s}_{0}, T\right)$ be a Moore machine. If R is 300 the w-compatibility relation defined on S, then show that R is a machine congruence on M and $L(M)=L(M / R)$.

5 Answer any Two :
-(a) Let $M=\left(S, I, \mathcal{F}, s_{0}, T\right)$ be a Moore machine. If $w \in L(M)$ is such that $l(w) \geq|S|$, then show that there exist $w_{1}, w_{2}, w_{3} \in I^{*}$ such that $l\left(w_{2}\right)>0, w=w_{1} w_{2} w_{3}$ and ${ }^{-}$ $w_{1} w_{2}^{k} w_{3} \in L(M)$ for all $k \geq 0$.
(b) For the languages given in
(i) and (ii) below, construct a phrase structure grammar G such that $L(G)=L$.

$$
257 \quad \text { (i) } \quad L=\left\{a^{n} b^{m} \mid n \geq 1, m \geq 3\right\}
$$

(ii) $L=\left\{x^{n} y^{m} \mid n \geq 2, m \geq 0\right.$ and even $\}$
(c) Let $(L, *)$ be a commutative semigroup in which $a^{*} a=a$ for all $a \in L$. Prove that the relation \leq defined on L by a $\leq b$ if and only if $a * b=b$ is a partial order and for any $a, b \in L, a * b$ is the least upper bound of $\cdots f^{e} \quad\{a . b\}$ in (L, \leq).
(dd) Let $M=\left(S, I, \mathcal{F}, s_{0}, T\right)$ be a Moore machine. For each $n \geq 0$, let R_{n} be the relation defined on S by $s_{i} R_{n} s_{j}$ if and only if s_{i} and s_{j} are w-compatible for all $w \in I^{*}$ with $l(w) \leq n$. Let $k \geq 0$ and let $s, t \in S$. Show that the following statements are equivalent:
(i) $s R_{k+1} t$
(ii) $c_{7} R_{k} t$ and $f_{x}(s) R_{k} f_{x}(t)$ for each $x \in I$.

MBS-003-016304
Seat No

M. Sc. (Sem. III) (CBCS) Examination
 December - 2016
 Mathematics : MATH.CMT-3004
 (Discrete Mathematics)

Faculty Code : 003
Subject Code : 016304
Time : $2 \frac{1}{2}$ Hours $]$
[Total Marks : 70
Instructions : (1) Answer all the questions.
(2) Each question carries 14 marks.

1 Answer any seven :
$7 \times 2=14$

(a) Define :
(i) a semigroup and
(ii) a monoid.
(2) (b) Define a congruence relation on a semigroup $(S, *)$.
(2) (c) State the fundamental theorem of homomorphism of semigroups.
(d) Define :
(i) a bounded lattice and
(ii) a complemented lattice.
(3) -(e) Let (L, \leq) be a lattice with greatest element 1 .

Define the concept of coatom of (L, \leq). Mention the set of coatoms of D_{165}.
(f) Define a phrase structure grammar and illustrate it with an example.
(g) Determine the regular set corresponding to the regular expression $a a^{*} b^{*} a$ over $\{a, b\}$.
(h) Let $f_{1}, f_{2}: B_{3} \rightarrow B$. Verify that $S\left(f_{1} \vee f_{2}\right)=S\left(f_{1}\right) \cup S\left(f_{2}\right)$.
(i) Show that any distributive lattice is modular.
(j) Let R be a machine congruence on a Moore machine M. Show that $L(M) \subseteq L(M / R)$.

2 Answer any two:
(a) Let R be a congruence relation on a group G. Show that there exists a normal subgroup H of G such that for any $a, b \in G, a R b$ if and only if $a b^{-1} \in H$.
(b) Let $n>1$. Prove that D_{n}, the lattice of positive divisors of n is complemented if and only if n is the product of distinct primes.
If R, S are equivalence relations defined on a nonempty set A, then prove that $(R \cup S)^{\infty}$ is the smallest equivalence relation on A containing both R and S.

3 (a) Let V be a vector space over a field F. Prove that $L(V)$, the lattice of subspaces of V is modular.
(b) Let $f: B_{3} \rightarrow B$ be such that $S(f)=\{000,001,011,100,111\} .5$. Show that $p(x, y, z)=\left(y^{\prime} \wedge z^{\prime}\right) \vee\left(x^{\prime} \wedge y^{\prime}\right) \vee(y \wedge z)$ is a Boolean expression for f.
(c) Let (L, \leq) be a Boolean Algebra. Let $a, b \in L$.

Show that $(a \vee b)^{\prime}=a^{\prime} \wedge b^{\prime}$.

OR

4 (a) Let A be a finite nonempty set containing exactly n elements. Let R be a relation defined on A. Show that $R^{\infty}=R \cup \ldots \cup R^{n}$.
(b) Prove that a lattice (L, \leq) is distributive if and only if 5 for all $a, b, c \in L,(a \vee b) \wedge c \leq a \vee(b \wedge c)$.

MBS-003-016304]
[Contd...
(c) Let $V=\left\{v_{0}, w, a, b, c\right\}, S=\{a, b, c\}$ and \mapsto is a relation on 4 V^{*} given by
(1) $v_{0} \mapsto a w$,
(2) $w \mapsto b b w$, and
(3) $w \mapsto c$.

Let $G=\left(V, S, v_{0}, \mapsto\right)$. Find $L(G)$.

4 Answer any two :
(a) Let (L, \leq) be a finite Boolean Algebra. Prove that (L, \leq) is isomorphic of $(P(A), \subseteq)$ for some nonempty finite set A.
\checkmark (b) Let R be a relation defined on a nonempty finite set A. Describe Warshall's Algorithm for finding the transitive closure of R.
$\forall(c)$ Construct a phrase structure grammar G such that $L(G)=\left\{a^{n} b^{m}: n \geq 1, m \geq 1\right\}$. Prove that there exists no type 3 grammar G such that $L(G)=\left\{a^{n} b^{n}: n \geq 0\right\}$.

5 Answer any two :

$$
2 \times 7=14
$$

(a) Let $n \geq 2$ and $\left(L_{i}, \leq_{i}\right)$ be a lattice for each $i \in\{1,2, \ldots \ldots, n\}$. Let $L=L_{1} \times L_{2} \times \ldots \ldots \times L_{n}$. Show that (L, \leq) is distributive if and only if $\left(L_{i}, \leq_{i}\right)$ is distributive for each $i \in\{1,2, \ldots \ldots, n\}$, where \leq is the product partial order on L.
(b) Let M be a Moore machine with $S=\left\{s_{0}, s_{1}\right\} . I=\{0,1\}$, $f_{0}: S \rightarrow S$ is the identity mapping on $S, f_{1}\left(s_{0}\right)=s_{1} \cdot f_{1}\left(s_{1}\right)=s_{0}$, and $T=\left\{s_{1}\right\}$. Determine $L(M)$ and find a regular expression α over $\{0,1\}$ such that $L(M)=$ the regular set corresponding to α. Also construct a type 3 grammar G such that $L(G)=L(M)$.

(c) Prove the fundamental theorem of homomorphism of

 semigroups.(d) Let $\left(A, \leq_{A}\right)$ be a lattice. Let $f: A \rightarrow B$ be a bijection. Prove that there exists a relation \leq_{B} defined on B such that $\left(B, \leq_{B}\right)$ is a lattice and f is an isomorphism of lattices.
(9) $a a^{*} b^{*} a=\left\{a a, a a a, a b a, a a b a, a a^{2} a, a a^{2} b a, \ldots\right\}$

BBJ-003-016304
M. Sc. (Sem. III) (CBCS) Examination

December - 2015
Mathematics : CMT-3004
(Discrete Mathematics)
Faculty Code : 003
Subject Code : 016304
Tine : $2 \frac{1}{2}$ Hours]
[Total Marks : 70

Instructions: (1) Answer all the questions

(2) Each question carries 14 marks.

1. Answer any Seven
$2 \times 7=14$
(a) Let p, q, r be propositions. Show that $p \vee(q \vee r) \equiv(p \vee q) \vee r$.

1 (ib) Let R be a relation defined on a nonempty set A. If R is symmetric, then show that R° is symmetric.
 on G as follows: $a R b$ if and only if $a \dot{b}^{-1} \in H$. Prove that R is a congruence relation.
1 ($d)$ When is a lattice (L, ς) said to be distributive? Show that the homomorphic image of a distributive lattice is distributive.
249 (e) Define type 3 phrase structure grammar: Illustrate it with an example.
(f) Let $n \geq 1$ and $x, y, z \in B^{n}$. Prove that $\delta(x, z) \leq \delta(x, y)+\delta(y, z)$,
$4 g$ State the fundamental theorem of homomorphism of semigroups. Show that for any nonempty set A, the semigroup $(N \cup\{0\},+$) is isomorphic to a quotient semigroup of A^{*}.
(h) If (L_{1}, \leq_{1}) and (L_{2}, \leq_{2}) are complemented lattices, then prove that their direct product $\ddot{L}=L_{1} \times L_{2}$ is also complemented.
254 (i) Let A be a nonempty set. State the rules for computing the regular set corresponding to a regular expression over A.
88: (j) State Ilene's theorem.

$$
2 \times 7=14
$$

${ }^{2}$ Answer any Two
of the transitive closure of R using. Warshall's Algorithm.
(b) Prove that a lattice (L, \leq) is distributive if and only if for all $a, b, c \in L$,
(c) If
(c) If a lattice (L, \leq) is not modular, then show that (L, \leq) contains a subdevice isomorphic to

BBJ-003-016304]
2. (a) Let $f: B_{3} \rightarrow B$ be such that $S(f)=\{000,001,011,100,111\}$. Find a
(b)Iean expression for f.
(b)) Let $G=\left(V, S, v_{0}, \mapsto\right)$ be a phrase structure grammar with $V=\left\{v_{0}, x, y, z\right\}$,
$S=\{x, y, z\}$, and the production relation is given by $1 . v_{0} \mapsto x v_{0}, 2 . v_{0} \mapsto y v_{0}$, and $3 . v_{0} \mapsto z$. Find $L(G)$.
(c) Let $f:(S, \star) \rightarrow\left(T, \star^{\prime}\right)$ be a surjective homomorphism of semigroups. If
$\left(S^{\prime}, \star\right)$ is a monoid, then prove that $\left(T^{\prime}, \star^{\prime}\right)$ is a monoid.
OR
mapping on $S, f_{1}\left(s_{0}\right)=s_{1}, f_{1}\left(s_{1}\right)=\left\{s_{0}, s_{1}\right\}, I=\{0,1\} . f_{0}=$
(b) Construct ${ }^{2}, f_{1}\left(s_{1}\right)=s_{0}$, and $T=\left\{s_{0}\right\}$. Determine $L(M)$. $25^{1, m \geq 1\}}$.

(c) State and prove De Morgan's laws for logic.

4. Answer any Two
(a) State and prove Pumping lemma .-2
(b) Let $e: B^{m} \rightarrow B^{n}$ be a group code. Prove that the minimum distance of e is the minimum weight of a nonzero code word.
c.) Let M be a Moore machine with state set S and input set I. Let $k \geq 0$
and R_{k} be the relation defined on S as follows: for any $s, t \in S, s R_{k} t$ if and
 for any $s, t \in S, s R_{k+1} t$ if and only if the following conditions hold: (1) $s R_{k} t$ and (2) $f_{x}(s) R_{k} f_{x}(t)$ for each $x \in I$.
5. Answer any Two
(a) Let (L, \leq) be a finite Boolean Algebra. Let $a \in L, a \neq 0$. Prove that a can be expressed as a join of atoms in L.
(b) (i) Let R be a relation defined on a nonempty set A. Prove that R^{∞} is $61+63$ the transitive closure of R. If A contains exactly n. elements, then prove that
(c) Let M be a nondeterministic finite state machine. Show that there exists a Moore machine M_{1} such that $L(M)=L\left(M_{1}\right)$.
(d) Let p, q be propositions. Show that each one of the following is a tautol-
logy. (i) $(p \wedge(p \Rightarrow q)) \Rightarrow q(i i)-(p \Rightarrow q) \Leftrightarrow(\tilde{q} \Rightarrow \tilde{p})$:

DBN-003-1163005 Seat No

\qquad
M. Sc. (Sem. III) Examination
June - 2022
Mathematics : EMT 3011
(Differential Geometry)
Faculty Code : 003Subject Code : 1163005
Time : $\mathbf{2} \frac{\mathbf{1}}{\mathbf{2}}$ Hours][Total Marks : 70
Instructions :
(1) Attempt any five questions from the following.
(2) There are total ten questions.
(3) Each question carries equal marks
1 Attempt the following : 14(1) Define with example: Regular curve.
(2) Define: ε - neighborhood in R^{2}.
(3) Find curvature and torsion of the circle
$2 x^{2}+2 y^{2}-12 x-12 y-36=0$.
(4) Define with examples: Functions of class k.
(5) Define: Tangent vector field.
(6) Define: Length of a regular curve segment.
(7) Define: Unit speed curve.
2 Attempt the following : 14
(1) Find the curvature and torsion of the curves
(i) $5 x+2 y=0$ and
(ii) $x^{2}+y^{2}=4$.
(2) Define with example: Simple surface.
(3) Define : The Osculating plane and the Rectifying plane. Also demonstrate them on a surface of an upper Hemisphere.
(4) Is the curve $a(x)=\left(x^{100}, 2 x+7,5 x^{2}+3\right)$ is regular? Justify your answer.
(5) Define: Normal curvature and Geodesic curvature.
(6) Identify the curve $x \cos \alpha+y \sin \alpha=p$ and find its curvature and torsion.
(7) Define: Velocity vector of a regular curve α.

3 Attempt the following :
(a) Define tangent line to a curve. Show that the curve $\alpha(t)=(\sin 6 t \cos t, \sin 6 t \sin t, 0)$ is regular. Also find the equation of tangent line to α at the point $t=\frac{\pi}{6}$.
(b) Show that the curve $\alpha(S)=\left(\frac{5}{13} \cos S, \frac{8}{13}-\sin S,-\frac{12}{13} \cos S\right)$ is a unit speed curve. Also compute its curvature and torsion of the given curve.

4 Attempt the following :
(a) Define reparametrization of a curve. If $g:[c, d] \rightarrow$ [α, b] is a reparametrization of a curve segment $\alpha:[a, b]$ $\rightarrow R^{3}$ then prove that the length of α is equal to the length of $\beta=\alpha \circ g$. Also derive the relation between their tangent planes.
(b) Define the arc length of a curve and prove that the arc length is one - one function mapping (a, b) onto (c, d) and it is a reparametrization. Is the curve reparametrized by its arc length yield a unit speed curve? Justify your answer.

5 Attempt the following:
(a) Let $\alpha(s)$ be a unit speed curve whose image lies on a sphere of radius r and centre m then show that $k \neq 0$.
Also if $\tau \neq 0$ then $\alpha-m=-\rho N-\rho^{\prime} \sigma \beta$ and $r^{2}=\rho^{2}\left(\rho^{\prime} \sigma\right)^{2}$ (where $\rho=\frac{1}{k}$ and $\sigma=\frac{1}{\tau}$).
(b) Is the curve $\alpha(t)=\left(\sin t, \cos ^{2} t, \cos t\right)$ regular? If so then find the equation of tangent line at $t=\frac{\pi}{4}$.

6 Attempt the following :
(a) Prove that: The set of all tangent vectors to a simple surface $x: u \rightarrow R^{3}$ at P is a vector space. Also find the dimension of that vector space.
(b) Show that the length of the curve
$\alpha(t)=\left(2 \alpha\left(\sin ^{-1} t+t \sqrt{1-t^{2}}\right), 2 a t^{2}, 4 a t\right)$ between the points $t=t_{1}$ to $t=t_{2}$ is $4 a \sqrt{2}\left(t_{2}-t_{1}\right)$. What will be the arc length between the points $t_{1}=25$ and $t_{2}=30$?

7 Attempt the following:
(a) Define orthonormal vectors and prove that the set $\{T$, $N, B\}$ is orthonormal.
(b) Find the arc lengths of the curves $\alpha(t)=(r \cos t, r \sin t, 0)$ and $\quad \alpha(t)=(r \cos \omega s, r \sin \omega s, h \omega s)$. Also reparametrize them by their arc lengths.

8 Attempt the following :
(a) Show that a simple surface remains simple even after coordinate transformation.
(b) Prove in the usual notations the relation

$$
g_{i j}=\Sigma g_{\alpha \beta} \frac{\partial v^{\alpha}}{\partial u^{i}} \frac{\partial v^{\beta}}{\partial u^{j}}
$$

9 Attempt the following :
(a) Define Monge patch and compute coefficients of first and second fundamental form. Also find Christoffel symbols for the same.
(b) State and prove Frenet - Serret theorem.

10 Attempt the following:
(a) Prove in the usual notations:

$$
\Gamma_{i j}^{l}=\frac{1}{2} \Sigma_{k=1}^{2} g^{k l}\left(\frac{\partial g_{i k}}{\partial u^{j}}+\frac{\partial g_{k j}}{\partial u^{i}}-\frac{\partial g_{i j}}{\partial u^{k}}\right)
$$

(b) Prove that: A necessary and sufficient condition for a curve to be a straight line is that the curvature $K=0$.

Seat No. \qquad
FQ-003-1163005
M. Sc. (Sem. III) Examination

November - 2022
Mathematics : EMT-3011
(Differential Geometry)

Faculty Code : 003
Subject Code : 1163005

Time : 2 $\frac{1}{2}$ Hours / Total Marks : 70

Instructions :

(1) There are total Five questions.
(2) Each question carries equal marks.
(3) All the questions are compulsory.

1 Attempt any seven : 14

1. Define : Regular curve and simple surface.
(2) Define : Right circular helix.
2. Is the curve $\alpha(t)=\left(t^{15}, t^{35}, 5+5 t^{2}\right)$ regular ? Justify your answer.
3. Define : Arc length of a curve.
4. Define : Monge patch:
5. Define : Proper co-ordinate patch.
6. Define : Normal curvature and Geodesic curvature.
7. Define : Reparametrization of a curve.
8. Fine the curvature and torsion of the circle $x^{2}+y^{2}=49$.
9. Define : \in-neighbourhood.

2 Attempt the following :
(a) Find the arc length of the curve $\alpha(t)=(a \cos t, a \sin t$, at $\tan \alpha)$.
(b) Reparametrize the circle $\alpha(t)=(a \cos t, a \sin t, 0)$ by its arc length and also find its curvature and torsion (where $a>0$).

OR

(b) If $g:[c, d] \rightarrow[a, b]$ is a reparametrization of a curve segment $\alpha:[a, b] \rightarrow R^{3}$ then show that the length of α is equal to the length of $\beta=\alpha \circ g$. Also establish the relation between the tangent vector spaces S and T of β and α respectively.

3 Attempt the following :
(a) For the circular helix $\alpha(t)=(r \cos \omega s, r \sin \omega s, h \omega s)$, show that $k=\omega^{2} r$ and $\tau=\omega^{2} h$ (where $\omega=\left(r^{2}+h^{2}\right)^{-\frac{1}{2}}$).

OR

(a) Is the curve $\alpha(s)=\left(\frac{(1+s)^{\frac{3}{2}}}{3}, \frac{(1-s)^{\frac{3}{2}}}{3}, \frac{s}{\sqrt{2}}\right)$ unit speed curve ? If so compute its Frenet-Serret apparatus.
(b) Prove in the usual notations :

$$
\Gamma_{i j}^{l}=\frac{1}{2} \sum_{k=1}^{2} g^{k l}\left(\frac{\partial g_{i k}}{\partial y^{j}}+\frac{\partial g_{k j}}{\partial u^{i}}-\frac{\partial g_{i j}}{\partial u^{k}}\right)
$$

4 Attempt the following :
(a) Define binormal vector. Prove that the set $\{T, N, B\}$ is orthonormal. Sate and prove Frenet - Serret theorem.
(b) Prove that : A unit speed cure $\alpha(s)$ with $k \neq 0$ is a right circular helix iff there is a constant c such that $\tau=c k$.
(a) If $x: u \rightarrow R^{3}$ is a simple surface and $f: v \rightarrow u$ is a co-ordinate transformation such that $y=x \circ f$ then prove that
(i) The tangent plane to the simple surface x at $P=x(f(a, b))$ is equal to the tangent plane to the simple surface y at $P=y(a, b)$.
(ii) The normal to the surface x at P is same as the normal to the surface y at P except possibly it may have the opposite sign.
(b) Find the coefficient of second fundamental form and Christoffel symbols for the Monge patch.
(c) Define sphere of radius r and centre m. If $\alpha(s)$ is a unit speed curve whose image lies on a sphere of radius r and centre m then show that $k \neq 0$. Also if $\tau \neq 0$ then $\alpha-m=-\rho N-\rho^{\prime} \sigma \beta$ and $r^{2}=\rho^{2}+\left(\rho^{\prime} \sigma\right)^{2} \quad$ (where $\rho=\frac{1}{k}$ and $\sigma=\frac{1}{\tau}$).
(d) For a simple surface $x: u \rightarrow R^{3}$ prove that:
(i) $x_{i j}=L_{i j} n+\sum_{k} \Gamma_{i j}^{k} x_{k}$
(ii) For any unit speed curve $\gamma(S)=x\left(\gamma^{\prime}(S), \gamma^{2}(S)\right)$,

$$
k_{n}=\sum_{i, j} L_{i j}\left(\gamma^{i}\right)^{\prime}\left(\gamma^{i}\right)^{\prime} \text { and }
$$

$$
k_{g} S=\sum_{k}\left[\left(\gamma^{k}\right)^{\prime \prime}+\sum_{i, j} \Gamma_{i j}{ }^{k}\left(\gamma^{i}\right)^{\prime}\left(\gamma^{j}\right)^{\prime}\right] x_{k}
$$

\qquad
M. Sc. (Sem. III) Examination

December - 2020
EMT-3011 : Mathematics (Differential Geometry) (New Course)

Faculty Code : 003

Subject Code : 1163005

[Total Marks : 70 Time : $2 \frac{1}{2}$ Hours]

Instructions : (1) There are 10 questions.
(2) Attempt any 5 questions.
(3) Figures to the right indicate full marks.

1 Attempt the following :

(1) Define Regular Curve. Is the curve $a(t)=\left(t^{15}, t^{95}, 100 t\right)$ regular ? Justify your answer.
(2) Define : Velocity vector and tangent vector field of a regular curve α.
(3) Define : Analytic function.

2 (4) Define : Arc length and curvature of a curve.
(5) ${ }^{-}$Define : Unit Speed Curve.
(6) Define : Simple Surface.

2 (7) Define : Tangent space to a simple surface.

2 Attempt the following :
(1) Define : Normal curvature and Geodesic curvature.
(2) Define : Tangent vector to a simple surface.
(3) Define : Monge patch.
(4) Define First fundamental form.
(5) Is the surface $x\left(u^{1}, u^{2}\right)=\left(u^{1}, u^{2}, u^{1} u^{2}\right)$ simple ? Justify your answer.
(6) Find g^{11} and g^{22} for the surface considered in above question no. (5).
(7) Obtain matrix $g_{i j}$ and g for the surface $x(u, v)=\left(u^{3}, u v, v^{3}\right)$

3 Attempt the following :
(a) Find the arc length of the helix

$$
a(t)=(r=\cos t, r \sin t, a r \tan \alpha)
$$

(b) Define : Reparametrization. If $g:[c, d] \rightarrow[a, b]$ is a reparametrization of a curve segment $a:[a, b] \rightarrow R^{3}$ then show that the length of α is equal to the length of $\beta=\alpha \circ g$.

4 Attempt the following:
(a) Identify the crave $\alpha(\theta)=(a \cos \theta, a \sin \theta, 0)$. Also (i) Find the curvature. (ii) Reparametrize the curve by its arc length (where $\mathrm{a}>0$).
(b) Show that $\alpha(s)=\frac{1}{2}\left(\cos ^{-1} s, s \sqrt{1-s^{2}}, 1-s^{2}, 0\right)$ is a unit speed curve. Also find its torsion.

5. Attempt the following:

(a) Is the curve $\alpha(s)=\left(\frac{(1+s)^{\frac{3}{2}}}{3}, \frac{(1-s)^{\frac{3}{2}}}{3}, \frac{s}{\sqrt{2}}\right)$ unit speed curve? If so, compute its Fenet-Serret appartus.
(b) State and prove Fenet-Serret theorem.

6 Attempt the following :
(a) Let $\alpha(s)$ be a unit speed curve whose image lies on a sphere of radius r and centre m then show that $k \neq 0$. Also if $\tau \neq 0$ then $\alpha-m=-\rho N-\rho^{\prime} \sigma \beta$ and $r^{2}=\rho^{2}+\left(\rho^{\prime} \sigma\right)^{2}\left(\right.$ where $\rho=\frac{1}{k}$ and $\left.\sigma=\frac{1}{\tau}\right)$.
[Contd...
(b) Find curvature and torsion for the circular helix $\alpha(t)=(r \cos \omega s, r \sin \omega s, h \omega s), \quad\left(\right.$ where $\left.\omega=\left(r^{2}+h^{2}\right)^{-\frac{1}{2}}\right)$.
Also prove that : A unit speed curve $\alpha(s)$ with $k \neq 0$ is a right circular helix of there is a constant c such that $\tau=\mathrm{CK}$.

7 Attempt the following :
(a) If $x: u \rightarrow R^{3}$ is a simple surface and $f: v \rightarrow u$ is a co-ordinate transformation such that $y=x \circ f$ then prove that
(i) The tangent plane to the simple surface x at $P=x(f(a, b))$ is equal to the tangent plane to the simple surface at $P=y(a, b)$.
(ii) The normal to the surface x at P is same as the normal to the surface y at P except possibly it may have the opposite sign.
(b) Prove in the usual notations the relation $K^{2}=K_{n}^{2}+K_{g}^{2}$. For the surface $x(r, s)=\left(r, s, \sqrt{1-r^{r}-s^{2}}\right)$ show that $K_{n}=-1$ and $K_{g}=0$.

8 Attempt the following :
(a) Prove that: The set of all tangent vectors to a simple surface $x: u \rightarrow R^{3}$ at P is a vector space. Also show that the dimension of this vector space is 2 .
(b) For a simple surface $x: u \rightarrow R^{3}$ prove that:
(i) $\chi_{i j}=L_{i j} n+\sum_{k} \Gamma_{i j}^{k} \chi_{k}$
(ii) For any unit speed curve $\gamma(S)=x\left(\gamma^{\prime}(S), \gamma^{2}(S)\right)$,

$$
\begin{aligned}
& k_{n}=\sum_{i, j} L_{i j}\left(\gamma^{i}\right)\left(\gamma^{i}\right) \text { and } \\
& k_{g} S=\sum_{k}\left[\left(\gamma^{k}\right)+\sum_{i, j} \Gamma_{i j}^{k}\left(\gamma^{i}\right)\left(\gamma^{j}\right)\right] \chi_{k}
\end{aligned}
$$

Contd...

9 Attempt the following :
(a) Define first fundamental and second fundamental forms. Find the Christoffel symbols for the surface

$$
x\left(u^{1}, u^{2}\right)=\left(u^{1}, u^{2}, f\left(u^{1} u^{2}\right)\right)
$$

(b) Prove in the usual notations the relation : $g=\breve{g} \operatorname{det}\left(g_{i j}\right)$

10 Attempt the following :
(a) For the Christoffel symbols of second kind show that:

$$
\Gamma_{i j}^{l}=\frac{1}{2} \sum_{k=1}^{2} g^{k l}\left(\frac{\partial g_{i k}}{\partial u^{j}}+\frac{\partial g_{k i}}{\partial u^{i}}-\frac{\partial g_{i j}}{\partial u^{k}}\right)
$$

(b) Let $f: X \rightarrow R^{3}$ be a simple surface and $f: v \rightarrow u$ is a co-ordinate transformation then prove that $y=X \circ f: v \rightarrow R^{3}$ is also a simple surface.
$|||\mid$
JBA-003-1163004 Seat No.
M. Sc. (Sem. III) Examination December - 2019
EMT-3011 : Mathematics(Differential Geometry)
Faculty Code : 003Subject Code : 1163004
Time: $\mathbf{2} \mathbf{2}$ Hours]
[Total Marks : 70
Instructions : (1) There are 5 questions.
(2) Attempt all the questions.(3) Each question carries equal marks.
1 Attempt any seven : 14
(1) Define : Regular curve and regular curve segment.(2) Define : Proper co-ordinate patch.
(3) Is the curve a $\alpha(t)=\left(t^{3}, t^{2}, 100 t\right)$ regular? Justify your answer.
(4) Define : Arc length.
(5) Define: Unit speed curve.
(6) Define : The tangent space and the normal space.
(7) Define : Normal curvature and Geodesic curvature.
(8) Define: Simple surface.
(9) Define : Tangent vector to a simple surface.
(10) Define : Tangent vector field.
2 Attempt the following : 14
(a) Define right circular helix and find the arc length of the helix $\alpha(t)=(a \cos t, a \sin t, a t \tan \alpha)$.
(b) Define : Reparametrization. If $g:[c, d] \rightarrow[a, b]$ is a reparametrization of a curve segment $\alpha:[a, b] \rightarrow R^{3}$ then show that the length of α is equal to the length of $\beta=\alpha \circ \mathrm{g}$.

OR

(b) Reparametrize the curve $\alpha(t)=(r \cos t, r \sin t, 0)$ by its arc length and also find its curvature (where $r>0$).

3 Attempt the following:
(a) For the circular helix $\alpha(t)=(r \cos \omega s, r \sin \omega s, h \omega s)$, compute Frenet - Serret appartus.
$\left(\right.$ where $\left.\omega=\left(r^{2}+h^{2}\right)^{-\frac{1}{2}}\right)$.

OR

(a) Show that $\alpha(s)=\left(\frac{(1+s)^{\frac{3}{2}}}{3}, \frac{(1-s)^{\frac{3}{2}}}{3}, \frac{s}{\sqrt{2}}\right)$ is a unit speed curve and compute its Frenet Serret appartus.
(b) Show that the curve $\alpha(S)=\left(\frac{5}{13} \cos S, \frac{8}{13}-\sin S,-\frac{12}{13} \cos S\right)$ is a unit speed curve. Also compute its Frenet - Serret appartus.

4 Attempt the following:
(a) Prove that: The set of all tangent vectors to a simple surface $x: u \rightarrow R^{3}$ at P is a vector space.
(b) State and prove Frenet - Serret theorem.
(a) If $x: u \rightarrow R^{3}$ is a simple surface and $f: v \rightarrow u$ is a co-ordinate transformation such that $y=x \circ f$ then prove that
(i) The tangent plane to the simple surface x at $P=x(f(a, b))$ is equal to the tangent plane to the simple surface y at $P=y(a, b)$.
(ii) The normal to the surface x at P is same as the normal to the surface y at P except possibly it may have the opposite sign.
(b) Let α (s) be a unit speed curve whose image lies on a sphere of radius r and centre m then show that $k \neq 0$. Also if $r \neq 0$ then $\alpha-m=\rho N-\rho^{\prime} \sigma \beta$ and $r^{2}=\rho^{2}+\left(\rho^{\prime} \sigma\right)^{2} \quad$ (where $\rho=\frac{1}{k}$ and $\sigma=\frac{1}{\tau}$).
(c) Find the co-efficient of second fundamental form and Christoffel symbols for the surface
$x\left(u^{1}, u^{2}\right)=\left(u^{1}, u^{2}, f\left(u^{1}, u^{2}\right)\right)$.
(d) Find the curvature of the curves
(i) $2 x-3 y+5=0$
(ii) $x^{2}+y^{2}+6 x-8 y+64=0$

PCG-003-1163005

M. Sc. (Sem. III) (CBCS) Examination

December - 2018

EMT - 3011 : Mathematics

(Differential Geometry)

(New \& Old Course)

Faculty Code : 003
Subject Code : 1163005

Time : $2 \frac{1}{2}$ Hours
[Total Marks : 70

Instructions : (1) All questions are compulsory.
(2) There are 5 questions.
(3) Figures on right side indicate full marks.

14
(1) Define with examples Functions of class k and a regular curve.
(2) Define with example : An open subset of R^{2}
(3) Find curvature of the circle $2 x^{2}+2 y^{2}-4 x-4 y+4=0$.
(4) Dofine : Reparametrization of a curve.
(5) Define : Regular curve segment.
(6) Define : Length of a rogular curve segment.
(7) Defino : Unit speed curve.
(8) Dofine : Normal curvaturo and Goodesic curvature.
(9) Dofino : Simple surface.
(10) Dofino : The tangent plano and the normal plane.

2^{2} Attempt the following :

(a) Is the curve $\alpha(t)=(\sin 6 t \cos t, \sin 6 t \sin t, 0)$ regular? If so then find the equation of tangent line to a at $t=\frac{\pi}{3}$.
(b) Is the curve $\alpha(t)=\left(\sin t, \cos ^{2} t, \cos t\right)$ regular? If so then find the equation of tangent line at $t=\frac{\pi}{4}$.

OR
(a) If $g:[c, d] \rightarrow[a, b]$ is a reparametrization of a curve segment $\alpha:[a, b] \rightarrow R^{3}$ then prove that the length of α is equal to the length of $\beta=\alpha \circ g$. Also derive the relation between their tangent planes.
(b) Let $\alpha(s)$ be a unit speed curve whose image lies on a sphere of radius r and centre m then show that $k \neq 0$. Also if $1 \neq 0$ then $\alpha-m=-\rho N-\rho^{\prime} \sigma \beta$ and $r^{2}=\rho^{2}+\left(\rho^{\prime} \sigma\right)^{2} \quad\left(\right.$ where $\rho=\frac{1}{k}$ and $\sigma=\frac{1}{l}$.)

3 Attempt the following :
(a) Define the arc length of a curve and prove that the arc length is one - one function mapping (a, b) onto (c, d) and it is a reparametrization.
(b) (Find the arc length of the curve $\alpha(t)=(r \cos t, r \sin , 0)$ and reparametrize the curve by its arc length, For the circular helix $\alpha(t)=(r \cos \omega s, r \sin \omega s, h \omega s)$, compute Frenet-Serret appartus $\left(\right.$ where $\left.\omega=\left(r^{2}+h^{2}\right)^{-\frac{1}{2}}\right)$.

OR

(b) Show that the length of the curve $\alpha(t)=\left(2 a\left(\sin ^{-1} t+t \sqrt{1-t^{2}}\right), 2 a t^{2}, 4 a t\right)$ between the points $t=t_{1}$ to $t=t_{2}$ is $4 \alpha \sqrt{2}\left(t_{2}-t_{1}\right)$.

Attempt the following :
(a) State and prove Frenet-Serret theorem.
(b) Show that the curve

$$
\alpha(S)=\left(\frac{5}{13} \cos S, \frac{8}{13}-\sin S, \frac{12}{13} \cos S .\right) \text { is a unit speed }
$$

curve. Also compute its Frenet-Serret appartus.

\checkmark Attempt any two :

(a) Let $f: X \rightarrow R^{3}$ be a simple surface and $f: v \rightarrow u$ is a co-ordinate transformation then prove that $y=X \circ f: v \rightarrow R^{3}$ is also a simple surface.
(b) For a simple surface $x: u \rightarrow R^{3}$ prove that
(i) $\quad X_{i j}=L_{i j} n+\sum_{k} \Gamma_{i j}^{k} x_{k}$
(ii) For any unit speed curve $\gamma(S)=x\left(\gamma^{\prime}(S), \gamma^{2}(S)\right)$,

$$
\begin{aligned}
& k_{n}=\sum_{i . j} L_{i j}\left(\gamma^{i}\right)^{\prime}\left(\gamma^{i}\right)^{\prime} \text { and } \\
& k_{g} S=\sum_{k}\left[\left(\gamma^{k}\right)^{\prime \prime}+\sum_{i . j} \Gamma_{i j}^{k}\left(\gamma^{i}\right)^{\prime \prime}\left(\gamma^{j}\right)^{\prime}\right] x_{k}
\end{aligned}
$$

(c) Prove that: The set of all tangent vectors to simple surface $x: u \rightarrow R^{3}$ at P is a vector space.
(d) Define Monge patch and compute coefficients of second fundamental form and Christoffel symbols for the same.

HEA-003-1163005 Seat No. 0.350125

M. Sc. (Mathematies) (Sem. III) (CBCS) Examination
November/December - 2017
Differential Geometry : EMT-3011
(New Course)

Faculty Code : 003

Subject Code : 1163005

Time: $2 \frac{1}{2}$ Hours]
[Total Marks : 70

Instructions : (1) There are five questions.
(2) Attempt all the questions.
(3) Figures to the right indicate full marks.

1 Attempt any seven :
(1) Define: Regular curve. is
(2) Define : Tangent vector field. ${ }^{2}$
(3) Is the curve $\alpha(t)=\left(t^{3}, t^{2}, 2 t\right)^{2}$ regular ? Justify your answer.
(7) Define : Arc length. ${ }_{2}$
(5) Define: Unit speed curve. ${ }^{2}$
(6) Define : The tangent space and the normal space.
(7) Define : Normal curvature and Geodesic curvature.
(8) Define : Simple surface.
(9) Define : Tangent vector to a simple surface.
(X0) Define : Proper co-ordinate patch.
| Contd...

2 Attempt the following :
(a) Define : Reparametrization. If $g:[c, d] \rightarrow[a, b]$ is a reparametrization of a curve segment $\alpha:[a, b] \rightarrow R^{3}$ then show that the length of α is equal to the length of $\beta=\alpha \circ g$.
(b) Reparametrize the curve $\alpha(t)=(r \cos t, r \sin t, 0)$ by its arc length and also find its curvature (where $r>0$).

OR

(b) Find the are length of the helix

$$
\alpha(t)=(a \cos t, a \sin t, a t \tan \alpha) \cdot 7
$$

3 Attempt the following:
(a) For the circular helix $\alpha(t)=(r \cos \omega s, r \sin \omega s, h \omega s)$, compute Frenet - Serret appartus (where $\omega=\left(r^{2}+h^{2}\right)^{-\frac{1}{2}}$)
OR
(a) Show that $\alpha(s)=\left(\frac{(1+s)^{\frac{3}{2}}}{3}, \frac{(1-s)^{\frac{3}{2}}}{3}, \frac{s}{\sqrt{2}}\right)$ is a unit speed curve and compute its Frenet - Serret appartus. 7
(b) Show that $\alpha(s)=\frac{1}{2}\left(\cos ^{-1} s, s \sqrt{1-s^{2}}, 1-s^{2}, 0^{\prime}\right)$ is a unit speed curve and compute its Frenet - Serret appartus.

2016 (b) Let $\alpha(s)$ be a unit speed curve whose image lies on a sphere of radius r and centre m then show that $k \neq 0$. Also if $\tau \neq 0$ then $\alpha-m=-\rho N-\rho^{\prime} \sigma \beta$ and

$$
r^{2}=\rho^{2}+\left(\rho^{\prime} \sigma\right)^{2} \quad\left(\text { where } \rho=\frac{1}{k} \text { and } \sigma=\frac{1}{\tau}\right) \text {. }
$$

5 Attempt any two :

(a) If $x: u \rightarrow R^{3}$ is a simple surface and $f: v \rightarrow u$ is a
$*$ coordinate transformation such that $y=x \circ f$ then prove that
(i) The tangent plane to the simple surface x at $P=x(f(a, b))$ is equal to the tangent plane to the simple surface y at $P=y(a, b)$.
(ii) The normal to the surface x at P is same as the normal to the surface y at P except possibly it may have the opposite sign.
(b) Prove that: The set of all tangent vectors to a simple surface $x: u \rightarrow R^{3}$ at P is a vector space.
(c) Find the coefficient of second fundamental form and \checkmark Christoffel symbols for the surface

$$
x\left(u^{\prime}, u^{2}\right)=\left(u^{1}, u^{2}, f\left(u^{\prime}, u^{2}\right)\right)
$$

(Differential Geometry)

Faculty Code : 003

Subject Code : 01630105

Time : $2 \frac{1}{2}$ Hours]
! [Total Marks. 70

Instructions : (1). Attempt all the questions.
(2) Each question carries equal marks.

1. Attempt the following : (any seven)
(8) Define regular curve.
(2) Define unit speed curve.
(3) Define tangent vector field to a regular curve.
(4) Is the function $g: R \rightarrow R$ defined by $g(x)=x^{3} \quad C^{1}$? Justify your answer.
(5) Find the curvature of the curve $2 x+3 y-5=0$.
(6) Find the curvature of the curve $x^{2}+y^{2}=9$.
(7) What is the dimension of a tangent vector space? -
\therefore (8) Is the curve $\left(t^{2}+t, 1,1\right)$ is regular? Why?
(9) Which parameter is measured by the quantity torsion of a curve?.
(10)/ 'Define osculating plane.

MBT-003-016305]
C Contd
For

Attempt the following :
(a) State and prove Frenet-Serret theorem.
(f) If image of a unit-speed curve $\alpha(s)$ lies on a surface of a sphere with radius r.and centre m, then show that $k \neq 0$. Also show that if $\tau \neq 0$ then $\alpha-m=-\rho N-\rho^{\prime} \sigma \beta$ and $r^{2}=\rho^{2}+\left(\rho^{\prime} \sigma\right)^{2}$ where notations are being usual.

5 Attempt the following: (any two)
(a) Define Normal space and Normal curvature and prove that $k^{2}=k_{n}^{2}+k_{g}^{2}$.
(b) Prove that:
$\Gamma_{i j}^{l}=1 / 2 \sum_{k=1}^{2} g^{k l}\left(\frac{\partial g_{i k}}{\partial u^{j}}+\frac{\partial g_{k j}}{\partial u^{i}}-\frac{\partial g_{i j}}{\partial u^{k}}\right)$

(c) Prove that the set of all tangent vectors to a simple surface $x: u \rightarrow R^{3}$ is a vector space.
(d) Find the coefficients of second fundamental form and Christoffel symbols for Mange patch.
$\alpha(x)=$

$$
1-\sqrt{2}, 11 \sqrt{2})
$$

[100]

54

> BBK-003-016305

Seat No. \qquad
M. Sc. (Maths) (Sem. III) (CBCS) Examination

December - 2015
Mathematics : EMT-3011
(Differential Geometry)
Faculty Code : 003
Subject Code : 016305
Time : 2:30 Hours]
[Total Marks : 70

Instructions: (1) Attempt all the questions.
(2) Each question carries equal marks.
(3) There are five questions.

1 Choose the appropriate alternative/alternatives :
(1) A curve $\alpha:(a, b) \rightarrow R^{3}$ is regular if
(A) $\frac{d \alpha}{d t}=0$
$\operatorname{ll} \operatorname{lor} \frac{d \alpha}{d t} \neq 0$
(C) $\frac{d \alpha}{d!}<0$
(D) None of these
(2) If $\alpha:(a, b) \rightarrow R^{3}$ is a unit speed curve then
(A) $\left|\frac{d \alpha}{d t}\right|=1$
(B) $\left|\frac{d \alpha}{d t}\right|=0$
(C) $\left|\frac{d d}{d t}\right|=2$
(D) None of these

BBK-003-016305]
I Contd...
(3) The curvature of the curve $\frac{x}{2}+\frac{y}{4}=1$ is
(A) 2
(B) 4
(C) 1
(\#) 0
(4) The curvature of circle with centre at origin and radius 4 is
(A) 0
(B) 4
(C) $1 / 4$
(D) None' of these
(5) The dimension of a tangent vector space is
(A) 2
(B) 3
(C) 1
(D) 0
(6) Which of the followings is/are Frenet-Serret apparatus
(A) T
(Di) N
(B) B
(D) N^{-}
(7) Which of the following is/are not Frenet-Serret apparatus
(A) k
L(B) k^{\prime}
(C) N
(8) B°
(8) Which of the following curves is/are regular?
(A) $\left(r^{3}+t^{2}, 0,0\right) \quad 4$ (B) $\left(t^{2}+t, 1,1\right)$
($1,2,1$)
(P) All of these
(9) A surface $x: u \rightarrow R^{3}$ is simple if
(A) $\partial x / \partial u^{\prime}=0$
(B) $\frac{\partial x}{\partial u^{2}}=0$
(c) $\frac{\partial x}{\partial u^{1}} \times \frac{\partial x}{\partial u^{2}} \neq 0$
(D) None of these

2 Attempt any two :
(a) Is the curve $\alpha(t)=(\cos t, 1-\cos t-\sin t,-\sin t)$ regular ? If yes, then find the equation of its tangent line at $t=\pi / 4$.
(b) Define arc length of the curve and find the arc length of the curve

$$
\alpha(t)=(r \cos t, r \sin t, h t) \text { for } 0 \leq t \leq 10
$$

(c) Find the arc length of the curve $\alpha(t)=(a \cos t, a \sin t, a t \tan \alpha)$

3 Attempt the followings :
(a) Show that the curve $\alpha(t)=(\sin 3 t \cos t, \sin 3 t \sin t, 0)$ is regular. Also find the equation of its tangent line at $t=\pi / 3$.

(b) Define reparmetrization of a curve and reparametrize the curve
$\alpha(u)=(a \cos u, a \sin u, c u)$ (where $0 \leq u<\pi)$ by $t=\tan u / 2$.

$\alpha(s)=\left(\frac{(1+s)^{3 / 2}}{3}, \frac{(1-s)^{3 / 2}}{3}, s / \sqrt{2}\right)$ is a unit-speed curve.
Also compute its Frenet-Serret apparatus.
(b) Show that the curve

$$
\alpha(s)=\frac{1}{\sqrt{5}}\left(\sqrt{1+s^{2}}, 2 s, \log \left(s+\sqrt{1+s^{2}}\right)\right) \text { is a unit-speed }
$$

curve. Also compute its Frenet-Serret apparatus.

BBK-003-016305]

4 Attempt the followings :

(a) State and prove Frenet-Serret theorem.
(b) If the image of a unit speed curve $\alpha(s)$ lies on a surface of a sphere with radius r and centre m then show that $k \neq 0$. Also show that if $z \neq 0$. Then $\alpha-m=-\rho N-\underbrace{\rho}_{b} \sigma B$. Hence

$$
V=\left\langle T, ~ \text { deduce that } r^{2}=\rho^{2}+\left(\rho^{\prime} \sigma\right)^{2}\right. \text { where notations are being usual. }
$$

Attempt any two :

(a) Define Mange patch and compute first fundamental forms for the same.
(b) For a coordinate patch $x: u \rightarrow R^{3}$ with metric coefficients $g_{i j}$ then prove that
$\Gamma_{i j}^{l}=\frac{1}{2} \sum_{k=1}^{2} g^{k l}\left(\frac{\partial g_{i k}}{\partial u^{j}}+\frac{\partial g_{k j}}{\partial u^{i}}-\frac{\partial g_{i j}}{\partial u^{k}}\right)$
(c) Define normal space and normal curvature. Also prove that $k^{2}=k_{n}^{2}+k_{g}^{2}$ where notations are begin usual.

$$
\begin{align*}
& a\left(f b p^{p r e i s}\langle\alpha(s)-m,(a \phi)-m\rangle+s^{2}\right. \\
& \text { 2. } \left.\left\langle\alpha^{\prime} s s\right), M\right\rangle=0 \\
& \Rightarrow 2\left\langle\alpha 1 \rho-m_{1} T\right\rangle=0 \\
& \backsim 0 \\
& \left.\Rightarrow\langle\alpha!(S), T\rangle+\langle\alpha S 5)+m, p^{\prime}\right\rangle=0 \\
& \text { BBK-003-016305] } \\
& \Rightarrow\langle T, T\rangle+\left\langle\alpha(\nu)-m n^{4}-k N\right\rangle=0 \tag{100}\\
& \because \rightarrow N-k\langle\alpha N \rightarrow M, N=\cdots 1 \\
& \text { - }\langle\alpha(s) \text { m } N\rangle=-1 \text { - } \neq 2 \neq
\end{align*}
$$

WRe

003-016305

M.Sc. (Mathes) (CBCS) Sem.-Il Examination

Deceniber-2014
ENTT-3111: Differential Gcometry

Faculty Code : 003
Subject Code : 016305

Instructions: (1) Attempt ail the questio.s.
(2) Each question carries equal marks.

1. Choose the appropriate allemative/alternatives :
\because (I) The curvature of the curve $\frac{x}{a}+\frac{y}{b}=1$ is
(a). 1
(b) 2

(c) 0

(d) $-1 x^{2}+y^{2}+29 x+9 f y+r=0$

The curvature of the curve $x^{2}+y^{2}-8 x-6 y+9=0$ is
(a) 9
(b) 2
(c) $\frac{1}{3}$.
(fit) $\frac{1}{4}$
$\sqrt{g^{2}+f^{2}-c}$
(3) A curve $\alpha:(a, b) \rightarrow R^{3}$ is regular if

$$
97=4
$$

(a) $\frac{d \alpha}{d t}=0$
(b) $\frac{d \alpha}{d t} \neq 0$
(c) $\frac{\mathrm{d} \alpha}{\mathrm{dt}}=1$
(d) None of these

$$
\sqrt{16+9-9}=\sqrt{16}=4
$$

curvatu $=\frac{1}{\pi}$

(4)) If B is binormal to curve α then
(a) $B=T / N$
(b) $\mathrm{B}=\mathrm{TN}$
(5) The torsion of A
(d) $\mathrm{B}=0^{-}$
(a) ivist
(b) curvature
(c). arc length
(d) none of these

003-016305
1
P.T.O:
(6) Which of the following is/are Frenct-Sertel apparatus?
(a) T
(c) N^{\prime}
$1(t)-N$
(7) Which of the following is/are not regular curves?
(i) $\left(1^{3}, 0,0\right)$.
组 $\left(!^{5}, 1,1\right)$
(d) $\left(t^{3} \div 2 t, 1,1\right)$
(c) $\frac{\partial x}{\partial u^{2}}=0$
(d) None of these
(9) The Christoffel symbols are

Symmetric and measure tangèntial components
(b) Antisymmetric and measure tangential components
(c) Symmetric and measure normal components
(d) Antisymmetric and measure normal components
(10)) For any circle $x^{2}+y^{2}=r^{2}$ larger the curvature
(a) larger the radius
(c) radius $=$ curvature
(b) smaller the radius
(d) None oi these
2. Attempt any two :
(a) Show that the curve $\alpha(t)=(\sin 3 t \cos t, \sin 3 t \sin t, 0)$ is regular. Also find the equation of tangent line at $t=\frac{\pi}{3}$.
(b) Is the curve $\alpha(t)=(\cos t, 1-\cos t-\sin t,-\sin t)$ regular? If yes, then find the equation of tangent line at $t=\frac{\pi}{4}$.
(c) Define arc length of the curve $\alpha(t)=\left(2 a\left(\sin ^{-1} t+t \sqrt{1-t^{2}}\right), 2 a t^{2}, 4 a t\right)$ between 003-016305

$$
\sqrt{x}=\frac{x^{1 /}}{\frac{7}{2} x^{4-1}} \frac{7}{\sqrt{x} \sqrt{x}}
$$

Attempt the following :

(1) Show that the curve $a(!)=\left(\begin{array}{ccc}(1+5)^{3 / 2} & (1 \cdots s)^{3,}, & 5 \\ j & ; & \sqrt{2}\end{array}\right)$ is a unit-speed curve.
iso compute its Frence-Serret apparatus.
(b) Show that the curve $\alpha(s)=\frac{1}{\sqrt{5}}\left(\sqrt{1+s^{2}} .2 s . \ln \left(s+\sqrt{1+s^{2}}\right)\right.$ is a unit-speet curve and :ompute its Frenct-Serret apparatus:

> OR
(a) State and prove Frenet-Serret theorem.
(b) Define Reparametrization of a curve and reparametrize the curve
4. Attempt any too:
(a) Define:
(i) Osculating plane
(ii) Normal plane
(iii) Rectifying plane

Also prove that a unit speed curve $\alpha(s)$ with $k \neq 0$ is a helix iff there is a constant c such that $\tau=\mathrm{ck}$.
(b) . If image of a unit-speed curve $a(s)$ lies on a surface of a sphere with radius r and centre m, then shows that $k \neq 0$. Also show that if $\tau \neq 0$ then $\alpha-m=-\rho N-\rho^{\prime} c B$ and $r^{2}=\rho^{2}+\left(\rho^{\prime} \sigma\right)^{2}$ (where notations are being usual)
(c) . Find the coefficients of second fundamental form and christoffe! symbols for Mange patch.
5. Attempt any two:
(:1) Define nomad space and normal curvature. Also prove that $\mathrm{k}^{3}=\mathrm{kn}^{2}+\mathrm{kg}^{2}$.
(b) Prove that : $\Gamma_{i j}^{-1}=\frac{i}{2} \sum_{k=1}^{2} \xi^{u \prime}\left(\frac{\partial s_{i k}}{\partial u^{i}}+\frac{\partial b_{k i}}{\partial u^{i}}-\frac{\partial s_{i j}}{\partial u^{k}}\right)$, where notations are being usual.
(c) Prove in the usual notations:
(i) $x_{i j}=L_{i j} n+\sum_{k} I_{i j}^{k} \cdot{ }^{\prime} \cdot Y_{r}$
(ii) $k N=k_{n} n+k g S$
(d) Prove that the set of all tangent vectors to a simple surface $\ddot{x}: u \rightarrow R^{3}$ is a vector space.

003-016305
W.Sc. (Maths) (CBCS) - (Sem.-III) Examination
Novenber-2013
Differential Geometry
EMT-3011
Faculty Code: 003
Subject Code : 016305

[ime: 2 $1 / 3$ Hours)
i
|Total Marks: 70

Instructions: (1) Altempiall the questions. (2) Each question carries equal marks.

1. Choose the appropriate alternative/alternatives (any seven) :
(11) The curvature of the curve $x^{3}+y^{2}=10^{6}$ bs
(a) 16
(b) 4
(c) 2
(d) -174
(2) The curvalure of the curve $3 x-4 y=16$ is
(a) 16
(b) 2
(c) $1: 2$
(d) 0
(13) The ate of change of tangeril vector is zero tien
$N(G)=0$
(b) $k \neq 0$
(c) $k=$?
(d) None of these
(4) ${ }^{\prime}$ curve $a:(a, b) \rightarrow R^{\prime}$ is regular if
(a) $\frac{d \alpha}{d ı}=$?
(b) $d t=0$
(c) $\frac{d \alpha}{d t}=0$
(d) None of these
(5) The dimension of tangent vector space
(a) 0
(b) 2
(c) -1
(d) 3
103.016305

1
P.T.O.
(6) If B is bi-normal to curve α then
(a) $\mathrm{B}=0$
(b) $\mathrm{B}=\mathrm{T} \times \mathrm{N}$
(c) $\mathrm{B}=\mathrm{TN}$
(d)

The torsion of a curve measures
(a) twist of a curve.
(b) bending of a curve
(c) speed of a curve
(d) none of these
(8) Which of the following is/are regular curves)? (try $(t, 1,1)$
(b) $\left(2 t^{2}, 0,0\right)$
(c) $\left.t^{\prime}+2 t, 2 t, t\right)$
(d) $(2 t ; 0,0), 3$

(9) Which of the following is (are) Frenet-Sertét apparatus?
(c) B^{r}
(b)
(G) N
(10) A surface $x: u \rightarrow R^{3}$ is simple if
(a) $\frac{\partial x}{\partial u} \times \frac{\partial x}{\partial u^{2}}=0$
(b) $\frac{\partial x}{\partial u^{\prime}} \times \frac{\partial x}{\partial u^{2}} \neq 0$
(c) $\frac{\partial x}{\partial u^{+}} \frac{\partial x}{\partial u^{2}}$.
(d) None of these
2. Attempt any two:
(a) Define:
(i) Function of Class ta.
(ii) Reparametrization decutve.

Also show, that the curve
$\alpha(t)=(\sin 3 t \cos t \sin 3 t \sin t, 0)$ is regular and find the equation of tangent lime fo a at $t=\pi / 3$.
equation of its tangent line at $t=\pi / 4$.
(c) If $g:[c, d] \rightarrow[a, b]$ is a reparametrization of a curve segment $\alpha:[a, b] \rightarrow R^{3}$ then prove that length of α is equal to the length of
3. Attempt the followings:
(a) Find the -are length of the curve
or $(1)=(3 \cdot \cosh 2 i, 3 \sinh 2 t, 6 t)$ from $t=0$ to $t=d$,
(b) Show that the arc length of the curve $\alpha(1)-($ a cos,$p \sin t$, at tan $\alpha)$ is at. $\sec \pi$.

OR
Attempt the following:
(a) Define: (1)-Osculating paine
(2) Normal pland (0)

Also show that
$\alpha(S)=\left(\frac{5}{13} \cos S, \frac{8}{13}-\sin \cdot \frac{-12}{13}\right.$ dos 8$)$
is a unit-speed curvearidd compute its Frenet-Serret apparatus.
 constant C sigh that $\mathrm{C}=\mathrm{ck}$. -

$$
\tau=c-k_{i}
$$

4. Attempt 它e following (any two) :
(2) State and prove Frenet-Serret theorem.
(b) If the image of a unit speed curve $\alpha(S)$ lies on a surface, of a sphere with radius r and centre m, then show that $k=0$. fro show that if $C \neq 0$ then $\alpha-m=-\rho N-\rho^{\prime} \sigma B$. Hence $r^{2}=R^{2}+\left(\rho^{\prime} \sigma\right)^{3}$ where rotations are being usual.
(c) Define Monge patch and compute first fundamental forms for the same.
S. Allempl ally Iwo :
(a) Define floral space and normal curvature, Alanforove that $k=\mathrm{kn}^{2}$. Ak gr where notaluns are being usual.
(b) For a simple surface $x: 11 \Rightarrow R^{\prime}$ and a unit speed cones $Y(s)=A^{\prime}\left(Y^{\prime}(s)\right.$, $\gamma^{7}(s)$) show that

(3) $k_{A} S=\sum_{k}^{\prime}\left(\left(r^{h}\right)^{\prime \prime}+\sum_{i, j} \Gamma_{i 1}\left(r^{\prime}\right)^{\prime}\left(r^{\prime}\right)^{\prime}\right)_{i}$
where notations are being usual.
(c) End geodesic, curvature and normal curvature pos The upper

Find the coefficients of second fundamental formis-rtiod
symbols for moms patch.
003×016305

003-016305
 N.Sc. (CBCS) (Sem. III) Examination
 December-2012
 EMT-3011: Diflerential Geometry
 (Mathematics)

Faculty Code : 003
Subject Code : 016305
Time: $2 \frac{1}{2}$ Hours
[Total Marks: 70

Instructions: (1) Attempt all the questions.
(2) Each question carries equal marks.

1. Choose appropriate alternative/altermatives (any sesen) :
(1) A curve $\alpha:(a, b) \rightarrow 1^{2^{3}}$ is regular it
(a) $\frac{d \alpha}{d t}=0$
(b) $\frac{d \alpha}{d t}=1$
(c) $\frac{d x}{d t} \neq 0$
(d) None of these
(2) The curvature of $2 x+3 y=0$ is
(a) $-2 / 3$
(b). $-3 / 2$
(c) $\dot{\sigma}$
(d) 6
(3) The rate of change of tangent vector is \%ero, then
ancor) $k=0$
(b) $\mathrm{k} \neq 0$
(c) $k=1$
(d) None of these
(44) For any circle $x^{2} / y^{2}=r^{2}$ smaller the radius
(a) curvature is 0
(b) cur'ature is half of r
(c) targer the curvature
(d) none of these

(6) Which of the following is/are not regular turves?

(c) $(2 i, 1,31)$

(d) $-\left(1^{2}+1, i, 0\right)$
(7) If B is binormal to any curve α then
(a) $\mathrm{B}=0$
(b) $\mathrm{B}=1$
(c) $\mathrm{B}=\mathrm{T} \cdot \mathrm{N}$

-

(8) The dimension of tangent vector space is
(a) 3
(b) -1
(c) ${ }^{2}$
(d) 0
(9)

The torsion of a curve micasures
Wear / wist of a curve
OS bènding of a curve
(c) expansionof a curve
(d) none of these
(10) The curyature of a geodesic on a simple surface M is
(a) 0
(b) 2
(c) -2
(d) 1

2. Attempt any twe:

(a) Show that $\alpha(t)=(\sin 3 t \cos t, \sin 3 t \sin t, 0)$ is regular. Also fint the fquation of tangent line at $t^{\prime}=\pi / 3$.
(b) Is the curve $\alpha(t)=(\cos t, 1-\cos t-\sin 1-\sin t)$ regular? If yes, then find the
(c) Reparanctrize the curve $\alpha(u)=(a \cos u, a \sin u, c u)$ where gis u - n by $=\omega \operatorname{Lu} / 2$.

3. Answer the following:
(i). Find the are length of the curve as well as reparametrize the curve by are length \sim where curve $a(t)=(r \cos 1, r \sin t, \mid 1)$ and $0 \leq 1 \leq 10$.
(b) Shaw that the length of the curve $u(t)-\left(2 a\left(\sin -1+\sqrt{1-1^{2}}\right), 2-a^{2}, 4\right.$ all $)$ is $\left(-, 4 a \sqrt{2}\left(t_{2}-t_{1}\right)\right.$ between the points $:=t_{1}$ in $t=t_{2}$.
(c) Chain Frenet-Serret apparat:is for the curve $\alpha(s)=(r \cos (s / s), r \sin (s / r), 0)$.
4. Attempt the following :
(a) Show that $\cdot \alpha(s)=\frac{1}{\sqrt{5}}\left(\sqrt{1+s^{2}}, 2 s, \operatorname{lng}\left(s+\sqrt{1+s^{2}}\right)\right)$ is a unit speed curve. Also compute its Frenet-Serret apparatus.
(b) Define

Also prove that a unit speed curve $\alpha(s)$ with $k \neq Q$ is a helix of there is a constant c such that $\tau=\mathrm{ck}$.
(a) State and prove Frenet-Serret theorem.

(b) If image of a unit speed curve $\alpha(;)$ lies on a surface of a sphere with radius r and centre m, then show that $k \neq 0$. Also shoe that if $\tau 0$ then $\alpha-m=-\rho N-\rho^{\prime} \sigma \beta$.
Hence $r^{2}=\rho^{2}+\left(\rho^{\prime} \sigma\right)^{2}$. (where notations are being usual).
5. Attempt any two :
(a) Define Mange patch and compute first fundamental forms for the same.
(b) Defoe normal space and normal curvature Also prove that $x^{2}=k_{n}{ }^{2}+k_{g}{ }^{2}$ where notations are being usual.

$$
3
$$

003-016305
P.T.O.

(c) Parotic that:

 to the tangent plane to the simple surface y^{-x} Or at $p=y(a, b)$.
(d) Let $x: u \rightarrow R^{3}$ be a simple surface and $r(s)=x\left(r^{\prime}(s), r^{2}(s)\right)$ be any unit speed curve then prove that
(1) $x_{i j}=-L_{i j}^{i i}+\sum_{k} \Gamma_{i j}^{k} x_{k}$.

(2) $\mathrm{k}_{\mathrm{n}}=\sum_{\mathrm{i}, \mathrm{j}} \mathrm{L}_{\mathrm{ij}}\left(\mathrm{r}^{\mathrm{i}}\right)^{\prime}\left(\mathrm{r}^{\mathrm{j}}\right)^{i}$
and
(3) $\mathrm{k}_{\mathrm{g}} \mathrm{s}=\sum_{\mathrm{k}}\left[\left(\mathrm{r}^{\mathrm{k}}\right)^{n}+\sum_{\mathrm{i}, \mathrm{j}} \Gamma_{i, j}^{\mathrm{k}}\left(\mathrm{r}^{\prime}\right)^{\prime}\left(\mathrm{r}^{j}\right)^{\prime}\right] x_{k}$

Faculty Codc : 003
Subject Code : 015305
Time : 2.30 Hours]
[Total Marks : 70
Iustruction : (1) Attempt all the questions.
(2) Each question carries equal marks.
(3) There are 5 questions.

1 Choose the appropriate alternatives. (any seven)
(1)) A real valued function f is said to be of class K over real interval I if
(A) it is infinitely many integrable
(B) it is not integrable.
(C). its $k^{\text {th }}$ derivative exists at each point of I and this derivative is continuous.
(D) it is exponential function.
(2) A vector valued function $R=(x, y, z)$ is said. to be of c^{k}
(A) if x is continuous
(B) if x and z is continuous
(C) if each of its components axe of c^{k}
(D) none of these
(3) A curve $a:(a, b) \rightarrow R^{3}$ is regular if
(A) it is integrable
(B) It is of class k and $\frac{d \alpha}{d t} \neq 0$
(C) it is not continuous
(D) none of these
(;-(i) The curvature of a unit speed curve $\alpha(s)$ is defined as
$N(A)=-k(s)=\left|I^{\prime \prime}(s)\right|$
(B) $k(s):=\left|N^{\prime \prime}(s)\right|$
(C) $\quad k(s)=\left|T(s) \times T^{\prime}(s)\right|$
(D) $k(s)=r^{2}$
(5)) Curvature will measure
(A) moment of curve
(B) period of curve
(C) arc length of curve
(D) bending of curve
(G) Which of the followings is not the Frenet-Serret apparatus?
(A) $k(s)$
(B) $\cdot \tau(s)$
(C) $-\bar{T}^{\prime}(s)$
(D) $B(s)$
$\because \because(11)$ Vectors u and v are orthogonal to each other if
(A) $u \times v=0$
(B) $-(u, v)=0$
(C) $\langle u \times v\rangle \neq 0$
(D) $u \times v=\langle u, v\rangle=-\langle v, u\rangle$
(8) Which of the following is a Frennet-Serret equation?
(A) $P^{\prime}(s)=K(s) N(s)$
(B) $T(s)=K(s) / N(s)$
(C) $\quad N(s)=K(s) B(s)$
(D) $\left|\frac{d T}{d S}\right| \neq 0$
\rightarrow (9)
The curvature of any straight line is
(A) 2
(B) $-\sigma$
(C) ∞
(D) 1
$\therefore(10)$
Which of the following notations is used to denote the geodesic curvature?
(A) K_{n}
(B) K_{g}
(C) $L_{i j}$
(D) K

2 Attempt any two.
(f) Define regular curve and show that. the curve
$\alpha(t)=(\sin 3 t \cos t, \sin 3 t \sin t, 0)$ is regular. Also find the
equation of tangent line to $\alpha \cdot$ at $t=\pi / 3$:
[Contd...
（b）Defoe repanamentation of a come and reparanpeniver the
curve $a(11)=(n \cos \pi, 4 \sin 11,2 n)$ by $1=\tan \left(\frac{n}{2}\right)$
（c）Define a regular curve segment and length of a regular curve segment moreover reparametrize the curve
$\cdots a(1)=(r \cos 1, r \sin 1,0)$ by arc length．
3 Attempt the followings ：
（a）Find the are length of the following curves：
（i）$\alpha(t)=(r \cos t, r \sin t, h t)$ for $0 \leq t \leq 10$
（ii）$\alpha(t)=(2 \cosh 3 t,-2 \sinh 3 t, 6 t)$ for $0 \leq t \leq 5$ ．
（b）Show that the arc length of the helix $\operatorname{ar}(t)=(a \cos t, a \sin t, a t \tan \alpha)$ is $\sec \alpha$ ．

3 ．Attempt the followings ：
（a）fort $g:|c, d| \rightarrow\{a, b\}$ be a reparametrization of a curve segment $\alpha:[a, b] \rightarrow R^{3}$ then the length of $\dot{\alpha}$ is equal to the length of $\beta=\alpha 0 g$ ．
ib）unit speed curve $u(s)$ with $k \neq 0$ is arelix ff there is a constant \dot{c} such that $\tau=c k$ ．

4 Attempt any two．
（a）For the unit speed curve α prove that
（i）．$T^{\prime}(s)=k(s) N(s)$
（ii）$N^{\prime}(s)=-k(s) T(s)+\tau(s) B(s)$
（iii）$B^{\prime}(s)=-\tau(s) N(s)$
where notations are being usual．
（b）Compute Frenet－Serret apparatus for the curve

$$
\begin{aligned}
& \alpha(s)=\left(\frac{s}{13} \cos S, \frac{8}{13}-\sin S, \frac{-12}{13} \operatorname{coj} S\right) \\
& \text { UAN-77 } \\
& \text { [Contd... }
\end{aligned}
$$

(c) Define:

(ii) c^{i} coordinate paton.
(ii) Mongepatch.

Moreover let $"=\left\{\left(n^{1}, u^{2}\right) \in R^{2} /\left(n^{1}\right)^{2}+\left(n^{2}\right)^{2}<1\right\}$ and
$X\left(, 1, \pi^{2}\right)-\left(n^{1}, n^{2}, \sqrt{1-\left(x^{1}\right)^{2}-\left(n^{2}\right)^{2}}\right)$ ben find unit normal and equation of tangent plane at $X\left(\frac{1}{2}, \frac{1}{2}\right)$.

5 Attempt any two:
(a) Find the coefficients of second fundamental form and Cbristoffel symbols for the surface $x\left(u^{1}, u^{2}\right)=\left(u^{1}, u^{2}, f\left(u^{1}, u^{2}\right)\right)$.
(b) Show that for a coordinate patch $\left\lceil x: u \rightarrow R^{3}\right.$. with metric
(c) Prove in the usual notations the relation

