

Shree H.N.Shukla College of Science Rajkot <u>MATHEMATICS</u> <u>S.Y.B.Sc. (Sem.IV) (CBCS)</u> <u>PRELIMS EXAM</u> <u>PAPER- 401</u> Linear Algebra, Real Analysis & Differential Geometry

Time: 2.5 hour]

[Total Marks: 70

Instruction: (i) All questions are compulsory.

(ii) Figures to the right indicate full marks of the

question.

1. (A) Answer the following:	[04]
1) Define: monotonic sequence	
2) State Cauchy's General Principle of Convergence.	
3) Define: Subsequence of a sequence	
4) Give an example of a sequence which is lower bounded.	
(B) Attempt any one:	[02]
1) Show that every convergent sequence is bounded.	
2) Determine the sequence is convergent or not:	
$\int \frac{5n + (-1)^n}{2}$	
$\left(2n+5\right)$	
(C) Attempt any one:	[03]
1) Show that the sequence {S _n } defined by $S_1 = \sqrt{2} \& S_{n+1} = \sqrt{2S_n}$	
converges to 2.	
2) Show that	
$1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2}$	
$\lim_{n \to \infty} \frac{3}{n} = \frac{5}{n} = 0$	

(D) Attempt any one:

- 1) State and prove Cauchy's first theorem on limits.
- 2) Show that the sequence {S_n} defined by $S_1 = 1 \& S_{n+1} = \frac{4+3S_n}{3+2S_n}$, $\forall n \in N$ is convergent and find its limit.

2. (A) Answer the following:

- 1) If the D'Alemert's ratio test fails, then what to do?
- 2) Narrate the Libnitz test for convergence of an alternating series.
- 3) Write the condition for convergence of $1 + r + r^2 + r^3 + ...$
- 4) Define: Oscillatory series

(B) Attempt any one:

- 1) Show that the series $\frac{1}{2} \frac{2}{5} + \frac{3}{10} \frac{4}{17} + \frac{5}{26} \dots$ is absolutely convergent.
- 2) Test the convergence of ;

$$\sum_{n=0}^{\infty} \frac{3^{2n}}{2^{3n}}$$

(C) Attempt any one:

1) Test the convergence or divergence of the series:

$$\frac{1}{4*6} + \frac{\sqrt{3}}{6*8} + \frac{\sqrt{5}}{8*10} + \frac{\sqrt{7}}{10*12} + \dots$$

2) Find the radius and interval of convergence of the series

$$\sum_{n=0}^{\infty} \frac{(-3)^n x^n}{\sqrt{n+1}}$$

(D) Attempt any one:

1) Discuss the convergence of

$$\frac{1}{2\sqrt{1}} + \frac{x^2}{3\sqrt{2}} + \frac{x^4}{4\sqrt{3}} + \frac{x^6}{5\sqrt{4}} + \dots$$

[02]

[03]

[05]

2) Discuss the convergence of

$$\sum \frac{1^2 * 4^2 * 7^2 * \dots (3n-2)^2}{3^2 * 6^2 * 9^2 * \dots (3n)^2}$$

3. (A) Answer the following:

- 1) Define: Kernel of a linear transformation
- 2) Define: Linear transformation
- 3) Define: Idempotent linear transformation
- 4) Let T: U \rightarrow V is a linear transformation. Let θ and θ' be zero vectors for U and V respectively, Prove that T(θ)= θ'

(B) Attempt any one:

- 1) Define: (i) Range of a linear transformation
 - (ii) Non-singular linear transformation
- 2) Let T: $R^2 \rightarrow R^2$, T(x, y) = (x+1, y-2); \forall (x, y) $\in R^2$, then show that T is not a linear transformation.

(C) Attempt any one:

- Find the linear transformation T: R³→R² such that T(e₁)=(1, 1), T(e₁+e₂)=(1, 0), T(e₁+e₂+e₃)=(1, -1). Also find T (2, 5, 7), where {e₁, e₁+e₂, e₁+e₂+e₃} is a basis of R³.
- Let T: V→V be any linear transformation such that T²-T+I=0 then prove that T is non-singular.

(D) Attempt any one:

- Prove that L (U, V) is a vector space over F=R with respect to addition & scalar multiplication of linear transformation, where L (U, V)=the set of all linear transformations from U to V.
- 2) State and prove Rank-nullity theorem.

4. (A) Answer the following:

1) Define: Dual of a vector space

[03]

[02]

[05]

[04]

[04]

- 2) If dimU=m, dimV=n then what is the dimL (U, V)?
- 3) Define: Eigen value of a linear transformation
- 4) Define: Diagonalization of a linear transformation

(B) Attempt any one:

- 1) Let T: $\mathbb{R}^2 \to \mathbb{R}^2$, T(x,y)=(x, -y), \forall (x,y) $\in \mathbb{R}^2$ and B₁={(1, 1), (1, 0)} and B₂= {(2, 3), (4, 5)}. Then find [T; B₁, B₂].
- 2) Define: Matrix associated with a linear transformation

(C) Attempt any one:

- Find Eigen values of the linear transformation T:R³→R³; T (a, b, c) = (a+b+c, a+b+c, a+b+c).
- 2) Linear transformation T: $P_2(R) \rightarrow P_3(R)$ is defined by $T(p(x)) = \int_0^x p(x) dx$. $B_1 = \{1, x, x^2\}$ and $B_2 = \{1, x, x^2, x^3\}$ are bases of $P_2(R)$ and $P_3(R)$ respectively. Find [T: B_1, B_2].

(D) Attempt any one:

- Find the Eigen value and Eigen vector for the linear transformation
 T: R³→R³, T(x, y, z) = (-2y-2z, -2x-3y-2z, 3x+6y+5z), ∀ (x, y, z) ∈ R³ by considering the standard basis of R³.
- Let T: V→V be a linear transformation and let B be any basis of V. Then T is singular if and only if det ([T; B]) =0.

5. (A) Answer the following:

- 1) Define: Multiple point of a given curve
- 2) Write the formula to find radius of curvature of the curve given by $r = f(\theta)$.
- 3) Find the radius of the curvature of the curve

$$s = 4a \sin \psi$$

Define: Point of inflexion

[05]

[04]

[02]

[03]

(B) Attempt any one:

- 1) For the curve $(x^2 + y^2)x - ay^2 = 0$, Prove that the origin is cusp.
- 2) Prove that $y = \log x$ is convex upward everywhere.

(C) Attempt any one:

- 1) Show that the parabola $y^2 = 4ax$ has no asymptotes.
- 2) Find the radius of curvature at origin for the curve $x^3 + y^3 = 3axy$ using Newton's method.

(D) Attempt any one:

- 1) Discuss double points of the curve $x^{3} + y^{3} - 3x^{2} - 3xy + 3x + 3y - 1 = 0$
- 2) Show that the radius of curvature of any point on the cardiod $r = a(1 + \cos \theta)$ is $\frac{2}{3}\sqrt{2ar}$. Hence prove that $\frac{\rho^2}{r}$ is constant.

****BEST OF LUCK****

[02]

[05]

[03]