

Shree H.N.Shukla College of Science <u>MATHEMATICS</u>

T.Y.B.Sc. (Sem.VI) (CBCS) PAPER- 603

Optimization & Numerical Analysis-II QUESTION BANK

☑ Answer the following:

[1 mark questions]

- 1) Define: Slack variables
- 2) Define: Optimum solution of LPP
- 3) What is Surplus variable with respect to the LPP?
- 4) Define: Basic Feasible Solution of LPP
- 5) Which three methods are used to obtain an initial solution of transportation problem?
- 6) What is the full form of NWCM?
- 7) What is the name of the method to find optimum solution of transportation problem?
- 8) What is the name of the method to solve Assignment problems?
- 9) Write formula for Gauss forward interpolation formula.
- 10) The first order divided difference $f(x_0, x_1) =$
- 11) If $f(x) = x^3$ then what is the value of f(1, 3)?
- 12) Write Lagrange's formula for inverse interpolation.
- 13) To derive Simpson's $\frac{1}{3}$ rule we can take n=____ in general quadrature formula.
- 14) What is numerical integration?
- 15) General Quadrature formula is also known as ______
- 16) Write Trapezoidal rule.
- 17) Write Taylor formula to solve Ordinary Differential Equation.
- 18) Write Picard's formula to solve Ordinary Differential Equation.
- 19) Write Range's formula to solve Ordinary Differential Equation.
- 20) Write Milne's Predictor formula to solve Ordinary Differential Equation.
- 21) Define: Convex Linear Combination
- 22) Define: Interpolation

- 23) What is the special case of Bessel's formula?
- 24) Which formula involves only even differences on & below the central line?
- 25) What is the fifth divided difference of the polynomial of degree four?

☑ Answer the following:

[2 mark questions]

- 1) Write the Matrix form of Linear Programming Problem.
- 2) State the Fundamental Theorem of Linear Programming.
- 3) State the general mathematical form of assignment problem.
- 4) Write full form of LCM & VPM?
- 5) Derive relation between divided difference and forward difference.
- 6) Define inverse interpolation and write Lagrange's formula for inverse interpolation.
- 7) Derive Simpson's $\frac{1}{3}$ rule.
- 8) Write General Quadrature formula.
- 9) Using Picard's formula to find y(0.1) given that

$$\frac{dy}{dx} = x + y, y(0) = 1, h = 0.1$$

10) Find the value of y at x=0.2 by Euler's method

$$\frac{dy}{dx} = 2x + y, y(0) = 1$$

- 11) What is the drawback of Lagrange's formula?
- 12) In usual notation prove that

$$D^{3} = \frac{1}{h^{3}} \left[\nabla^{3} + \frac{3}{2} \nabla^{4} + \frac{7}{4} \nabla^{5} + \dots \right]$$

- 13) Find the value of $\int_2^6 \frac{dx}{x}$ by Trapezoidal rule.
- 14) Find the value of y at x=0.2 by Taylor's method

$$y' = 2y + 3e^x$$
, $y(0) = 0$

☑ Answer the following:

[3 mark questions]

1) Obtain the dual of following;

Minimize: $Z = 5x_1 + x_2 - 6x_3$

Subject to the constraints

$$-2x_1 + x_2 + 11x_3 \le -2$$

$$-x_1 + 7x_2 + x_3 \ge 7$$

$$3x_1 - x_2 + 4x_3 \le 5 \quad and \ x_1, x_2, x_3 \ge 0$$

- 2) Write summary of the general relationship between Primal & Dual LPP.
- 3) Obtain the initial solution of given transportation problem using LCM method;

			Supply				
		D ₁	D ₂	D ₃	D ₄		
FROM	P ₁	2	3	11	7	6	
	P ₂	1	0	6	1	1	
	P ₃	5	8	15	9	10	
Demand		7	5	3	2		

4) Solve the following Assignment problem;

		Subordinates				
		I	II	III	IV	
	Α	8	26	17	11	
Task	В	13	28	4	26	
	С	38	19	18	15	
	D	19	26	24	10	

- 5) Derive Stirling's formula.
- 6) Prove that divided difference is symmetrical in their arguments.
- 7) Derive Trapezoidal rule.
- 8) Derive Simpson's $\frac{3}{8}$ rule.
- 9) Explain Euler's method to solve Ordinary Differential Equation.
- 10) Use Range's method to find y(0.2) given that y' = x + y, y(0) = 1.
- 11) If $f(x)=x^3$ then find f(1, 3, 5, 7)

☑ Answer the following:

[5 mark questions]

- 1) Explain the steps of Graphical method to solve the LPP.
- 2) Find only BFS and construct only first table to solve the following LPP using SIMPLEX METHOD (complete solution is not required)

Maximize:
$$Z = 3x_1 + 5x_2 + 4x_3$$

Subject to the constraints

$$2x_1 + 3x_2 \le 8$$

$$2x_2 + 5x_3 \le 10$$

$$3x_1 + 2x_2 + 4x_3 \le 15$$
 and $x_1, x_2, x_3 \ge 0$

- 3) Explain the steps of Hungarian method to solve the Assignment problem.
- 4) Obtain the Optimum solution of given transportation problem using MODI method;

			Supply				
		D ₁	D ₂	D ₃	D ₄	Supply	
FROM	S ₁	5	3	6	4	30	
	S ₂	3	4	7	8	15	
	S ₃	9	6	5	8	15	
Demand		10	25	18	7	60	

5) Use Sterling's formula to find f(1.63) given

X	1.50	1.60	1.70	1.80	1.90
f(x)	17.609	20.412	23.045	25.527	27.875

- 6) Derive Gauss Backward interpolation formula.
- 7) Evaluate $\int_0^{10} \frac{dx}{1+x^2}$ by using Simpson's $\frac{3}{8}$ rule.
- 8) Derive General Quadrature formula.
- 9) Derive Milne's Predictor-Corrector formula.
- Use Range-Kutta's method to find y(0.1), y(0.2) and y(0.3) given that $y' = xy + y^2$, y(0) = 1
- 11) Explain Taylor's method to solve ODE.
- 12) Explain Range-Kutta's formula to solve ODE.

- 13) State and prove Gauss forward interpolation formula.
- 14) Write the steps of Lowest Cost Entry Method to find initial solution of transportation problem.
- 15) Explain steps of Big M method to solve the LPP.
- 16) State and prove Laplace Everett's formula.
- 17) Write the steps of Vogel's Approximation Method to find initial solution of transportation problem.

****BEST OF LUCK****