Shree H.N.Shukla group of colleges

PHYSICS

T.Y.B.Sc. (Sem. V) (CBCS) Preliminary Examination PAPER- 502

ELECTRODYNAMICS & RELATIVITY

Time : $2\frac{1}{2}$ Hours] [Total Marks :				
Instructions: (1) Attempt all questions. (2) Figure on right indicates marks. (3) Symbols have their usual meanings.				
1 (a) Ans	swer the following questions:			
(1)	The flux rule for motional emf $\epsilon = $			
(2)	Ampere's law in integral form \oint B.dI =			
(3)	A changing electric field induces magnetic field. (True or False)			
(4)	In electrostatics and Magnetostatics the Newton's third law holds, but in electrodynamics it does not. (True or False)			
(b) Ans	swer any one out of two:			
(1)	If a self inductance of a solenoid is $100\ mH$, radius is $2\ cm$.			
	(i) Find out the number of turns per cm of the length of the solenoid, when there is a rod of iron inserted as a core material having value of permeability of 2.5 ×10 ⁻² H/m.			
	(ii) What is the energy stored in the magnetic field in the above case the current flowing the solenoid is 1A.			

		(2)	Find the self-inductance of a toroidal coil with rectangular cross section cinner radius, a outer radius b, height h1 which carries a total of N turns.	
	(c)	Ansv	wer any one out of two:	3
		(1)	Derive continuity equation.	
		(2)	A short solenoid having length l and radius a, with n_1 turns per unit length lies on the axis of very long solenoid having radius $b,\ n_2$ turns per unit length. Current I flows in the short solenoid. What is the flux through the long solenoid?	
	(d)	Ansv	wer any one out of two:	5
		(1)	Explain inductance in detail,	
		(2)	Derive Poynting's Theorem.	
2	(a)	Ansv	wer the following questions:	4
		(1)	Define : Transverse wave	
		(2)	The waves are travelling in the Z-direction and have no x or y dependence is called plane wave. (True or False)	
		(3)	What is angular frequency?	
		(4)	Write classical wave equation.	
	(b)	Ansv	wer any one out of two:	2
		(1)	The intensity of sunlight hitting the earth is about 1300 W/m 2 . If sunlight strikes a perfect absorber, what pressure does it exert? How about a perfect reflector? What fraction of atmospheric pressure does this amount to? (the atmospheric pressure is $1.03{\times}10^5$ N/m 2)	

(2) Use equation $A_3 = A_1 + A_2$ or

 $A_3\;e^{i\delta_3}=A_1e^{i\delta_1}+A_2e^{i\delta_2}\;\;\text{to determine}\;\;A_3\;\;\text{and}\;\;\delta_3$ in terms of $A_1,A_2,\delta_1\;\;\text{and}\;\;\delta_2\,.$

(c) Answer any one out of two:

3

- (1) Explain monochromatic plane waves.
- (2) Show that the standing wave $f(z,t) = A\sin(k_z)\cos(kut) \quad \text{satisfies the wave}$ equation and express it as the sum of a wave travelling to the left and a wave travelling to the right.
- (d) Answer any one out of two:

 $\mathbf{5}$

- (1) Discuss wave equation.
- (2) Explain Boundary condition (Reflection and transmission) for electromagnetic waves.
- 3 (a) Answer the following questions:

4

- (1) $\nabla \times B =$
- (2) The advance time $t_a \cong$
- (3) In the column gauge ∇·A = _____
- (4) $\Box^2 A =$ _____

 Show that the differential equations for V and A can be written in the more symmetrical form.

$$\Box^{2}V + \frac{\partial L}{\partial t} = -\frac{1}{\epsilon_{0}}p$$

$$\Box^{2}A - \nabla L = -\mu_{0}J$$

where

$$\Box^2 \cong \nabla^2 - \mu_0 \in_0 \frac{\partial^2}{\partial t^2}$$
 and $L \cong \nabla \cdot A + \mu_0 \in_0 \frac{\partial v}{\partial t}$

- (2) Find the potentials of a point charge moving with constant velocity.
- (c) Answer any one out of two:

3

- (1) Explain Retarded potentials.
- (2) An infinite straight wire carries the current

$$I(t) = \begin{cases} 0 & \text{for } t \le 0 \\ I_0 & \text{for } t > 0 \end{cases}$$

That is, a constant current I_0 is turned on abruptly at t=0. Find the resulting electric field and magnetic field.

(d) Answer any one out of two:

5

- (1) Write note on Lienard Wiechert potentials.
- (2) Write note on the fields of a moving point charge.

	(d)	Answer any one out of two:	5
		(1) Write note on – Radiation from an arbitrary source.	
		(2) Write note on – The total power radiated by point charge.	
5	(a)	Answer the following questions :	4
		 The laws of mechanics are certainly the same in accelerating reference frames. (True or False) 	
		(2) Equation $U_{AC}=U_{AB}+U_{BC}$ is called as Einstein's velocity addition rule. (True or False.)	
		(3) The trajectory of a particle on a Minkowski diagram is called	
		(4) The locus of all points accessible to you is called	
	(b)	Answer any one out of two:	2
		(1) A muon is travelling through the laboratory at three-fifth the speed of light. How long does it last?	
		(2) How much energy would be released if 1 kg of substance gets fully converted into energy.	

- (c) Answer any one out of two:
 - (1) Explain Lorentz contraction.
 - (2) A train is moving with the speed of 60 km/hr and a man starts moving the speed of 5 km/hr inside the train. What is the percent error introduced when you use Galileo's rule instead of Einstein's velocity addition rule?
- (d) Answer any one out of two:

(1)

·

 $\mathbf{3}$

 $\mathbf{5}$

(2) Write note on - Relativistic Energy and Momentum

Write note on - Space-time diagram.