

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 1

Website:hnsgroupofcolleges.org

Email : hnsinfo@hnshukla.com

 Shree H.N.Shukla College,

 Street No. 2, Vaishali Nagar,

 Nr. Amrapali Railway Crossing,

 Raiya Road, Rajkot.

 Ph. (0281)2440478, 2472590

Shree H.N.Shukla College,

 Street No. 3, Vaishali Nagar,

 Nr. Amrapali Railway Crossing,

 Raiya Road, Rajkot.

 Ph. (0281)2471645

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 2

CS – 09: PROGRAMMING WITH C#

Unit
No.

Topics Details

1 Introduction Introduction to visual studio 2008
Visual studio editions
Visual studio IDE

C# Basics Variables, Constants, Strings
 Data types
 Arrays
 Decision statements
 Loop statements
 Exception using try-catch-finally
 NameSpace
 Class
 Object
 Struct

2 Inheritance Inheriting a class
 Sealed class
 Overloading an operator
 Overloading a method
 Overloading an Indexer
 Creating an Interface
 Implementing an Interface
 Inheriting an Interface

Pointers and
Delegates

 Pointers
 Pointers to Arrays
 Pointers to Structures
 Delegate
 Declaring and Instantiating Delegate
 Multicast delegate
 Creating events
 Chaining events
 Firing an event

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 3

3 Threading in C# Introduction
 Difference between process and thread
 The thread class
 Multithreading
 Thread Priorities
 Thread Synchronization

Collection and
Generics

Understanding Collections:
ArrayList, BitArray, HashTable, Queue, SortedList, Stack,
Generics, Generic List, Generic Stack, Generic Queue,
Generic HashSet

4 Reflection in C# Reflection, Why we need Reflection?, Using Reflection,
Dynamic loading and reflection

 Windows Forms
and Control
Programming

Windows Forms:
MsgBox, DialogBox, Handling Mouse, Events, Handling Key
Events
Basic Control Programming For Following: Controls, Button,
Label, TextBox, RichTextBox, RadioButton, CheckBox ListBox,
CheckedListBox, ComboBox, ListView, TreeView, ImageList,
PictureBox
Panel, GroupBox, TabControl, ScrollBar
ToolTip, NotifyIcon, Timer, ProgressBar

5 ADO.NET
Programming

Architecture of ADO. NET Data providers in ADO.NET:
Connection Command DataReader DataAdapter
DataSet:
DataTable DataView DataColumn DataRow DataRelation
DataReader DataGridView Control Introduction to LINQ
Using LINQ to Dataset Example

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 4

Chapter-3 :- Threading

 Topics

Threading in C# Introduction
 Difference between process and thread
 The thread class
 Multithreading
 Thread Priorities
 Thread Synchronization

Collection and
Generics

Understanding Collections:
ArrayList, BitArray, HashTable, Queue, SortedList, Stack,
Generics, Generic List, Generic Stack, Generic Queue, Generic
HashSet

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 5

Topic: What is Thread?

Ans:

 Threads is a dispatchable unit of execution to which an operating system

allocates processor time.

 Each thread defines a unique flow of control. If your application involves

complicated and time consuming operations, then it is often helpful to set

different execution paths or threads, with each thread performing a particular

job.

 Threads are lightweight processes (Means of achieving mulit tasking).

 One common example of use of thread is implementation of concurrent

programming by modern operating systems. Use of threads saves wastage of

CPU cycle and increase efficiency of an application.

Topic: Differentiate Process and Thread

Ans:

Comparison Basis Process Thread

Definition It is a program under

execution that is an

active program

It is a lightweight

process that can be

managed independently

by a scheduler.

Context Switching Time

(Time between 2

process)

It requires more time It requires less time

Blocked If a process gets

blocked, remaining

processes can continue

execution

If a user level thread

gets blocked, all of its

peer threads also gets

blocked

Resource Consumption

Requires more resources

Requires less resources

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 6

Dependency

Individual processes are

independent of each

other

Threads are part of

process and so they are

dependent

Data Processes have

independent data

A thread shares data

segment with its peer

threads.

Time for termination Process requires more

time for termination

Thread requires less

time for termination

Topic: Explain Thread Class

Ans:

 .Net framework defines two types of thread: Foreground thread and

background thread.

 When you create a thread, by default it is foreground thread, but you can

change it to background thread.

 The only difference between foreground and background thread is that a

background thread will be automatically terminated when all foreground

threads in its process have stopped.

 Along with thread-based multitasking comes the need for a special type of

feature called synchronization, which allows the execution of threads to be

coordinated in certain well-defined ways

 The class that supports multithreading programming are defined in the

System.Threading namespace.

 Thread class is sealed, which means that it can not be inherited.

 To create the thread, you have to create the object of thread class

 Thread t=new Thread();

 T.start();

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 7

 In the above syntax, start method is used to begin the execution of the

thread.

 Once created, new thread will not start until you call its start method.

 If you try to call start() on a thread that has already been started, a

ThreadStateException will be thrown.

Example:

class test

 {

 public void display()

 {

 Console.WriteLine("Hello");

 }

 }

 class Program

 {

 static void Main(string[] args)

 {

 test t1=new test();

 Thread t = new Thread(t1.display);

 t.Start();

 Console.ReadKey();

 }

 }

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 8

Topic: Explain States of Thread

Ans:

 States of thread can be checked using ThreadState enumerated property of

the Thread object which contains different value for different states.

 Following are the states of Thread.

1) Unstarted: When the object of Thread class is created, it is in the unstarted

state, means the thread has not yet started to run when the thread is in this

state. Or in other words, start() is not called.

Thread t=new Thread()

2) Runnable State: A thread that is ready to run is moved to runnable state.

In this state, a thread might actually be running or it might be ready to run

at any instant of time. It is the responsibility of the thread scheduler to give

the thread, time to run. Or in other words, the Start() method is called.

3) Running State: A thread that is running. Or in other words, the thread gets

the processor.

4) Not Runnable State: A thread that is not executable because

a. Sleep() method is called.

b. Wait() method is called.

c. Due to I/O request.

d. Suspend() method is called.

5) Dead State: When the thread completes its task, then thread enters into

dead, terminates, abort state.

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 9

Example:

class test

 {

 public void display()

 {

 Console.WriteLine("Hello");

 }

 }

 class Program

 {

 static void Main(string[] args)

 {

 test t1 = new test();

 Thread t = new Thread(new ThreadStart(t1.display));

 Console.WriteLine(t.ThreadState);

 t.Start();

 Console.WriteLine(t.ThreadState);

 t.Suspend();

 Console.WriteLine(t.ThreadState);

 t.Resume();

 Console.WriteLine(t.ThreadState);

 Console.ReadKey();

 }

 }

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 10

Topic: Write a short note on Multithreading

Ans:

 Multithreading means when your program has more than one threads.

 Multithreading in C# is a process in which multiple threads work

simultaneously.It is a process to achieve multitasking. It saves time because

multiple tasks are being executed at a time.

Example:

class test

 {

 public void display()

 {

 Console.WriteLine("Hello");

 }

 public void display1()

 {

 Console.WriteLine("Hi");

 }

 }

 class Program

 {

 static void Main(string[] args)

 {

 test t1 = new test();

 Thread t = new Thread(new ThreadStart(t1.display));

 Thread t2 = new Thread(new ThreadStart(t1.display1));

 t.Start();

 t2.Start();

 Console.ReadKey();

 }

 }

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 11

Topic: Write a short note on Thread Priority

Ans:

 Each and every thread has its own priority settings

 Priority of thread means that how often thread gets access to CPU.

 Generally, high priority threads get more access to the CPU in compare to

low priority threads.

 Thread can be assigned priority by using ThreadPriority

o Highest

o Lowest

o Normal

o BelowNormal

o AboveNormal

Note: The default priority of thread is ThreadPriority.Normal

Example:

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 12

class test

 {

 public void display()//t1

 {

 Console.WriteLine("Hello");

 }

 public void display1()//t2

 {

 Console.WriteLine("Hi");

 }

 public void display2()

 {

 Console.WriteLine("how are you");

 }

 public void display3()

 {

 Console.WriteLine("aaaaa");

 }

 public void display4()

 {

 Console.WriteLine("bbbb");

 }

 }

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 13

class Program

 {

 static void Main(string[] args)

 {

 test t = new test();

 Thread t1 = new Thread(new ThreadStart(t.display));//hello

 Thread t2 = new Thread(new ThreadStart(t.display1));//hi

 Thread t3 = new Thread(new ThreadStart(t.display2));

 Thread t4 = new Thread(new ThreadStart(t.display3));

 Thread t5 = new Thread(new ThreadStart(t.display4));

 t1.Priority = ThreadPriority.Lowest;

 t3.Priority = ThreadPriority.Highest;

 t2.Priority = ThreadPriority.Normal;

 t4.Priority = ThreadPriority.BelowNormal;

 t5.Priority = ThreadPriority.AboveNormal;

 t1.Start();

 t2.Start();

 t3.Start();

 t4.Start();

 t5.Start();

 Console.ReadKey();

 }

 }

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 14

Topic: Write a short note on Thread Synchronization

Ans:

 The main disadvantage of multithreading is that we have to coordinate

resources like files, network etc. Otherwise two or threads could not access

same resource at same time.

 The process by which this is achieved is known as Synchronization.

 The most common reason for using synchronization is when two or more

threads need access to shared resource that can be used by only one thread

at a time.

 The key to synchronization is the concept of lock, which controls access to

the block of code within an object. When the object is locked by one thread,

another thread cannot gain the access to the locked block.

 When the thread releases the lock, the object is available for use by another

thread.

Syntax:

lock(this)

{

 //statements;

}

Example:

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 15

class print

 {

 public void display()

 {

 lock (this)

 {

 for (int i = 0; i <= 10; i++)

 {

 Console.WriteLine(i);

 }

 }

 }

 }

 class Program

 {

 static void Main(string[] args)

 {

 print p = new print();

 Thread t = new Thread(new ThreadStart(p.display));

 Thread t1 = new Thread(new ThreadStart(p.display));

 t.Start();

 t1.Start();

 Console.ReadKey();

 }

 }

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 16

Topic: Write a short note on Collections in C#

Ans:

 Collection represents group of objects.
 Collection classes are specialized classes for data storage and retrieval.
These classes provide support for stacks, queues, lists, and hash tables.
Most collection classes implement the same interfaces.

 Collection classes serve various purposes, such as allocating memory
dynamically to elements and accessing a list of items on the basis of an
index etc.

 Namespace: System. Collections

Types of collection:

Non-Generic Collections:

 This type of collection store elements internally in object arrays so it can

store any type of data.

 Following are the types of Non-Generic Collections:

 ArrayList

 Hashtable

 Sorted List

 Stack

 Queue

 BitArray

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 17

1) Array List

 Array List class is a collection that can be used for any types or objects.

 Arraylist is a class that is similar to an array, but it can be used to store

values of various types.

 An Arraylist doesn't have a specific size.

 Any number of elements can be stored.

 Arraylist allocates memory for 4 items, whenever an object is created.

When a fifth item is added, memory for another 4 items are added. It reduces

the memory allocated for the object.

class Program

 {

 static void Main(string[] args)

 {

 ArrayList a = new ArrayList();

 string str = "hello how are u";

 int x = 10;

 char c = 'A';

 a.Add(str);

 a.Add(x);

 a.Add(c);

 foreach (object o in a)

 Console.WriteLine(o);

 Console.ReadKey();

 }

 }

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 18

Properties:

1) Capacity:

It is the property that returns the number of items for which memory

is allocated

2) Count:

 Gets the number of elements actually contained in arraylist

3) Contains:

 This property will return true if the element is present in the list, else

it will return false.

Difference between Array and Array List

Array ArrayList

1) Array stores fixed number of

elements

1) Arraylist can store any number of

elements.

2) Array stores the elements of

same data type

2) Arraylist stores the elements of

different data types

3) Namespace: System.Array 3) Namespace: System.Collections

4) Arrays can not accept Null 4) ArrayList can accept Null

5) Array can be multidimensional 5)Arraylist is always single

dimensional

6) We can add element in array by

= operator

6) We can add elements in the

arraylist by using Add().

MCQ

1) Which property is used to count
total number of elements in array?

Count

2) …..property returns the number of
items for which memory is allocated

Capacity

3) ……method is used to add
elements in the arraylist?

Add()

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 19

2) Hashtable:

 HashTable is similar to arraylist but represents the items as a combination
of a key and value.

 Elements in the hashtable are stored as Dictionary Entry Objects.

class Program

 {

 static void Main(string[] args)

 {

 Hashtable t = new Hashtable();

 t.Add("1", "C#.Net");

 t.Add("2", "Asp.Net");

 t.Add("3", "J#.NEt");

 foreach (DictionaryEntry d in t)

 Console.WriteLine(d.Key + "" + d.Value);

 Console.ReadKey();

 }

 }

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 20

Properties:

1) Count: Gets the number of key and value pairs contained in hast table
2) Item: Gets or set the value associated with the specified key

Methods:

1) Add()): This method is used to add the element with specified key and value
into hastable

2) Clear(): This method is used to remove all the elements from hashtable
3) ContainsKey(): This method determines whether the hashtable contains a

specific key
4) ContainsValue(): This method determines whether the hash table contains

a specific value or not
5) Remove(): This method is used to remove the element with specified key

from the hashtable

Difference between ArrayList and Hashtable

ArrayList Hashtable

1) Arraylist is based on index 1) Hash table is based on key

2) In array list, data is stored in

form of index

2) In Hash table, data is stored in

form of key and value

3) Dictionary Entry object is not

used

3) Key value data is stored in

Dictionary Entry object

4) Arraylist produces sequential

output

4) Hash table does not produce

sequential output.

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 21

3) Sorted List:

 It is the class that has the combination of arraylist and hastable
 Represents the data as key and value pair
 Arranges all the items in sorted order
 It contains a list of items that can be accessed using a key or an index. If you
access items using an index, it is an ArrayList, and if you access items using
a key, it is a Hashtable.

MCQ

1) …….method is used to clear all the
elements of hash table

Clear()

2) ……..method is used to remove the
element of particular key

Remove()

3) In hash table, data is stored in
…….form

Key,value

class Program

 {

 static void Main(string[] args)

 {

 SortedList s = new SortedList();

 s.Add("C#", "C#.Net");

 s.Add("Asp", "Asp.Net");

 s.Add("J#", "J#.NEt");

 foreach (DictionaryEntry d in s)

 Console.WriteLine(d.Key + "" + d.Value);

 Console.ReadKey();

 }

 }

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 22

Properties:

1) Capacity: Gets or sets the capacity of sorted list

2) Count: Gets the number of key and value pairs contained in sorted list
3) Item: Gets or set the value associated with the specified key in sorted list
4) Keys: Gets the key in sorted key
5) Value: Gets the value in sorted key

Methods:

1) Add()): This method is used to add the element with specified key and
value into sorted list

2) Clear(): This method is used to remove all the elements from sorted list
3) ContainsKey(): This method determines whether the sorted list contains a

specific key
4) ContainsValue(): This method determines whether the sorted list contains

a specific value or not
5) GetByIndex(): Gets the key at specified index of the sorted list
6) IndexOfKey(): Returns the index of specified key in the sorted list
7) IndexOfValue(): Returns the index of first occurrence of the specified value

in the given list
8) Remove(): This method is used to remove the element at specified key

of sorted list
9) RemoveAt(): This method is used to remove the element at specified index

of sorted list

MCQ

1) ………is the combination of
arraylist and hash table

Sorted List

2) Sorted list can access the data
either through …….or …….

Index, key

3) Sorted List displays the output in True

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 23

4) Stack:

 A stack is a LIFO (Last In First Out) data structure
 Element in the stack are placed at the top and is removed from the top
 Example: Stack of plates or books
 To add element in stack, Push() is used and to remove the element from
the stack, Pop() is used

sorted form (T/F)

4) ……….is used to remove the
element at specified index

RemoveAt()

5) ………is used to remove the
element at specified key

Remove()

class Program

 {

 static void Main(string[] args)

 {

 Stack s = new Stack();

 s.Push("Hello");

 s.Push("Hi");

 s.Push("xyz");

 foreach (object o in s)

 Console.WriteLine(o);

 s.Pop();

 foreach (object o in s)

 Console.WriteLine(o);

 Console.ReadKey();

 }

 }

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 24

5) Queue:

 A stack is a FIFO (First In First Out) data structure
 Example: Line of people
 To insert element in the queue Enqueue() is used and to remove the
element from the queue Dequeue() is used.

MCQ

1) Stack is based on ……. LIFO

2) To insert the elements in
stack,…….method is used

Push()

3) To delete the elements in the stack,
………method is used

Pop()

class Program

 {

 static void Main(string[] args)

 {

 Queue q = new Queue();

 q.Enqueue("Hello");

 q.Enqueue("Hi");

 q.Enqueue("xyz");

 foreach (object o in q)

 Console.WriteLine(o);

 Console.ReadKey();

 }

 }

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 25

6) Bit Array:

 The BitArray class stores array of bit values, which are represented as

Booleans, where true indicates that the bit is on i.e., 1 and false

indicates the bit is off i.e., 0.

Example:

Difference between Stack and Queue

Stack Queue

1) Stack is based on LIFO 1) Queue is based on FIFO

2) In stack, insert operation is

known as push

2) In Queue, insert operation is

known as Enqueue

3) In stack, delete operation is

known as pop

3) In Queue, delete operation is

known as dequeue.

MCQ

1) Queue is based on ……. FIFO

2) To insert the elements in
queue,…….method is used

Enqeue()

3) To delete the elements in the
queue, ………method is used

Dequeue()

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 26

Generic Collections:

 The Generic Collections store elements internally in arrays of their

actual types.

 Namespace required for Generic collection is: using

System.Collections.Generic

 A Generic Collection is strongly typed.

 Following are the types of Generic Collections

 Generic Stack

 Generic Queue

 Generic List

 Generic Hashset

class Program
 {
 static void Main(string[] args)
 {

 BitArray a = new BitArray(3);
 a.Set(0, true);
 a.Set(1, false);
 a.Set(2, true);

 for (int i = 0; i < a.Count; i++)
 Console.WriteLine(a[i]);
 Console.ReadKey();
 }
}

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 27

1) Generic Stack:

 The Generic Stack in C# is a collection class which works on the

principle of Last in First out (LIFO) and this class is present.

 System.Collections.Generic namespace.

class Program
 {
 static void Main(string[] args)
 {

 Stack<int> s = new Stack<int>();
 s.Push(10);
 s.Push(11);
 s.Push(12);
 s.Push(13);
 s.Push(14);

 foreach (int ele in s)
 Console.WriteLine(ele);
 Console.ReadKey();
 }

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 28

2) Generic Queue:

 The Generic Stack in C# is a collection class which works on the

principle of Last in First out (LIFO) and this class is present.

 System.Collections.Generic namespace.

class Program
 {
 static void Main(string[] args)
 {

 Queue<int> q = new Queue<int>();
 q.Enqueue(10);
 q.Enqueue(11);
 q.Enqueue(12);
 q.Enqueue(13);
 q.Enqueue(14);

 foreach (int e in q)
 Console.WriteLine(e);
 Console.ReadKey();

 }

(Affiliated to Saurashtra University)

Subject: C#- PGDCA-2 29

3) Generic List:

 List<T> class represents the list of objects which can be accessed by

index.

 System.Collection.Generic namespace is used. List class can be used

to create a collection of different types like integers, strings etc.

class Program
 {
 static void Main(string[] args)
 {
 List<int> f = new List<int>();
 f.Add(10);
 f.Add(11);
 f.Add(12);

 foreach (int e in f)
 Console.WriteLine(e);
 Console.ReadKey();
 }
 }

	1) Array List
	2) Hashtable:
	3) Sorted List:
	4) Stack:
	5) Queue:
	6) Bit Array:

